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SOME INEQUALITIES FOR PRODUCTS
OF POWER SUMS

BRrRUCE REZNICK

We study the asymptotic behavior of the range of the ratio of
products of power sums. For x = (x,,...,x,), define M, = M, (x) =
Zx?. As two representative and explicit results, we show that the
maximum and minimum of the function M, M;/M} are +3/3 /16 n'/*
+5/8+ 0(n™'/?) and that n = M, M;/M, > -n/8, where “1/8” is
the best possible constant. We give readily computable, if less explicit,
formulas of this kind for M, --- M7 /M, q” , 2 a,p, = bq. Applications to
integral inequalities are discussed. Our results generalize the classical
Holder and Jensen inequalities. All proofs are elementary.

1. Introduction and background. In this paper I shall discuss some
inequalities involving power sums which build upon, and generalize, the
Holder and Jensen inequalities. Since the proofs, although elementary,
involve lengthy and cumbersome computation, I shall indicate the main
results and spirit of the paper in this introduction.

For x = (x,,...,x,) € R"and p > 0 define

(1.1) M,(x) = X xI;

we exclude the possibility that some x, is negative in (1.1) when p is not
integral and set My(x) = n.

MAIN THEOREM (see (3.5) and (3.17)). Suppose
f(x) = M (x) - - - Myr(x)/MJ(x),

where X a,p, = bq and all parameters are positive. Let M denote the
maximum value of f (M depends on n, the number of variables). Then there
exist readily computable constants c, so that M = c¢,n? + O(n). The
minimum, m, defined when all parameters are integers, in many cases
satisfies m = c¢,n> + o(n?), where c, is not always readily computable.

Holder’s inequality (1.2) and Jensen’s inequality (1.3) — see (3], p. 28
— state that for all x with x, = 0 (x = 0),

(1.2) My(x)M:(x)=M)(x)ifap + cr=bganda,b,c,p,q,r=0
443
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(1.3) M,/?(x) =M,/ (x)if p>q>0.

The inequality in (1.2) is strict unless x is some permutation of
(¢,...,2,0,...,0); the inequality in (1.3) is strict unless x is some permuta-
tion of (7,0,...,0). In §2, after making some basic definitions and
conventions, we combine (1.2) and (1.3) to prove that the maximum of
M; /M:, ap = bq, is equal to n™™>©e(1=r/9) The constant ¢, from the
Main Theorem turns out to be the best exponent derivable from repeated
application of this result.

The Main Theorem is proved in §3. Section 4 is devoted to some
partlal results when M is replaced by M) --- M. In §5, we present a
“notebook” of certain spe01al cases in wh10h a more detailed analy51s is
possible. To be specific, the maximum and minimum of M,M,/M} are
+3\/~/16 n'/245/8 + (‘)(n 172), (indeed, they are given by a Laurent
series in n~'/?). For M}M,/M3, the max1mum and minimum are com-
puted exactly and are +(\/ 1 +1)*/8/n . The maximum value for
M\ M,/M, is n by the Holder and Jensen inequalities. We show that
M M, /nM, > -1/8, where —1/8 is best possible, first directly and then
through an analysis of the classical moment problem. Finally we discuss
the role of integral inequalities and compute the asymptotics for
M{M;/M£r+3s)/4.

The methods of proof are elementary and rest on these observations.
If f has an extreme value at y then af/0x,(y) = 0 fori = 1,...,n. When f
is symmetric, this can drastically reduce the set of y on which f needs to be
considered and provide an upper bound on the extreme value of f. A
judicious choice of x’s, on the other hand, can provide a lower bound on
the extreme value of f. When we are lucky, the difference between these
bounds is the error term. We can also use (1.2) and (1.3) to make a priori
estimates which are often achieved.

This paper sits between two problems already analyzed in the litera-
ture. Ursell [6] has studied the mapping T x —» (M, (x),...,M,(x)) for
x = 0 and determined those y for which 7(y) is on the boundary of the
range of T. Also, if we restrict our attention to integer exponents, we can
embed our situation into the classical moment problem.

The importance of [6] is immediately obvious and an appeal to it
would save some space in the proof of the Main Theorem. Those omitted
arguments would have to be repeated in detail in §5. In any case, the
presentation of [6] is rather opaque and the major result is nowhere
isolated as a theorem. I hope to discuss Ursell’s work, without his
restriction x = 0, in a future publication [5].

Let p be a measure with »n unit point masses at which g attains the
values x,,...,x,. Then 2 x? = [g? dp. Thus, any inequality on the ratio
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of products of moments automatically applies to power sums. In fact, we
show in §5 that

_Jsanfga
fdufg“dn

As [dp = n, this implies the aforementioned inequalities for M, M, /M,.
However, the expression

1

is unbounded over (g, p) with non-negative pu, let alone bounded by
+3Y3 /16.

All the empirical evidence suggests that the extreme values of
M; - - My /M, o e M} grow asymptotically like ¢,n> and I am willing
to make this a conjecture.

2. Notations and preliminaries. The following definitions and re-
strictions apply for the next several sections and will be referred to
collectively as ““ the usual conditions.”

(2.1) 0<p<--<p, 0<q,<---<gq,, p;#g;

(2.2) a;,>0, 1<i=<r; b>0, 1<j<s

@3 = fpgied)x) = T a0/ T M)

(2.4) M=M(p,q;a,b) = su%f(p, g; a, b)(x)
(2.5) m=m(p,q;a,b) = inf f(p,q; a,b)(x)
(2.6) w=a-p= 2 a,p; — 2 bg;,=b-q.

i=1 Jj=1

From (2.6), f(Ax) = f(x) for any A > 0 so that, in (2.4) and (2.5), we
may assume 37, x> = ¢. This restricts our attention to a compact set, so
that M and m are realized as values of f. (Without (2.6), f(Ax) = X'f(x) so
that M = oo and m = 0.) Occasionally we are interested in allowing
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negative x,. This entails some additional restrictions:
(2.7) a,b,p €L, q, €2Z.

