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THE PERTURBATION THEORY FOR
LINEAR OPERATORS OF DISCRETE TYPE

L1 BINGREN

Using the theory of unconditional bases, we discuss the perturbation
theory of linear operators of discrete type.

The principal abstract perturbation theorem about discrete spectral
operators was introduced by J. T. Schwartz, and extended by
H. P. Kramer to the general case ([1], XIX.2 Theorem 7). In this paper, we
shall give a simple proof for Schwartz-Kramer’s Theorem by using the
theory of unconditional bases, and omit the condition of weak complete-
ness in their theorem. In the proof of [1], XIX.2 Theorem 7, because of
using [1], XVIIL.2 Corollary 33, so that it needs the condition of weak
completeness. On the other hand, all perturbant generalized eigenvectors
consist of an unconditional basis, so we can prove the theorem without
using the above corollary and omit the condition of weak completeness.

DEFINITION 1. A linear operator 7 in Banach space B is called
discrete type ((D) type), if p(T) # @, and there exist an unconditional
basis {x,} of B, a sequence of complex numbers {A,} and a positive
integer N, such that im,|A,|= +oo, X, #A,,,Vn,m EN, m> N and
n#m, Tx, =A,x,, Vn>N, T[x,...,xy] Clxp,...,xy] and

n-n>

o(T|[xy,- ., xy]) = (Al AR

PROPOSITION 2. Let T be a linear operator of (D) type in Banach space
B, {x,},{\,} and N as in Definition 1. Then o(T) = {A,},

D(T) = {x EB|ifx = Ya,x,,then X \a,x, € B}

n>N

N
Tx= 3 a,Tx,+ 2 Aa,x,, Vx=a,x, €ND(T).

n=1 n>N

However, for each A & o(T), R(\, T) = (T — A1)~ is compact and

N
_ [s 4
RN T)x= D a,(T—AI)'x,+ X ~——2—x,,
- A —A
n=1 n>N n
Vx=Ya,x, €B.
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Proof. Define a linear operator T;, in B as follows

WNT,) = {x €B|1fx—2a,,xn,then > Aa,x, EB]

n>N

Tox—zaTx+2}\ a,x,, Vx=JQa,x,€DT,).
n=1 n>N n

Because T is closed, so T D T;,. Without loss of generality, we can assume

0 € p(T). Then by | A, |- oo and [3], Ch. II Lemma 16.1, let

N
y = 2 anT-lxn + 2 %xn € GD(T('))
n=1 n>N ""n
for x = 2,a,x, € B, and T,y = x, so that T,°)(T;,) = B. Therefore T =
Ty.
If A # A\, V n, because of |A — A, |- o and above Lemma 16.1, it is
easy to see (T — AI)S(T) = B. So that o(T) = {A,}, and we have the
formula about R(A, T).

We can assume || x|l = 1, V n. Let f, € B*, such that f,(x,) =8, .,
V n, m. Then there exists a positive constant M, such that || f || < M,
V m.

For each n, let P,, Q, be the projections such that P, + Q, = I, and
P.B=[x...,x,], 0,B=1[x,,1,.. ..]- By [3], Ch. I Th. 171 there
exists a posmve constant M,, such that II Q | =M, Vn.

Again by above Th. 17.1, there exists a positive constant M;, such
that

2 nan‘xn

n

Let A € p(T') and {y,} be a bounded sequence of B, i.e. ||y, |l =< M,,
V n. Because | f,(y,) |= M, M,, we can assume that

fm(yn)::aﬁ:)—)am’ Vm

=Mlixll, Vx=Xa,x,€ Band|B,|<1(Vn).
n

(replacing a subsequence of {y,}, if necessary). For ¢ > 0, there exists
N, (> N) such that |1/(A, —A)|<e Vn=N, Then for sufficiently

large n, m

) — alm™

A — A

2 a;(n) _ agcm)x
_ k
D Ve

IR T)QN (i — 3l = 3 +

k=N+1

<e+ eMllQyy, — Onymll = (1 +2M,M;M,)e

Therefore R(A, T)Q, and R(A, T') are compact. O
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LEMMA 3. Let {x,} be an unconditional basis of Banach space B, J be a
subset of N. Then {x,|n € J} is an unconditional basis of [x,|n € J],
where [x, | n € J] is the closed subspace generated by {x,|n € J}, and

B=[x,|neJ] +[x,|ne&J]

However, let P(J) be the projection from B onto [x,|n € J] such that
(I —P(J)B=][x,|n&lJ), then J - P(J) is countably additive in the
strong operator topology from the o-field of all subsets of N into the
projections in B, and P(N) = I, P(&) = 0.

