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ON THE SEARCH FOR WEIGHTED
NORM INEQUALITIES FOR THE
FOURIER TRANSFORM

NESTOR E. AGUILERA AND ELEONOR O. HARBOURE

B. Muckenhoupt posed in [1] the problem of characterizing those
non-negative functions ¥ and v, which for some p, 1 <p < o0, the

inequality
+o0 + o0
[V Putxydx=c [ T1f(x) Po(x) dx

holds for any f, where f denotes the Fourier transform of f. In this paper
we deal only with the case where either u =1 or v = |, finding that
when v = 1, 1 < p < 2, a necessary condition is that for any r > 0,

+ o0 , b l/b
> (f"‘“’u(x)dx) ] <
k=-o00 ‘"Tk

where b = 2/(2 — p), and that a sufficient condition (v =1, 1 <p) is
that for any measurable set E,

fu(x)deC|E|’—'.
E

Similar conditions are obtained for the case v = 1. Although we will
show that the sufficient condition is not necessary (in §4, Corollary 1 and
again in §6, Corollary 3 and Remark 4), we were unable to obtain any
conclusions on our necessary condition.

1. As far as we know, only sufficient conditions had been considered
before, in the case where both u and v are powers of | x | (see e.g. [2] for
the trigonometric case), although our sufficient condition is somehow a
restatement of a generalized Hausdorf-Young inequality (see e.g. [4, page
200)). In this connection we must point out the work of Hardy, Littlewood
and Paley (see e.g. [5, Chapter VII, §8 and Chapter XII, §§3, 5 and 6]). By
the way, both of our conditions may be easily translated to the trigono-
metric setting, where relationships between f and its Fourier coefficients
are considered, f appearing either on the left or right hand side of the
inequality. For a similar inequality to that of our necessary condition see,
for instance, [5, Chapter XVI, Example 8, page 298] where, however, the
exponents are less than 2.

In §2 we give some introductory ideas which give some “feeling” for
the subject and use these in §3 to show a simple necessary condition when
v = 1 which is quite similar to the sufficient condition treated in §4 where
we also give several equivalent conditions. In §5 we give some examples
showing the gap between the conditions of the two previous sections so
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that the necessary condition of §6 comes as no surprise. In this latter
section we make several observations and give some examples, showing
the implications between all three conditions. Finally, in §7 we briefly

consider the case u = 1.
We will denote by f the Fourier transform of f defined by

A +o0 .
fx)y=[ e f(y) dy.
—00
The corresponding inverse Fourier transform of f will be denoted by

f. C, as usual, stands for a constant which need not be the same at each
occurrence, which may depend on p but not on the general functions
considered. We will work in just one dimension and omit limits of
integration or summation when it is clear what they should be. Throughout
the paper 4 and v will be non-negative measurable functions.

2. Preliminaries. When considering inequalities of the type

(+) Jifpuax=c fispoa

it is apparent that the particular behaviour of translations and dilations
under the Fourier transform will be reflected on properties of # and v. Let
us recall that . .

(1) if f(x) = 1f(x/e), then (£)(x) = f(ex).

(2) if g(x) = f(x + a), then g(x) = e'“*f(x) and the “reciprocal” to
(2). _

(3) if g(x) = e'*f(x), then g(x) = g(x — a).

Let us take for instance the case where (*) holds and u = v is locally
integrable. Using (2) and (3) above and (*) twice it is not difficult to show
that

f |f(—x + a) Pu(x) dx < Cf [f(x + b) Pu(x) dx

for any choice of a and b, since f(x) = 27f(-x). If f is the characteristic
function of the interval (—¢, €) we may conclude that for any ¢ > 0 and
any a and b,

1 C
— dx < — dx.
2e ‘/|’x—a|<eu(x) ~ 2e '/|x—b|<su(X) x

Since we are assuming that u is locally integrable, for some b = b, we
must have both

M(b) = sup %'[I—b|< u(x) dx < o0

0<e<l1
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and

Therefore for any a we must have
M(a) = sup 1 f u(x) dx = CM(b,)
0<e<l 2e |x—al<e
and for almost all a,
u(a) < Cu(b,).