(If g is odd then M ,(1,-1,0,...,0) = 0 and this is bad for the denomina-
tor of f.) If the usual conditions and (2.7) hold, we make two more
definitions:

(2.8) M=M(p,q;a,b)=supf(p,q;a,b)(x)

(2.9) m=m(p,q;a,b)= ir;ff(p,q; a, b)(x).

As before, M and m are realized as the values of f-
The first lemma collects a number of fairly obvious, but useful,

observations.

LemMA 2.10. Suppose that the usual conditions hold, as do (2.7), (2.8)
and (2.9) when appropriate. Then

OGOM=1=2m>0

(ii) m(p, ¢; a, b) = (M(q, p; b, a))™'

()M =M

(iv) m > -M

(V) M(Ap, Ag; a, b) = M(p, q; a,b) forA>0

(vi) M(p, ¢; Aa, Ab) = (M(p, g; a, b))* for A > 0.

(vil) If n = 3 and a, p; is odd for some i then m( p, q; a, b) <O.

... Forfixeda,p,b,qandincreasingn, M is non-decreasing in n,
(viii) and m and m are non-increasing.

Proof. (i) The first two inequalities follow from f(1,...,1) = 1, the
third from f realizing its infimum and f(x) > 0 for x =0, x #* 0.

(i) Note that f( p, g; a, b)(x)f(q, p; b, a)(x) = 1. The relation need
not hold for M and  as (2.7) might not be satisfied by both functions.

(i) Let [x|=(|x,[,...,|x,|) and assume (2.7). Then M,(|x|) =
M,(x)if p is even and M, (| x |) =| M,(x) | if p is odd with strict inequality
iff x has components of opposite sign; thus f(| x |) =| f(x) | . Since | x |= 0,
M=M.

(iv) If m = 0, this is immediate. If 0 > m, then m = f(x) for some x
with components of opposite sign. By the last proof, | m | < f(| x |) =< M.

(v) For fixed A>0, if y,=x}, 1 <i<n then M(y)= M, (x).
Hence f(Ap, Ag; a, b)(x) = f(p, q; a, b)(y). Since xy is one-to-one
and invertible on the set {x = 0}, the suprema are identical.

(vi) Observe that f( p, q; Aa, Ab) = (f( p, q; a, b)).

(vii) If x, = (1,1, ¢,0,...,0) then M (x,) = (2 + 7). Thu51faplls
odd then M} (and f) will change sign at ¢ = -2'/7.. Since ¢, is even by
(2.7) this condltlon is necessary as well as sufficient for m to be negative.
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(viii) In an abuse of notation, equate M,(x,,...,x,) and
M, (x,,...,x,,0). As n increases, the suprema and infima of f are then
taken over ever larger sets. 0
One final notation is convenient. Suppose x = (x,,...,x,) has n
components, n;, of which are ¢,, n, of which are c,, etc., then x =
(¢p5 €5-. .5 1y, ny,.. ). Since all functions here are symmetric, the order of

the components is immaterial. In this notation, (1.2) is sharp at
(¢,0; k,n — k) for 1 < k < n and (1.3) is sharp at (£,0; 1, n — 1).

In the special case r=s=1, M= M(p,q; a,b) and m =
m(p, q; a, b) can be deduced from (1.2), (1.3) and (2.10)(iii), but it is
more instructive to approach the problem directly first. Assume the usual
conditions for f = M;/M;’——that is, ap = bq. If f(y) = M then y is a
local maximum for f and (3f/9x,)(y) =0 for 1 <i<n. As M =1 we
can assume that M,(y) # 0 and M (y) # 0. By taking the logarithmic
derivative of f,

ap -1 bg -1 — P —
2.11 - yI™'=0 fori=1,...,nand extremal y.
@1 M,() M/(y) Y

(Forg=1Ilg;, g’ /g=2g//g and for h = M¢, 9h/dx; = crM: 'x!™! so
k' /h = crx]”'/M,.) From (2.11) we see that there can be at most one
non-zero value attained by the y,’s; thatis, y = (r,0; k, n — k) for some k
and r. A direct computation shows that f(y) = k°~° (independent of r
since f(Ay) =f(y)).Asl <=k <nanddb=ap/q,

(2.12) M = pmax©.a—p/9)

On the other hand, f = (M,/?/M_,/%)*, so if p > q then f(x) < 1 by (1.3)
and M =1 by (2.10)(i) with equality at (r,0; 1, n — 1). If p <g then
M{™ M} = M; by (1.2) so n*"®=f(x) with equality at (r,n). The
method of (2.11) is generalized in the next section.

M. D. Choi, T. Y. Lam and the author [2] will study symmetric
positive semi-definite quartic forms in » variables and have been in-
terested in finding those (a, 8) so that a 37, x, 27, x> + B, x?)* = 0.
This is equivalent to finding M and i for the function g = M, M, /M.
Suppose M = g(y) and m = g(z). Then by methods outlined in §5,

(2.13) y=0,u;n—1,1), z=(1,0;n—1,1)
(2.14) u =1+ 2n'/2cos(1/3arccos n'/?)

’ v=1+2n"2cos(1/3arccos n™/? + 27 /3)
2.1 M=3/3/16n"/* +5/8 + O(n""/?)

m=-33/16n"/2+5/8 + 0(n"'/?).



448 BRUCE REZNICK

As (2.14) suggests, the trigonometric solution to the cubic equation is
critical. What might one have expected? Application of (2.12) gives

MIM3
M;

M,

<n'/2.1=n'/?
M

(2.16) lgl=

_| M,
= N

with no sharpness since the ingredient inequalities are sharp at different
places. Comparison with (2.15) shows that this crude maximum is only off
by a constant factor. Further, the growth of the leading term in 7 is equal
and opposite to the growth of the leading term of M. This is counterintui-
tive: it is hard to find x with M (x) and M,(x) of opposite sign (so that g
is negative). As we shall see in the next several sections, each of the above
remarks is valid more generally.