Proof. Let P, be the projection from B to [x,] such that (I — P,)B =
[x,|m#n], Vo If x=3,a,x,E[x,|nE€J], by Pbx=0,Vme&J,
so that a,, =0, Vm & J and x = ¥ _,&,x,. This series is also uncon-
ditionally convergent, therefore {x,|n € J} is an unconditional basis
of [x,|n €J]. Similarly, {x,|n &J} is an unconditional basis of
[x,|n & J], so that

B=[x,|n€J] +[x,|ne&J].

We notice the following fact: if x = T, a,x, € B and ¢ > 0, then there
exists a positive integer N, such that

2 an‘xn
ncA

where A is an arbitrary subset of Nand A N {1,...,N} = &. In fact, we
have N such that

<e

< £
M

2 a,x,

n>N

where M is the constant such that ||Z ¢, 8,x,ll = Ml yll,Vy =2, ,B8,x, €
Band|e,|<1,Vn €N (3], Ch. II, Th. 17.1). Let

e — { 1 neA
" 0 otherwise
then
D axl=[ X en(xnxn“SM > oa,x,||<e.
neA n>N n>N

Nowlet CN,J NJ,= @,Vi+#j,J=UZ J,and x = 2, a,x, €
B, ¢ > 0. Take above N and a positive integer K such that

K
UJsoin{1,...,N}

i=1
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then

= 2 anxn

neA

<e

H(é”“) - P

where A =J\ UX Jand A N {1,...,N} = &. So that
K
P(J) =slim ) P(J)
K=

and J — P(J) is countably additive in the strong operator topology. U

Now we recall that a linear operator 7' in Banach space B is spectral
as in [1], XVIIL. 2, Definition 1, and T is discrete as in [1], XIX. 2,
Definition 1, i.e. every resolvent R(A, T') of T is compact. We also say
that a discrete spectral operator T satisfies condition ( F'), if for all but a
finite number of spectral points A, the space of generalized eigenvectors of
T corresponding to A is one-dimensional.

PROPOSITION 4. Let T be a linear operator in Banach space B. Then T
is (D) type, if and only if, T is a discrete spectral operator which satisfies
condition (F').

Proof. Let T be (D) type, {x,}, {A,} and N as in Definition 1. We
assume that {A,..., Ay} = {A,..., A}, wherek = Nand A, # A, V1<
i #j =< k. If B, is the space of generalized eigenvectors of T corresponding
toA,, 1 =i =<k, then N =3 dim B,. We can also assume that there is a
partition {1,...,N} = U A, such that B,=[x,|n €A, 1=i<k.
Let B, = [x,], Vn > N and % be all Borel subsets of complex plane C,
and

P(A) =+ {B,|N\, €A} VAED

then by Lemma 3, A — P(A) is countably additive in the strong operator
topology.
Let A € % and x € D(T) N P(A)B, we can write

X = 2 an'xn + 2 an'xn
n>
and \,EA and A, €A
by Proposition 2,
™x= > aTx,+ X Aa,x,€P(A)B.

neA, n>
and A,EA and A,
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However, T'| P(A)B also satisfies the assumptions of Proposition 2, so
that o(T| P(A)B) = {A,| A, € A} C A. Therefore T is a discrete spectral
operator which satisfies condition ( F).

Conversely, let T be a discrete spectral operator which satisfies
condition ( ). Let P(-) be the resolution of the identity for 7 and assume
that the different eigenvalues of 7 are A,,...,A,, Ayips---5A,,... such
that

N:diméP({A,})B, dim P({A,})B=1,Yn>N.

i=1
Let

[xi.oxy] = @ P(A))B, [x,]=P({X,))B, V>N

i=1

because

P(a(T)) =1, P({An|n>N}):s-1nim EB P({X,,})B

i=N+1

for every permutation ¢ of {N + 1,...,n,...}, so that {x,}, is an
unconditional basis of B. Therefore T is (D) type. U

LEMMA 5. Let {x,} be an unconditional basis of Banach space B,
Ix, Il =1, Vn, {y,} be a w-linearly independent sequence of B, i.e., if
2,a,y, =0, thena,= 0,V n.