So we conclude that if u is not identically zero (i.e. the set where u is
different from zero has positive measure), there exist non-zero constants A
and B so that

A<u(x)<B

for almost all x. Hence, u may be replaced by the funciton identically
equal to 1 in (*). , A

Now if f(x) = e /2, we know that f(x) = y27 f(x), taking f(x) as
in (1) above, we see that

[lipax="

and

Jinpde= 2.

e?!
Applying (*) with # = v = 1, we must have for all e > 0,

Q =C ¢
€ gp—l

so that if  Z 0, necessarily p = 2.

This shows how different our weights must be from those considered
when f is replaced in (*) by the Hardy-Littlewood maximal function or the
Hilbert transform (see e.g. [1]).

We will treat now the case v = 1.

3. A simple necessary condition. Here we want to obtain properties
on the non-negative function u if the inequality

(+%) [17puax=c [|fp ax
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holds, where 1 <p < co. Recalling the behaviour of translations and
dilations under the Fourier transform, we let

flx) = X(—l/r,]/r)(x)emx

where x  denotes the characteristic function of the set E.
Then

_ . sin((x —a)/r)
flx) = 22X
so that |f(x)|2 1/r if |x —a|=r, and we must have, with =
{x:|x—a|=r},

flu(x) dxs"pflflpudXSCr"fledx: Ccrr!

i.e. u must be locally integrable and, denoting by | E'| the measure of the
(measurable) set E,

/;u(x)deC|I|‘”_'

for any interval 1.

We observe that for p = 1 this condition implies that u is integrable
over all of the real line and, by using Lebesgue’s dominated convergence
theorem, we see that ¥ must be bounded for p = 2 and u must vanish
identically for p > 2. So from now on we will restrict our attention to the
case 1 =p =<2

4. A sufficient condition when v =1, 1 <p <2. A modification of
the proof given in Zygmund’s book [5, vol. 2, page 121] of a theorem of
Paley will show that the following theorem holds:

THEOREM 1. Let 1 < p < 2. If the locally integrable function u satisfies
the inequality

fu(x)deC]EF’”‘
E
for any measurable set E, then

[1fpuax=c [|fpax.

Before giving the proof of Theorem 1, however we will give different
equivalent conditions on u:
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THEOREM 2. Let 1 <p <2 andlet b =2/(2 — p). Suppose u is locally
integrable, then the following are equivalent:

@) | {x: u(x) > A} |< C/N/2 for all \ > 0.

(ii) [p udx < C|EP~! for all measurable sets E.

(iii) Fora > b /2,

f u®(x) dx < CAN**/®~1 forall A > 0.
{x: u®Hx)=A}

(iv) Forany r > 0,A > 0,

. p—172/b
#({k: f(k+‘)udx>>\})sc[r}\ ]
kr

where #( A) denotes the number of elements of the set A.

Proof of Theorem 2.

(i) implies (ii). Let u*(¢) be defined for ¢ > 0 as the non-increasing
rearrangement of u. Observe that since A%/ is essentially the distribution
function of | x [?~2, for some constant C > 0 we must have

u*(t) = Ccrr?
and then

fudeflE[u*deCfmt"—zdt= C|Ep™!
E 0 0

since p > 1. (For the first inequality see for instance [5, vol 1, page 31].)
(ii) implies (i). Let E = {x: u(x) > A}, E, = E N [-n, n]. Then

1 C
El|<— | udx< < |E, P!
|B,|=y [udx=|EF

so that
C
I En |S }\b /2
and letting n go to infinity, we obtain
C

|El= 75
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(i) implies (iii).

(x)dx < 2 f u*(x) dx

‘[{x:u”/z(x)<)\} (x:27" A <ub/}(x)=2""A}

<C S @A fx: ub/Y(x) > 2 |
n=0
®©  \2a/b-1

< L — QRa/b)—1
=C y 2n(2a/b—1) c .

(iii) implies (i).