3. The main theorem. In this section we assume the usual condi-
tions and s = 1, so that

(3.1) f(x) = M3(x) - My(x)/M)(x).
As in (2.16) we have a crude estimate for M, combining (3.1) and (2.12):

(3.2) If1=

r
a; -a;pi/q
_Hl M&M,
=

r
< H nrnax(o’ai(l —px/q)).
i=1

If g <p, then each estimate in (3.2) is sharp at x = (r,0; 1,n — 1) and
M = 1; if p, < q then each estimate is sharp at (r; n) so that M = n*%75,
Otherwise,

(3.3) < <p<qg<p,<---<p,
and

J
(3.4) M=n Y a(l—p,/q)=nE.

i=1
THEOREM 3.5. For f as in (3.1) with the usual conditions, (3.3), (3.4),
and with rational a,,
(3.6) M = oa®nf + O(nf79%)
where
(37) u= ( 2 aiPi)/Wa a(u) = u*(1 — u)l—u and

i=j+1

§=min|1-p,/q|.
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Several disconnected remarks are appropriate. To prove (3.6) we must
establish it as an upper bound and realize it as a value of /. As § < 1, it
suffices to prove (3.6) with (n — 1)£, and this is what we do. The two
cases discussed before (3.3) correspond to # = 0 or 1; the limiting value of
a in these cases is 1, so with suitable redefinition they could be included in
(3.5). As 1 = a = .5, the deviation of (3.6) from (3.4) is well-controlled.
Finally, for g = MM, /M}, the parameters are set as follows: j = 1,
w =4, u= .25 a=3%%/4 so0 that a® = 3y/3 /16, reconciling (2.15) with
(3.6). The condition that a; must be rational is regrettable and appears to
be unavoidable for purely technical reasons. I am almost certain that the
theorem is true without it. To prove Theorem 3.5, we need the following
generalization of Descartes’ rule of signs, which Ursell [6] attributes to
Laguerre [4].

LemmA 3.8. Suppose h(t) = cit™ + --- +c,t"™ is a “generalized poly-
nomial” with real exponents ry < ---<r, and ¢; 7 0. If h(t) =0 has k
distinct positive roots and the sequence (c,,...,c,,) has | changes of sign
(c;ciyy <0), then | = k.

Proof (after [6]). If / = O then clearly A(¢) > 0 or A(¢z) <O forallz >0
so k = 0. Assume the result for / — 1 changes of sign and suppose
(¢p5---,¢,,) has I changes of sign with one occurring between c¢; and ¢, ;.
Choose B so that r, < B <r;, ;. If h(¢) = 0 has k positive roots, then so
does g(t) = t‘Bh(t) By Rollcs Theorem, g’(¢) has k' = k — 1 roots, as
does t#*'g’(¢). But

tB+lg,(t) = cl(rl - B)trl + Tt +cm(rm - B)trmv

and the sequence (¢,(r, — B),...,c,(r,, — B)) has / — 1 changes of sign
(¢j(r; = B)c;41(r;4y — B) > 0). By the induction hypothesis, / — 1=
k"=k—1sol=k. O

Proof of Theorem 3.5. We first make a technical remark. Suppose
Theorem 3.5 is established for integral a;. Then by (2.10)(vi) and the shape
of (3.6), the theorem will hold for rational a,. Assume now that a, € Z
and suppose f(y) = M, write M,(y) = M, for short. Then (3f/3x,)(y) =
0 for 1 =i < n and by logarithmic differentiation (cf. (2.11)),

19 P a,p, b
(9) 0= 77l 0) =5 w4 Gyt =
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This suggests a generalized polynomial A(¢):

=____alpl 1 e f_j& 71 —ﬁ- g1
(3.10) h(z) M, t +--- 4 Mp,t Mqt

fl_’& p—1
+ +Mp’t .

By (3.3) h(¢) has two changes of sign in its coefficients (M, > 0 since
y = 0) and by Lemma 3.8, 2(z) = 0 has at most two positive roots. Since
f(y) = M implies h(y;) =0 for 1 <i=<n (compare (3.9) and (3.10)),
y =(a,c0; 1, k,n — (k + 1)), for some positive a, ¢ and integers k and /
with k + [/ < n. Without loss of generality, suppose / = k and, as f(Ay) =
f(»), set a = 1. Under the peculiar parametrization / = ks (s = 1) and
¢ = s'/9, we can now say that f achieves its maximum at a point of shape
(3.11):

(3.11) y=(1,5"9%,0; ks, k, n — k(s + 1)).

In (3.11), ¢ ranges over the nonnegative reals, 1 <k <n/2 and s is
rational with a finite range. For any p,

M, = ks + ks?/4t,
so we may write the factors of f in increasing powers of s
M= k(s + tPsP/9)Y i<
(3.12) My = ke(tPis?/1+ 5)" iz=j+1
M? = k(1 + 19)"sP.
Accordingly,

(s + tpsP /)T, (27579 + )
sb(1 + 19)°

(3.13)  f(y) = k¥a?

By hypothesis, all a@,’s are integral, so the numerator in (3.13) is a
generalized polynomial in s whose coefficients are polynomials in ¢ with
degree at most 3/_, a,p; = bg = w. Thus f(y) can be written as a gen-
eralized polynomial in s whose coefficients are rational functions in ¢
which are uniformly bounded for real ¢. (This argument uses the integral-
ity of g, in an essential way.) The highest order term in (3.13) is

b t2;+laip1

B s(z{al+2;+lalpl/q——b).
(1+19)

(3.14) ke
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As b= (Z7a,;p;)/q, the exponent of s in (3.14) is Z{a,(1 —p,/q) = E
(from (3.4)). An easy calculus exercise shows that for ¢ < bq, ¢(t) =
t(1 + t9)7% achieves its maximum at t, = (c¢/(bgq — c))"/% for ¢ =
20 ap;, 9(ty) = a® in the notation of (3.7). Now replace the rational
functions of ¢ in the lower powers of s in (3.13) by their uniform bounds:

(3.15) f(y) = sz"'_b(a”sE + Ed,sw').
l

The summation in (3.15) is over at most [[{(a; + 1) — 1 terms, s has a
bounded range and the largest exponent w, is E — 8. Further,

21301»— b= ?ai(l —P./9)

J
520,-(1 —Pi/q) —aj+1|1 —Pj+1/‘I|SE_8
1

so that (3.15) can be further simplfied to
(3.16) () < ab(ks)® + d(ks)= 2,

for some d. Since ks +k<n, ks<n—1; thus M <a’(n — 1)F +
d(n — 1)£7% and one direction of (3.6) is established.