(D 1f 2, Ix,, — y, Il < + o0, then {y,} is also an unconditional basis of
B;

(2) If B is a Hilbert space, and 3, || x,, — y,|I> < +co, then {y,} is also
an unconditional basis of B.

Proof. (1) It follows by [3], Ch. I, Th. 10.2, (a) 2°. = 4% and [3], Ch.
II, Th. 17.1, 1°. & 29;;

(2) By [3], Ch. II, Th. 18.1, we can assume that {x,} is an orthogonal
normalized basis of B. Let N such that

> ollx, —y,lIP=N<1, 0<A<l1

n>N
and

X 1<=n<N
Yn n>N
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then
Jlix, —z,12=N<1.
Because of
Dax,—z) =3l 2 lx,—zI1P=N| ¥ a,x,
n=1 n=1 n=1 n=1
for all finite sequences of numbers «y,...,a,,, so by [3], Ch. I, Th. 9.1,

(b)&) and [3], Ch. II, Th. 17.1, 1° & 2°, {z,} is also an unconditional
basis of B.

Now by 2,1z, — y,Il < + 00, and 1) of this Lemma, {,} is also an
unconditional basis of B. O

THEOREM 6. Let T be a linear operator of (D) type in Banach space
B, {x,}, {A,} and N as in Definition 1,0 € p(T). Let V be a linear opera-
tor in B, such that A = VT * bounded, where 0 <a <1. Let v, =
min,,_,|A,, — A, | and we have one of the following conditions:

(1) 2n>N(| >\n I +Vn)a/yn < +OO,

(2) If B is a Hilbert space, and 2, y(| A, | +v,)*%/v2 < + co;

(3) lim,(|A,| +2,)%/v, =0, and Z, ;| a;;|< oo, where a;; = f(Ax,),
andfj = B*,fj(xi) = 8,,1.;

@ (A, | +»,)/v, <G, Vn, and 3, ;|a,;|< B, where a;; as in (3),
and B is sufficiently small,

(5) If B is a Hilbert space, {(x,, x,)=28,,, Vn, m,
lim,(|A,| +#,)*/v, = 0 and A is a Hilbert-Schmidt operator;

(6) If B is a Hilbert space, (x,, x,,)=96, .,V n,m,(|A,| +»,)"/v, =
G, Vn, ||All, < B, where || |, is Hilbert-Schmidt norm, and B is suffi-
ciently small, then (T + V) is also (D) type in B.

Proof. We can write T = T, + Fsuch that T,x, = A, x,,n = 1,2,...,
and F[x,,...,xy] C[x},...,xy], Fx, =0, Vn>N. Using (F+ V) in-
stead of ¥, we can assume that Tx, = A x,, n = 1,2,.... However, we
can also assume |Ix, || =1, V n. By [3], Ch. II, Th. 17.1, there exists a
constant M (= 1), such that

2 Bnan'xn
n

(1) Let N, sufficiently large (> N) such that

=Mlxll, Vx=Xa,x,€Band|B,|<1,Vn.

a,

o< M
l1—a

<1, Vn>N,

n

where a,=2MIAl(A,| +2,)/v,.
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For n > N, let I, be a circle whose center is at A, and radius is », /2.
When A € T, because
XS, (l)\ | +»,)"
__—}\ Y l —— Vm
so that |R(A, Tl =2M/v,, IVR(A, T)ll <a,. By [2], (T + V) has one
and only one single eigenvalue A (V) in I',. Since 0 < Ma, /(1 —a,) <1,
we can take

14

n

x,(V) = go 2‘—;1 frn(—l)'R(}\, T)[VR(\, T)] dAx,
as corresponding eigenvector. By
Ix, (V) = x,Il < 21 % jF"nR(x, T)IIVR(A, TN d|A|=< Mél al
<4AM*|AN(IN, | +2,)%/7,
and condition 1, so that

> lix, (V) — x,ll < + 0.

n>N,

However, since

2 A=Al
INGIETHEEEPWEEE

1 Al I

=[N, =3 (A, ]+ ) =5 =

so thatlim, | A (V) |= + 0.

Let I’ be a closed road, containing the points Ay )\N, and such
that dist(T', {Ay,...,Ay}) = »/2, where v = min,_ y, 7,. With the aid of
[2], page 34 Lemma 4.10 and page 178 Theorem 6.17 we are able to show
that (T + V) has different eigenvalues A (V),..., A (V) (k=N,) in T,
and there exist linearly independent elements x,(V'),...,xy(V) of B such
that

(T+ V)[x,(V),-.oxy (V)] C[x(V),. . xp (V)]
and

o((T+ V) |[x,(V)s-coxn(P)]) = (M), A (V).