[{x:u(x)>A}|= X | {x:2"""A=u(x) >2"A}|
n=0

1

n=0 (2")\)1) '/{-x:u(x)SZ”“)\}

b8

< u*(x) dx
o 1
=C 3 -
n=0 (2"A)

(i) implies (iv). Given A >0 and r >0, set 8 = (A/4r)?/? and let
= {x: u®/*(x) > B)}. Let I, denote the interval (kr,(k + 1)r) and
assume [; udx > A. Then either [, npudx>X/2 or [; nepudx >MA/2,
where CE is the complement of E. However, [; o udx >\ /2 implies

A/2 < [ineg ¥ dx < B?/°r = A /4, which is impossible. So

#({k: flkudx >)\}) < #({k: meudx > %})

(2"A) "? < onbr2,

Now

+ o0

%#({k: _/;mEudx>%}) = > ﬁnEudeLudx

k=-00 "k

which, by (ii) and (i) is bounded by C| E}P~! < CB' 7. So

(r—1)/Q-p) p—1\2/b
#({k:fudx>}\})SC(§)p P%:C(rx ) .
I

(iv) implies (i). Let

(k+1)/2" k k+1

u(x)—2f/2n u(t) dt for?Sx< 5
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Then u,, converges to u almost everywhere and hence in measure. There-
fore

| {(x:u(x) >A} = lim | {x:u,(x) >A/2} |

but

| {x:u,(x)>A}|= %#({k: 2" f(kﬂ)/z”u(t) dt > )\})

k2"

= 2n }\/zn - A2/‘”- D

n\p—1\1/Q—p)

_cC ( (1/2") ) _C

We should observe that in Theorem 2, if p = 1 we have (i) implies (ii)
but not the converse. Actually, in the proof of Theorem 1 we will only use
condition (iii) when 1 <p <2. However it is important to put the
condition in the form (i) which says that the distribution function of u is
bounded by that of | x [*77, showing the connection with the Hausdorf-
Young theorem and the Hardy, Littlewood and Paley results mentioned in
the introduction. Condition (iii) is stated because of its remarkable
similarity with the necessary condition found in §3. Condition (iv) will be
useful for comparing the sufficient condition and the necessary one in §6.

We turn now to the proof of Theorem 1:

Proof of Theorem 1. As already mentioned, we will use Marcinkiewicz’
interpolation theorem to interpolate between p = 1 and p = 2. Let T be
defined for f € L? N L' by

w7 (x)f(x) ifu(x)#0
T(x) = {O ifu(x) =0.

Then

/|f)”udx: f‘Tf"’u"dx
where b = 2 /(2 — p).

In L' we have the weak-type estimate

C
ub(x)dx < = | |f] dx
f{xrle(x)|>>\} A

since | f(x) |< [|f(¢)]| dt and (iii) of Theorem 2 is satisfied. On the other
hand, in L?, by Plancherel’s identity we have the inequality

[1TfPutax = [|fF dx.
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By interpolating, we obtain the result when 1 <p < 2. If p = 1, the
condition [ u < C for any measurable set E implies u € L', and since
| f(x) |< [|f(¢)| dt, the result is obvious. On the other hand, when p = 2,
[gudx = C| E| implies | u(x) |< C and the result follows by Plancherel’s
identity. O

It is interesting to observe that for p =1 or p =2 the simple
necessary condition of §3 and the sufficient condition of Theorem 1 are
equivalent, in fact we used the former in the last proof when p =1 or
p = 2. However we cannot “interpolate” and obtain that they are equiva-
lent for 1 < p < 2, as we show in the following section.

5. Some examples. Let p be strictly between 1 and 2. Let F be a
measurable set such that | F|< co. It is not difficult to show that if we
take u = x  then

|/PPudx = |fIPdx < C|FPP? [ |f dx
F

where C may depend on p. (In fact it follows from the previous theorem,
keeping track of the constants, or directly by using interpolation.) How-
ever, for some sets we can sharpen the inequality:

Let E = U}_,(2%,2% + 1), we will show that in this case the mapping
f = xf has norm essentially equivalent (depending on p) to N@7/2»,
To prove this fact we will use the equivalence

J(31500) " ae= fuspa

valid for 1 <p < oo, where A stands for the collection of all dyadic
intervals and S, f is defined by (S, f Y =X, f. (A precise statement and
proof may be found in [3, page 104].)