To get the reverse inequality, put k=1, s=n — 1 and ¢t = ¢, into
(3.13); that is, evaluate f at the point y = (1, t,(n — 1)/% n — 1,1). The
foregoing analysis, applied to (3.13) as an exact formula, shows that
f(y) = a®(n — 1)E + d’'(n — 1)£7%, and this completes the proof. O

For g = M, M, /M3, this suggested maximum occurs at (1, y3(n — 1) ;
n — 1, 1), which is close to (2.13) and (2.14). Now an appeal to [U] would
have allowed us to say that the maximum of M;'M,2/M Ly ap, +a,p,=
bgq, is achieved at y = (1, r; n — 1, 1) for some r, but we would still need
the parametrization of this proof in order to determine M. In any event,
(3.9) is used in §5.

We now look at m in some cases.

THEOREM 3.17. If f satisfies the hypotheses of Theorem 3.5 and, in
addition, ZJ_, a; p, is odd, then
(3.18) m = —a’nf + 0(nf9).

Proof. Since m = —-M, m = —a’n® + O(n¥7%). On the other hand,

evaluate f at y = (1, —to(n — 1)'/% n — 1,1). As in the proof of the last
theorem, because 3/_, a, p, is odd, f(y) = —a®(n — DE — d'(n — 1)E72.0
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Note here the connection with (2.15). If 3/_, a, p, is even, I can find
no non-obvious bounds on m. As one simple case, let g = M, M; M, /M.
A direct application of Theorem 3.5 shows that M = (4/27)n + O(n*/*),
(for E=1-(1—-1/9+1-1—-3/4)=1, j=2, u=8/12, b=3, so
a? = (2/3)*(1/3) = 4/27 and § = min|1 — p,/4 |= 1/4). Thus,
m = —(4/2T)n + O(n®/*). When you compute f(y) for y =
(1, A(n — D4 n — 1,1), it is asymptotically positive, since 2/_, a, p; is
even in this case. In fact, the best attainable value from a point with shape
(1, t(n — DV9, n — 1,1) comes from setting ¢ = 3 and ¢t = —22/3. From
this, we obtain m < -3-2%312/3 + O(n'/?). There is, however, no proof
that g attains its extreme values at points of this shape, because Lemma
3.8 only applies to positive roots.

4. More general upper bounds. Theorem 3.5 generalizes somewhat,
but at a loss in precision. Given f as in (2.3) we can always factor it into
“increasing” weight-zero pieces. To be precise

t
(4.1) /= H (M:’/Mf')’ a;r; = Bis; = Wi, IS, 85 S S
. i=1

[ Mmp =] My, [[ M= ] M?
For example,
M, MM,/ M, M, = (Mz/MéS)(Mézs/Mais)(Mé75/Mi(6))(Ml4/M1164)-

For f as in (4.1) let & be the number of changes of sign in the sequence
(r, — sy5-..,1,— 5,). We shall find asymptotic estimates for M if h is 0 or
1. The hypothesis (3.3) and s = 1 insure that # = 1 for those f covered by
Theorem 3.5.

THEOREM 4.2. If h =0 then M =1 or M = n** 2% depending on
whether r;> s, or r, <s,fori =1,...,1.

Proof. Application of (2.12) to each factor of (4.1) provides the given
values as upper bounds for M; evaluation at (1,0; 1,n — 1) or (1; n)
shows that they are sharp. a

Theorem 4.2 subsumes the remarks made before Theorem 3.5. If
h = 1 there are two fundamentally different cases, depending on whether
r; — s; goes from negative to positive (of which (3.3) is a special case) or
from positive to negative. There will be a distinction in the first case
depending on whether r;, — s, “pivots” on one particular value of s, or not.
First we dispose of the second case, which has an unsurprising answer, but
requires a lemma on a fundamental special case.
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LEMMA 4.3. Suppose that f = M;'M,2/(M, ”'M ”2) with the usual restric-
tions and q, < p, < p, < q,. Then M nmax(0, B +at (bi+by)),

Proof. Upon evaluating f at (1; n), m = na+a~;i+8) and M =1 in
any case. To obtain the reverse inequality, we apply (1.2) twice. Indeed,
qu I < M‘lz"PlMPl 9 and M‘h 9 < qu'Pszz 9, Upon comblmng
w1th the deflmtlon of f (and recallmg that a,p, + a,p, = bq, + b,gq,),
this becomes

(44) fea< MaAata,=(b1+8) pr-qa+ay— (b +5)
L) 9 -

We can apply (2.12) to the right hand side of (4.4) to find f©>" " <
nm@ O aXara:=h=b)) completing the proof. a

THEOREM 4.5. Suppose f satisfies (4.1) with h = 1 and r, — s, goes from
positive to negative. Then M = p™>(0:2a=28),

Proof. The basic idea is to decompose f into a product of factors to
which the lemma can be applied. Suppose 1 <i<jandj+ 1<k =<1y,
r,>s; and r, <s,. Let g, = MIM#, h, = MM P, v, = a, — B; and
z, = a, — B. Then a,r, = B;s;, = w; and r, > s, implies v, <0 and simi-
larly z, > 0. Finally, let y, = v;/Z v, and §, = z, /3 z, then 0 <'v,, §, and
3y, = 24,68, = 1. Thus, mwewof(4 1),