Now it is sufficient to prove that {x,(¥)|n = 1,2,...} is an uncondi-
tional basis of B. Because of Lemma 5, we only need to prove that
{x,(V)|n=1,2,...} is w-linearly independent.
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Let

.1
Pn—mfrnR(A,T+ V)d\ Vn>N,

then
Px, (V)=8,,x, (V) Vm€ENandn>N,.

If 3,8,x,(V)=0, then 0=P3 B,x,(V)=R8,x,V) and B, =0,
Vn>N, and 30 ,B,x,(V)=0. But {x,(V)]|1=<m=N,} is linearly
independent, so that 8, =0, V n. This shows {x,(V)|n=12,...} is
w-linearly independent. ‘

(2) Similarly to (1), let N, sufficiently large (> N) such that
an

o<M <1 Vn>N,

n

where a, = 2M || All(|A, | +7,)%/7,.

For n> N,, let I, as (1). When A € T, we also have [|R(A, T)l| =
2M /v, and ||[VR(A, T)ll < a,. Hence (T + V) has one and only one
single eigenvalue A (V') in I, and corresponding eigenvector is

x,(V)= /i%fr(_l)lmx’ T)[VR(A, T)] dAx,.

It is obvious that lim, |A (V) |= +o. We also take I' and
xy(V),...,xy(V)asin (1). For n > Ny, as (1)

Ix,(V) = x,Il < 4M2ILAN(A, | +2,)%/5,.
By condition (2)
Slix, (V) —x,I1> < +o0.
n
Similarly as (1), {x,(V)|n=1,2,...} is w-linearly independent. By
Lemma 5, {x,(¥V)|n €N} is an unconditional basis of B, so that

(T + V)isstill (D) type.
(3) Let

1 «
sup Il f,Il =K, b, =—2MKX|a,;|(|\,]+2)"
n ij

v,

Because of || 41l < KZ,,|a;,|, so b, > a, (the definition of a,, see (1)). By
assumption, for large n,

<1.

0< My

n



PERTURBATION THEORY FOR LINEAR OPERATORS 37

Let T, as (1), then there exists only one single eigenvalue A, (V') of
(T+ V) in I,, and the corresponding eigenvector x, (V) has also the
formula as (1). ForA €T,

IR(A, T)[VR(N, T)]'x,

A k
22 n !
o k/)\n—}\ 7\,('—}\

. Ni,_l (Ax,, fi.,) '“(Axk,_nfk,>x
A —A Ay, —A ki

EHEANE

] Vn 1%k, K,

IA

20, +5)" |2 (g, N
<22 P2 (500 )] Sa,
| n 1 "n ij k

so that
o0
”xn(V) - xn” = E brle lank|/2 Iaijl
=1k i
and 3 |lx, (V) — x,ll < + co. The rest part of proof is similar as (1).
(4) Take

B<(2M(M+ 1)KG)'

the proof is similar as (3).
(5) Let

¢, =2MIAllL (A, | +7,)% /7,

because || 41| =< || 41l ,, so that ¢, > a,,. If n sufficiently large,

o<M Cn =< 1.
1—c¢

n

Let T, as 1), then A (V), x, (V) as(1). ForA €T,

I R(N, T)[VR(N, T)]'x,, 112

21N, 1 +2) [P 2\, 20— 2
S[—V ,,—) l4l2" "2 la,l
n n k
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and

I (V)— | < § / 1 (2 2)1/2
X Xy Cy ”A||2 - |ankl

=1
so that
Dx, (V) = x, 11> < + 0.
n

The rest part of proof is similar as (2).
(6) Take

B<(@2M(M+1)G)"
the proof is similar as (5).
This completes the proof of Theorem 6.

REFERENCES

1. N. Dunford and J. T. Schwartz, Linear Operators, Part 111, New York, Wiley-Intersci-
ence, 1971.

2. T. Kato, Perturbation Theory for Linear Operators, Berlin, Springer, 1966.

3. I Singer, Bases in Banach Spaces I, Springer-Verlag, 1970.

Received August 19, 1980 and in revised form May 11, 1981. Institute of Mathematics,
Academia Sinica, Peking, China.

UNIVERSITY OF PENNSYLVANIA
PHILADELPHIA, PA 19104