Let 4, = (25,2 + 1) and let I, = (2%,2%*") so that E = U} 4, and
A, C I,. Then

N N
[1ipax=73 [ |x,frax=C3 [|s,/rdx
E 1 A 1

where the last inequality follows by taking A, = F at the beginning of this
paragraph. Using Holder’s inequality we derive

. N p/2
f|f|—”dxsf(2 |Slkf|2) N@=PV/2 gy
E 1

< CN@ /2 [|fp dx.
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To see that indeed the norm is not much smaller than N@7)/27 we
take f so that f = x . Then

L]fkdede=N

and
N p/2
fuva=[|S1s.p| "
1
but
|'S, fI=|%,| , where I = (0,1).
Therefore
[ 179 dc o
and so

[ 17 dx ~ N2/ [| fp ax.
E
As an application of this example we have the following.

COROLLARY 1. The condition [y u(x)dx < C|E ™" for any measura-
ble set E is not necessary for (¥*) to hold if 1 <p <?2.

Proof. Let E(e, N) = U}_ (£2%, &2* + 1)). By using the behaviour of
dilations under the Fourier transform and the previous example we get

[ Afpax=(2N)" [ 1P ax.
E(e,N)

Letnowe, = 27", N, = 2",
2’1
E, =2+ E(e,, N,) = U (224" + 287,22+ 4+ (2K + 1)277).
k=1

Finally let u = 27", x . Since the E,’s are disjoint, we have
o0
1

f|f|1’udx= glelfA'pdeC 2 2n/bf|f|1’deCf|f}1‘dx.

So (**) holds. On the other hand, for A < 1,
| {x:u(x) >A} |= 2 | E,|= oo

n

and condition (i) of Theorem 2 is not satisfied. O.
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COROLLARY 2. The condition [;udx < C|IP~" for any interval I is
not sufficient for (%) to hold if 1 <p <2.

Proof. Take u = x, where E = U?_,(2%,2% + 1). It is easy to see
that (*x) does not hold for u, because of the example given at the
beginning of this section letting N — oo. On the other hand, the condition
of §3 is satisfied since

2/<|I|=2/*" forj>0,
implies
fudef21+ludx:jSC10g|I|. O
1 0

REMARK 1. It is a curious fact that in both corollaries, the function u
that was found is independent of p.

6. A stronger necessary condition. The preceding paragraph shows
that we must get an intermediate condition for 1 < p < 2. It is possible to
obtain the following

THEOREM 3. If 1 < p < 2 and u satisfies

/]fl”udeCf]fF’dx

then u must satisfy the inequality

( s (f(kﬂ)'u(x)dx)b)l/bsCrr'

k=-co0 ‘“kr
for any r > 0, where b = 2 /(2 — p).

Proof. Let g(x) = 24 ay Xk x+1)» Where a;, =0 except for finitely
many k’s. Let f be defined by f(x) = g(x), i.e.

flx) = %akeikxie_ix_—_ll_

2wix

Let us estimate firstly the L?7-norm of f.

Jispax=[T1fpdet I [ 1) pax.

n#0 *-mtnl2mw

Forn # 0,
7+n2mw C " .
/ +:2W [f(x) P dx < TP /_WI Eakethlp dx

-7
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and also
j:: | f(x) PP dx = f_wl Zakei"xlp dx

since | (e’ — 1) /x| remains bounded by above and by below away from
zero if | x | < 7. Therefore

/::o |fPdx = f_:lzakeik"’p dx.

On the other hand,
. k+1
f[fl"udx:2|ak|1’f u(x) dx.
k k
Since we must have
- ‘ /2
> Iakl‘”fk+lu(x) dx < Cf Izake”‘"|pdx =< C(z | a, |2)p
k k —r k

for any choice of the (finite) sequence a,, we obtain our result with » = 1.
The case of general r >0 is obtained from the previous one by

considering dilations: if f(x) = 1f(x/e), then (f)(x)= f(ex) and

[1f.[Pdx = (e~ [| fF dx, choosing ¢ = }, the result follows. O

Several remarks are in order:

REMARK 2. It should be clear that this new condition stays in between
the earlier two: it implies that of §3 obviously and is strictly stronger by
the example in Corollary 2 in §5. It is implied by the sufficient condition
of course, but it is weaker by Corollary 1 of §5. This may be also seen by
(iv) of Theorem 2, a result which we state as a corollary.