J t
(46) =1 1 gy

On the other hand, gk} = MM /(MBS MPBe) 5 < r, < r, <s, (by
the order of i and k), and this factor has weight 0, so we can apply
Lemma 4.3:

(47) Iglskh}c'x ’S pmax(0,8, (o= B+ v —Bi))

The exponent in (4.7) is

Wi‘Zk/EZk + Zk‘Wi/EWi = Wizk(l/zzk + I/EW:')

and so has uniform sign as i and k traverse their ranges (w;z, < 0). Since
32wz, = (Ew)2z,), the exponents in (4.7) can be combined by
adding in (4.6) to make

(4.8) | f| < nmsx©.2wit 320,

But 3w, + 3z, =3a,— 2B, so M <n™>02a738) Ag in the lemma,
this bound is achieved for x = (1,0; 1, n — 1) or (1; n). O
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The remaining case occurs when r, — 5, <0 for 1 =i <j and r, — s,
>0 forj+ 1 <k <. This, in turn, splits into two cases: r; — s, pivots if
5, = Si41s otherwise, it jumps.

THEOREM 4.9. In the remaining case, if r; — s; jumps,

(410) M= nE{(“i‘B.) + (C)(nE{(a,—B,)—s), 5= Siv1 Sj
]+1 + S

Proof. Since M MP < p™>@«~F)  repeated application of (4.1)
gives M < n2(«—A); "this ‘establishes one direction of (4.10). Taking a cue
from Theorem 3. 5 we will find y so that f(y)=(n— 1)2«"A) —
d(n — 1)%(«=F)=% Since § < 1, we can replace n — 1 by 7 in the asymp-
totics.

Let s =(s; +5,.,)/2 then r,<s,<s<s, <r, for i <j<k. Fur-
ther, let y = (1, (n - D5 n—1, 1), then M () =(m—1)+(n— 1P~
For i, we have

@11)  (MzMA)(y) = ((n = 1)+ (n = 1)™)"
X ((n=1)+ (n— 1))
=(n—1D*P+0((n—1)""7"),

since the true power of the error term is o, — B,— (1 —s,/5) <q;
— B; — 4. Similarly,

(4.12) (MaMP)(y) = ((n— 1) + (n— 1))™
X ((n= 1)+ (n— 1))
=1+0(n—-1)"

since the true power of the error term is 1 —r, /s and § <|1 — r /s]|.
These estimates are now combined into (4.10) and the other direction of
this inequality is established. O

Note that the careful analysis of Theorem 3.5 in establishing the
upper bound is unnecessary here because of the a priori (2.12) estimates.
As an illustration, for = (M?Mg)/(M,M}) = (M}/M,)-(My/M}), n
= M =n — O(n*/?). The final case, where r, — s, pivots, includes Theo-
rem 3.5 — without the condition of rational a, — but with weaker conclu-
sions. The trouble seems to be that Lemma 3.8 is not very helpful and the
equivalent of (3.13) cannot be reduced to a generalized polynomial
because of its denominator.
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THEOREM 4.13. If r; — s, pivots and s; = 5, = s, then
(4.14) n@=B) > M > qn3@—B) 4 @(,,E{m.—&)—s),

where d =X, _ B, u= (Z's =, w;) /(2 =, w;), 2 being the summation over
izj+l,a=u(l—u)“andd=min,_(|1—r/s|,|1—5/s|.

Proof. The upper bound in (4.14) is found, as in the last theorem, by
repeated application of (2.12). To get the lower bound, we use the natural
substitution y = (1, t(n — 1)'/%; n— 1,1), so M,(y) =(n— 1)+
t?(n — 1)?/* (¢ will be chosen later and fixed now). Asymptotically, there
are four cases of (M,"""Msjﬁ')( y) depending on whetheri </, + 1 <iand
whether s, =s or 5,7 s. We omit the intermediate arguments, which
should be familiar by now, so that

(4.15) fy)=(rc/(1+ ) )(n — 1M~ 4 lower terms in (n — 1),

where ¢ = X a;r; = 2 w,, the summation over s, =s; i =j+ 1 and d =
3, _,B;- As in the proof of (3.5), the maximum value of (1 + )~ can
be computed, and for this value of ¢, we may replace the “lower terms in
(n — 1)” by the O-term in (4.14). O

It seems likely that the lower bound in (4.14) is sharp, but I can’t
prove it.

Just like Theorem 3.5, Theorems 4.5, 4.9 and 4.13 can be generalized
with results contingent on a certain sum being odd, but we omit the
details. Theorem 4.2, however, does generalize fully with a weaker (and
non-effective) constant.

THEOREM 4.16. If f satisfies the hypotheses of Theorem 4.2 and a, p; is
odd for some i, then there exists c so that

77 — _pymax(0,2a,—2b) max(0,2a,—32b)
(4.17) m= —cn + o(n ).

Proof. If Za, — 2 b; <0 then M = 1 by Theorem 4.2, so m = —1. As
n increases, m = m(n) is non-increasing ((2.10)(viii)) and bounded below
and so must approach a limit, establishing (4.16) in this case. Otherwise,
let w=3a,—2b,>0, let g(n) = -m(n) and h(n) = n""g(n). In this
notation, (4.16) is equivalent to: lim A(n) = c. Since g(n + i) = g(n) for
integral i and n, h(n + i) =(n/(n + i))*h(n), and from Theorem 4.2,
h(n) <1. Any x =(x,,...,x,) can be “stuttered” k times into x* =
(Xps- s X3 Ksenn k)3 My(x¥) = kM,(x) so that f(x*) = k™f(x). Choose
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x, so that f(x,) = ~g(n). Then f(x}) = —k*g(n) = —g(kn); that is, h(kn)
= h(n). Let B =1im h(n) and y =lim h(r). Pick n so that h(n) = 8 — ¢,
any m can be written as kn + i with 0 < i < n. Combining the above,

(4.18) h(m) = h(kn + i) = (knki i)wh(kn) > (%)wh(n).

Upon taking lim of both sides of (4.18), y = 8 — ¢ so y =  and lim A(n)
exists. T O

5. Illustrations and integral inequalities. We start this section with
the study of M and m in three simple situations in which rather more
explicit information is possible: M\M,/M}, M}M,/M?} and M, M,/M,.
These will serve, I hope, to illuminate the theorems of the last several
sections.

First, let g = MM,;/M; and suppose g(y) =M or m, then, as
before, (3g/dx,)(y) =0fori =1,...,n. Asin (3.9),

1 4 3

5.1 - 4= y2= -
(5.1) 177 sz,+M3y, 0 fori=1,...,n.

If y has only one distinct component then y = (r, n), g(y) = 1. As0>m
and g(1,2,0,0,...) = 1.08, this case can be ignored. Otherwise y =
(7, s; k, 1) and r and s are both roots of the quadratic in (5.1)". This leads
to two equations:

_ Akr’ +Is?) _ kr*4Is?

(5.2) r+s———————3(kr2+ls2), rs__—_3(kr+ls)'

Both equations in (5.2) lead to the same cubic in r and s: kr® — 3kr’s —
3lrs? + Is? = 0. Scale so that / = k and s = 1; this cubic becomes

(5.3) P =3r=-3w+w=0, w=Il/k=1.

Equation (5.3) is readily solved by the trigonometric method:

(5.4) r=1+2(w+1)"%cos8, cos30=(w+1)""

For y = (7, 1; k,wk), g(y) = (r + w)(r* + w)/(r* + w)? and one can
substitute (5.4) into this to determine the dependence on w (keeping in
mind that r is triple-valued). It is easier computationally to view w as a
function of r (remembering that w has a finite range and this, in turn,
gives r a finite range). Indeed, r = 1/3 is never a root of (5.3) and,

'Tt should be remembered that the previous analysis was purely asymptotic and we cannot
assume a priori that k = 1 or I = 1, etc.
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otherwise, w = (r> — 3r?) /(3r — 1). After some reduction, we find that

_3(r+ 1) 3 1), 3
(5.5) s0) =2 = (r 1) + 3
Thus the extreme values of g, M and m, are achieved when r + 1 /r is
maximized and minimized in the finite range of r.

Elementary curve-sketching techniques applied to (5.3) show that one
value of r is less than -1, another is between 0 and 1/3 and the third is
greater than 3. Further, on any branch of r = r(w), dr/dw = (dw/dr)™!
and dw/dr = 6r(r — 1)*/(3r — 1)> =0 so r increases for increasing w.
Thus m is achieved by the minimum of r + 1/r with 0 > r > —1; this is
the largest such r, which comes from the largest w, n — 1. Similarly M is
achieved by the maximum of r + 1 /r—if 0 < r < 1/3, this is the smallest
r and if r > 3, this is the largest. In the former case w =1 and (5.3)
becomes (r — 1)(r2 — 4r + 1) = 0, so r = 2— /3. In the latter case, again
w = n — 1 and the largest r from (5.4) with w = n — 1 is larger than that
from (5.4) with w = 1, namely, 2 + 3 = (2 — V/3)~". Thus M is achieved
when w = n — 1 in (5.4), defining (7, s; k, [) as in (2.13) and (2.14). The
asymptotics in (2.15) are most easily found by using Taylor series and
(5.5). As (2.15) suggests, M and m can be written as series in n'/? whose
coefficients agree on the full powers of n and are opposite on the
half-powers.

For the second example, we change g somewhat into h = MM, /M;.
As before, if A(y) is extreme then (34 /0x;)(y) = 0 so
(5.6) %;—_]T%y"—*— —Aj—sy,. =0 fori=1,...,n.

If y=(r; n) then h(y) = n. Otherwise, from (5.6), we have y =
(r,s; k,n— k), r#s,k<n—k,and, asin (5.2),

kr*+ (n —k)s? re = kr* +(n—k)s?
kr* + (n — k)s?’ kr+ (n—k)s

The alterations in coefficients from (5.2) to (5.7) are crucial, for now the
derived cubic is degenerate:

(5.8) kr3 — kr’s — (n — k)rs* + (n — k)s®
= (r—s)(kr* — (n — k)s?) = 0.

The case r = s was discussed above; accordingly scale r = (n — k)!/?,
s = *k!'/2, A slight computation shows that
(K2 = (n — k)'%)

8k'/2(n — k)'?

(57) r+s=2

(5.9) h(y) ==
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Another slight computation shows that the numerator in (5.9) is maxi-
mized, and the denominator minimized, by choosing k = 1. This leads to
the exact formulas

(fn—1+1)° (n—1-1)

5.10 M=~ a1 )
(3-10) 8n — 1 8yn — 1

A small check is needed to show that the given value for M is greater than
n; it is for n =2, (let u = yn — 1, n = u* + 1). The same degeneracy as
(5.8) occurs for functions MyiGmrapmem=a) /p@m=a)@m+a), the amus-
ing details are left to the reader.

The final example, f = M, M,/M,, involves greater difficulties. The
maximum M equals n as a straightforward application of Theorem 4.2.
(Indeed, nM, — MM, = 3(x, — x,)*(x} + x,x; + x}) =0.) We con-
centrate on the minimum, . By Theorem 4.16, lim i /n exists, and we
shall show that it is —1/8. In fact, we shall show that m > —n /8, without
equality, because 7 + 4y/3 is irrational!

Suppose f(y) = m, then (3f/0x;)(y) = 0 so that

1 3 4 B

—_— = y2 - T 3 = | —
(5.11) 7 + M3y,. M4y, 0, i=1,...,n.