COROLLARY 3. Let u be locally integrable and let 1 < p < 2. Suppose
for any measurable E,

/‘;udstlEF_l

then forany a > 1/(2 —p) =b/2and any r >0

+ 00 - a\ V@
( > (fk(+l)udx)) =Crr 1,

k=-00 kr

Proof. We just observe that for a = b/2, we have a weak-type
inequality by (iv) in Theorem 2 of §4.

REMARK 3. The necessary condition in Theorem 3 cannot be changed
much as for the lengths of the intervals: we cannot consider arbitrary
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lengths in the same sum. For suppose u(x) =| x [P~ 2, for which (xx) holds,
and let I, = (2%,2%*"), then

+o0 1 «
> (|1k|p~l j;kudx) =

k=-o00

for any a.

REMARK 4. The exponent b = 2 /(2 — p) cannot be lowered. For let
{7}~ be a sequence of positive numbers such that 37_, v/ < oo, and let
U = Z¥_ YiX 2 2k +1)> then (+x) holds. For let f € L7,

" e 2541, A ad k N
Jiivuax= 3y [T pax = 3y [TT(S) ) dx
k=1 k=1

k k

where S, f is defined by (Skf)AZ f—x(zk‘zkﬂ). By what was said at the
beginning of §5 and the result on dyadic decomposition mentioned there,
we have

R o +o0 +oof X
[1fruax=c Sy [ |sfrax=c | (Eyk[Ska’)dx
k=1 - -0 k=1

Yoo © /b +oo p/?
scf7[Sw) [ 5 isur) @
k=1

- k=-c0

x /b 4+
sc( 27:) [ 1fpax
k=1

-0
using Holder’s inequality to obtain the next to the last inequality. How-

ever, we may further ask 27, v = oo for a < b, from where

+ o0

2 (fjj+]udx)a: 00

j=—0

for any such a.

7. The case u = 1. Here we want to examine those v’s for which,
for some p, 1 <p < o0,

(x5%) [17pdc=c [|fpoax.

An immediate consequence of this inequality is the fact that the set
where v vanishes has measure zero, which follows by taking f supported
on that set. There is a duality between this case and the one treated in the
previous section. For let g be the dual expoent p, 1 /p + 1/g = 1, and let
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u(x) = v ?(x) = 0/? Y(x) (u(x) = 0 if v(x) = oo). Then u satisfies
an inequality of the type (*x), since

f|f|"udx: f|fu‘/"|qu: sup ffgdx
geEA
where A = {g: [|g|Pv dx = 1}. (To see this we have to use the property
of the set of zeros of v.) We have, if g € A,

/fgdx: ffgdxsc(f|f|"dx)l/q.

Conversely, if u satisfies an inequality of the type

f[f|qudxsf|f|qu

for some ¢, 1 < g < o0, then u is locally integrable and the set where u is
infinite has measure zero. If 1/p + 1 /g = 1, we define v(x) = u™?/9(x) if
u(x) # 0 and v(x) = oo if u(x) = 0. A similar reasoning shows then that
(*3x) holds for this v.

We thus obtain several properties, similar to those obtained in the
previous section, whose proofs are obtained either by duality or by using a
reasoning analogous to those of section II, so we will state them without
proof.

PROPOSITION 1. If (x*%) holds then v satisfies
/v(x)dx =C|Ip!
I

for any interval 1. In particular for p <2 only the trivial case v = oo (in the
almost everywhere sense) is admissible. For p = 2, this condition implies that
v(x) = C > 0 almost everywhere, which is also a sufficient condition.

PROPOSITION 2. Suppose 2 < p < oo and v satisfies any of the following
equivalent conditions

(@) [go(x)dx = C|EP~" for any measurable set E

(b) | {x: v(x) <8} |=< C8'/772 for any § > 0

(©) Jpreotperrsy 0/ 2(x) dx = C/A for any X >0
then (xxx) holds.

PROPOSITION 3. If (%) holds, then for any r > 0,

+ o0 « 1/a
( 2 (/r(k+l)0_1/(p~l)(x) dX) ) < Crl/(p*l)

k=-00 ‘rk

where o =2(p — 1) /(p — 2).
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