The cubic in (5.11) might have three real roots and probably some

contradiction can be wrought from the assumption y = (r, s, ¢; k, I, m),

r<s<tand

3(kr* + Is* + mt*)

4(kr® + Is> + mr®)’

_ krt + Is* + me?
Akr +Is + mt)

(512) r+s+ir= rs +rt + st =0,

rst

Rather, I shall take the coward’s way out and appeal to a forthcoming
theorem [2]: if p(x) is a positive semi-definite (psd) symmetric quartic
form, not a quadratic in M? and M,, and p(y) = 0 then y has at most two
distinct components. This theorem is applicable to p(x) = mM, + M, M,
which is psd and for which p(y) = 0 if f(y) = m. With this in mind,
suppose y = (1, s; wk, k), w = 1. Then M (y) = k(w + s”) as before and
n=k(w+ 1), so

(s +w)(s®+w)
(1 +w)(s*+w)

(513 )= = F(s, ).

In the notation of (5.13), m = n-inf F(s, w), where s is real and w has the
usual finite range (w = (n — k) /k, k < n/2). We see immediately that
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F(s,w) >0 unless -w < s < -w'/3 thus the infimum is actually a mini-
mum and achieved at some (s,w) for which (dF/ds)(s,w) = 0. After
some work, we compute that this derivative vanishes if s = 1 (F(s, w) =
n= M)or

82+ s+ 458

452+ s+ 1 = ¢(s).

(5.14)

As with M\ M,/ M2, it will be more profitable to view w as a function of s,
rather than s as a function of w. Indeed, lim ¢(s) = + o0 as s - =00 so
the range of ¢ is R and

¢'(s) = -1252(s2+ 1)(s> +s+ 1)/ (@s> + s+ 1)° <0

so that ¢ is one-to-one and H = ¢! is well defined. Thus, assuming
(5.14), and substituting into (5.13),

_(s+w)s’+w)
(1 +w)(s*+w)

(5.15) F(s, ¢(s)) = F(H(w),w)

_3 s(1 +s)°
41+ 25+ 652+ 25+ 54

Finally, let u = 5 + 1 /s then (5.15) takes the form
(5.16) F(H(w), w) =2 252 = j(u).
u

To recapitulate, m = n-min k(u), where u = s + 1/s and ¢(s) has the
form (n — k) /k, k < n/2. A quick analysis shows that k(u) = -1/8 with
equality only when u = s + 1/s = -4. But s*> + 45 + 1 = 0 implies s =
-2 = /3 and, from (5.14), w = 7 = 4/3 . As w is rational, this never occurs
so k(u) > -1/8 and m > —n/8 for all n. On the other hand, as n - o
one can easily find acceptable w, > 7 + 4y3 so that s, > —4 and k(u,) >
-1/8; that is, m,/n — -1/8. This determines the constant from Theorem
4.16. Since both w and F(s, ¢(s)) = F are rational functions of s, they are
algebraically related. In principle this relation would determine F in terms
of w so that for any given n, the best w could be found and m, explicitly
determined. Unfortunately, as the reader may verify, this relation is

(5.17)  64F3((4F — 4)(w* + 1) — 8Fw)’
+ (8F — 3)*(16F + 3)w((4F — 4)(w? + 1) — 8Fw)
+ (16F — 6)’w? = 0.
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As a form of Monday-morning calculating, it should be noted that
F(s,w) = —-1/8 can be directly checked, as

(5.18) 8F(s,w) +1
= (w2 + (s* + 85> + 8s + D)w + 95*) / (w + 1)(s* + w).

The numerator in (5.18) would be non-negative for w =0 provided
s*+ 853 + 85 + 1 = —-18s?; that is, (s> + 45 + 1)2 = 0. This is a short-
cut to m = -n/8 but does not as readily lead to limm/n = -1/8 and
leaves “—1/8” as a mysterious constant. A third approach is discussed
below.

We now consider these examples in terms of the classical moment
problem (see [1] for proofs of the assertions in this paragraph). Given
{a;}, 0 =i = 2m, there exist a real function f and a non-negative measure
ponRsuchata,= [fldu,0<i<2m—1,a,, = [f*"dp, if and only
if the matrix 4,,,, = [a,3,], 0 =1i, j < m, is positive semi-definite. As
indicated in the introduction, we can embed our previous discussion into
the classical moment problem by restricting p to be a measure with n
atoms of unit mass so 2 x? = [g'dp = a;, n = a,. Then any inequality
on moments necessarily induces an inequality on power sums. The con-
verse is false, because power sums represent moments for a limited class
of measures. The examples of this section only involve M, for 0 <p <4
so we need consider the 3 X 3 matrix 4; = [a,,,], 0 <i, j < 2. A neces-
sary condition for 4, to be positive semi-definite is that the following
inequalities hold:

(i a,20, a,=0, a,=0
(5.19) (i) aga,=a}, aja,=a3, a,a,=a?

(i) aga,a, + 2a,a,a, = a3 + ata, + a,a?.

These inequalities are also sufficient provided equality in one implies
equality in all inequalities containing it. If 4 is a positive semi-definite
matrix, and the a;’s are a moment sequence, then there exists ( f, u) with
a; = [ f"dp where p has at most three atoms. If (5.19)(iii) is an equality,
then u has at most two atoms and a, = Ar’ + us’ for some A, u = 0. The
analogy with our earlier discussion of where M can occur is clear, and
deceptive. For 4,,,,, even when one inequality is “slack”, the best one
can hope for is a measure with m atoms. The same condition is to be
found, in effect, in [6]. Theorem 3.5 is much sharper in directing our
attention to points with at most two different components.

First, we wish to find the extreme values of a,a;/a,a, for moments
{a;}. It is clear that a, = 0 or a, = 0 imply a, = a, = a; = 0, so we may
assume aya, > 0. Under the change (f, p) > (Af, cu), a, > cNa;, so that
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(5.19)(i), (ii), (iii) and the ratio a,a;/a,a, are unaltered. We may therefore
assume, without loss of generality, that a, = a, = 1; from (5.19)(ii),
|a,a;|< al/?a,ay/* < aja, = 1, and a, = 1 satisfy the inequalities. Thus
1 = a,a;/a,a, so that n = MM, /M,. Of course, the Holder and Jensen
inequalities apply to [|f}? dp so this result could be foreseen. For the
other dn'ectlon combine a, = a, = 1, a? + a? = —2a,a, and (5.19)(iii) to
geta, — a3 = <1+ a,)a,a,. Since 1 + a, =0, —a,a, < a,(1 —a,)/2 <
1/8, or a,a, = -1/8. Further, the choice

(5.20) ay=a,=l,a,=-ay==1/{8, a,=}

satisfies (5.19) and has a,a;/a,a, = —1/8 so that this is the true mini-
mum. A return to the theory of moment sequences shows that the pairs
(f, ) with moments (5.20) consist of a measure with two atoms whose
mass ratio is 7 + 4v/3 ; the values of f on these atoms have ratio -2 + V3.
This checks our earlier analysis of M, M,/M,. We generalize this result
below as Theorem 5.27.

The other two examples do not generalize in this way to integral
inequalities, and show the limitations of the technique. The natural
analogue to M, M,/M?} is a,a,/a3, but this ratio is unbounded among
moment sequences, and even a,a;/ala3 is unbounded for any ¢. Indeed,
let a, = a, = s, a, = Aas, a; = *M\as, a, = a’s, subject to the conditions
s >0 and 2M? 4 a® < 1. Then (5.19) is strictly satisfied, but a,a,/ala3 =
+A? /a®s' which is unbounded for fixed A and s as a — 0. With the same
choice of a;’s, ajas/ala3 = +A*/a’s'~", which is similarly unbounded.
The fundamental reason for this failure is that the measures described
require atoms with arbitrarily large mass-ratios; this cannot happen in a
power sum with fixed n = q,,.

We conclude by analyzing a family of functions which generalizes
M\ M,/M,. If r, s and (r + 3s) /4 are integers, let f = M]M; /M +39/4;
by Theorem 4.2, we have M = n®"*9/4 1f r and s are even then clearly
m = 0; assume henceforth that » and s are odd. By Theorem 4.16,
m ~ —cn®*9/% in this case, where c is an unspecified constant. We now
consider the ratio aja$/af"9/%a{*39/4 and wish to find its minimum
subject to (5.19). As before, we may assume that a;, = a, = 1, so (5.19)
determines a compact set in (a,, a,, a;)-space. Since ajaj is continuous,
the minimum occurs at some point on the boundary of the set; that is,
where some inequality is an equality. A quick check, of which we omit the
details, shows that if any inequality in (5.19)(ii) is an equality then @, and
a, have the same sign so aja; = 0. Thus, we can recast our problem as
finding the minimum of ala; subjectto a, — a3 — a? + 2a,a,a; — a3 = 0.
(Of course, we need to check later that the other inequalities hold.) Let
(a, b, ¢) be a point at which ajaj has an extreme value. After applying
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Lagrange multipliers and recalling the constraint, we derive the following
four equations:
(i) Ara""'¢* = -2a + 2bc
(i) 0=1-3b*+2ac
(iii)) Asa’c*™'= -2c¢+ 2ab
(iv) b—0b*—a*>+2abc—c*=0

(5.21)

Equations (i) and (iii) are equivalent to
s(abc — a?) = r(abc — c?)
and in view of (iv),

K
r+s

abc—azzr—:_s-(b3—b) and abc — ¢* = (&° —b).

Finally, by applying (ii) we get a and ¢ in terms of b:
3 r r 1
. 2 (2 _ 3 2
@ a _(2 r+s)b+(r+s Z)b

3 K s 1 )
. 2 _ |32 _ 3 _ 2
(u) C_(2 r+s)b+(r+s Z)b

But now we have two expressions for a’c?, from combining (5.22)(i) and

(ii) and from ac = (3b* — 1) /2. After eliminating the extraneous double
root at b? = 1, we find that

(5.23) b2 = (r+s) _ (r+s)
' 3r2 4+ 10rs + 352 (Br+s)(r +3s)°

We can now substitute (5.23) into (5.22). As a’c¢* <0, ac <0 and by
arbitrarily choosing @ > 0 and ¢ <0,

(5.22)

a=2"23r +5)*(r + 3s)"*
(5.24) b= (r+s)3r+s)"(r+3s)"?
c=-22%5(3r + s)_1/4(r + 3s)_3/4.
Compare (5.24) with (5.20), when r = s = 1. The suspicious reader should

check that (5.19) is satisfied. Using (5.24) we compute a’c’ and obtain the
inequality:

IS
(5'25) 1= (3r+s)(/lclta(3r+3s)/4

= 20/ 2prs5(3r + s)_(3’+s)/4(r + 3s)"(r+3s)/4.
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Let w=r/(r + s) and x = (r + 3s)/(3r + s5).The constant on the right-
hand side of (5.25) can be rewritten —(27/%a(w) /a(x))"** where a(u) =
u*(1 —u)'™* as in §3, and one can show that 1 < a(w)/a(x) <4-373/4
=~ 1.755. Further, (5.24) with a;, = a, = 1 is the moment sequence of
(f, n) where p is a measure with two atoms. Indeed, a, = Au’ + (1 — A)v’
for 0 < i < 4, where

1
(526) A=5-—

1 5r+s 1+x/§(3r+s)'/4
3 s YT R \rwss) o

\/-5”‘1(3r+s)1/4

‘/f r+ 3s

Observe that the ratio of the values of f at the two atoms is always —(2 —V3)
and that the ratio of masses, A/(1 — A) is never rational. However, by
approximating A /(1 — A) by rationals a, /b, and taking x; = (u, v; a;, b,),
we obtain a sequence of points at which M{M;/n® )/4M{r+39/4 gp.
proaches the constant in (5.25). We summarize this discussion in the
following theorem:

THEOREM 5.27. If r and s are odd and (3r + s) /4 is an integer then
n(3r+s)/4 > erMér/M‘gr+3x)/4
> __2(r+s)/2rrss(3r + s)~(3r+s)/4(r + 3s)"(’+3s)/4n(3r+s)/4

where the constant on the right-hand side is best possible.
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