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HOMOMORPHISMS OF MINIMAL FLOWS
AND GENERALIZATIONS OF WEAK MIXING

DouGLAS MCMAHON AND TA-SUN WU

In this paper we are concerned with generalizations of weakly
mixing. Let ¢: (X, T) — (Y, T) be a homomorphism of metric minimal
flows and let S(¢) denote the relativized equicontinuous structure rela-
tion. The main result is that if ¢ has a RIM, A, and z € Z such that the
support of A, equals the fiber X, = ¢~!(z), then:

oc(Vy X ---¥,) 2 8(¢)(V) X --- XS(¢)(V,,),

and also there exists a dense set of points x, x,, x3,... in X such that
oc(Xy, Xz, X3...) D S($)(x) X S($)(x3)x....

0. Introduction. This paper is chiefly concerned with homomor-
phisms of minimal flows (on compact Hausdorff spaces by a discrete
phase group) having relative invariant measures (RIM’s). If ¢: X — Z has
a RIM, A, we will frequently restrict our attention to points z in Z with
the support of A, equal to ¢~ !(z) since otherwise the results would be
substantially more difficult to state (and prove). ‘

The major motivation for this paper is a generalization of weakly
mixing — if (X, T') is a metric minimal flow having an invariant measure,
then it is well known that Q = X X X implies cls(x, x)T = X X X for
some x, x’ in X; we show that even when Q # X X X a similar statement
holds, that cls(x, x )T D Q(x) X Q(x’) for some x, x’ in X. The main
results of this paper are generalizations of this idea. Some may also be
viewed as a study of the recurrence properties of various subsets of X. We
will now mention some special cases of the main results.

Suppose ¢: X —» Z has a RIM, A, and X, Z are minimal and metric.
Then S(¢) = {(x, x’): (xu, x'u) € Q(¢) for some u € J} (see 2.1). Sup-
pose z € Z such that the support of A, equals the fiber X, = ¢~ '(z). If
N = oc(V; X --- V,) where V, is an open set in X, then N D S(¢)(V;) X
- - XS(¢)(V,) (see 1.1). Also there exists a dense set of points x,, x,,
x5 -+-. in X, such that oc(x,, x5, X5,...) D S(d)(x;) X S(p)(x,) X...,
(see 1.5). If R is the smallest closed invariant equivalence relation contain-
ing (x,, x,), x;, x, as above, then ¢': X/R — Z is almost auto-
morphic, that is, Q(¢')(y) = {y} for some y in X/R (see 1.4). If N =
oc({x} X ¥V, X --- XV,) where V,,...,V, are open sets in X, then N D
S(e)x) X Vy X -+ XV, (see 2.9) and N D S(¢)(x)V X S(¢)(V;)v X
-« XS(¢)(V,)v for every v in J (see 2.11). In part we showed the last
statement as a possible start in determining whether or not for each x in
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X, there exists x” in X, with cls(x, x")T D S(¢)(x) X S(¢)(x). If x,, y, €
X, and x = (x,) € [1X, y = (y,) €IX, then (x, y) € Q(l¢) iff (x,, y,)
€ Q(¢) for every i, (see 2.13).

DEFINITIONS AND NOTATION. Let (X, T) be a flow with compact
Hausdorff phase space X and discrete phase group 7. We will write X for
both the flow and the phase space. Suppose ®: X — Z is a homomorphism
of flows. We will assume ¢ is onto. We denote the orbit closure of x by
oc(x) (= cls(xT)). We let X, denote the set of transitive points (points
with dense orbit), R,(¢) = {(x, x") € X, X X,: ¢(x) = ¢(x')},
0,.(¢) = {(x, x"): there exist nets ¢, in T and (x,,, x,) € R, (¢) such that
(x,, x)) = (x,x") and (x,, x,)t, = (xo, Xo)} for any x,in X, S, () is
the smallest closed (in R, (¢)) invariant equivalence relation containing
0,.(9).

When X is minimal X,, = X, R, (¢) = R(¢), O,(9d) = O(¢) is the
relativized regionally proximal relation S,(¢) = S(¢) is the relativized
equicontinuous structure relation. If X is minimal and Z is the singleton
flow, we denote Q(¢) by Q and S(¢) by S. Let P denote the proximal
relation on any minimal flow.

Neighborhoods are assumed to be open, we denote the set of neigh-
borhoods of x by 9, . The Stone-Cech compactification of 7 is denoted
by BT, M C BT denotes the universal minimal set (a minimal right ideal
in BT), J C M denotes the set of idempotents in M.

The set of closed subsets of X is denoted by 2* and is given the usual
Hausdorff topology. For 4 € 2%, p € BT, we denote the limit in 2% of Az,
by A o p, where ¢, » p in BT; Ap = {ap: a € A}. A homomorphism of
minimal flows, ¢: X — Y, is relatively incontractible (RIC) iff for every
pEM, d (yp)=(¢ (y)u)o p where y €Y, u €J with yu =y (see
[5,] for details).

Let 9L(X) be the set of Borel probability measures on X. For p in
IMU(X) define ut by p( At~ ") for every measurable set 4. A RIM (relative
invariant measure — also called a section) A for ¢: X — Z is a homomor-
phism A: Y — 9 (X) such that the support of A is contained in the fiber
¢~ (z2). If z is fixed, then for any RIM, A, S, denotes the support of A,.
Also we define ¢: M (X) - I(Z) by a(u)(A4) = u(¢~ '(A4)), A a mea-
surable subset of Z. For B C 9 (X) we denote the closed convex hull of
B by co(B).

Giveng: X > Z,0: Y > Z, Xo?Y = {(x,y): ¢(x) =0(y)}. If Nis
asubset of X X Y, N, = N(x) ={y € Y: (x, y) € N} is a set such that
{x} X N,=NnN({x} XY). For our purposes we will consider sets N
contained in X o Y and thus N, C 6~ }(¢(x)).

For the convenience of the reader we will now state some simplified
results of [6] that we will be using. First we note that the assumption that
Y be point-transitive in [6] was not needed.
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COROLLARY 1.4 of [6]. Suppose X is point-transitive, ¢: X - Z,
0: Y — Z are surjective homomorphisms, and 6 has a RIM, \. If x, € X,,,,
A a Borel set contained in 0 '(p)(x,), and N = cls(({xo} X A)T), then for
x € S(9)(X0), Agix)(A NN = Ay, () (that is, Ay, (ANN,) = 0). If
in addition A = B N C where B is a Borel set contained in the support of
Ngixy) With Ay (B) = 1 and C is a non-emply open set, then A C N,.

Compare this with Lemma 2.6 below.

THEOREM 1.5 of [6]. Suppose X is minimal and Q: X — Z has a RIM,
A. Then for x in the support of A .y, Q($)(x) = S(¢)(x).

1. A main consequence of this section is that if ¢: (X, T) - (Z,T)
has a RIM, A, then for some z in Z there exist x,, x, € ¢~ !(z) such that
oc(xy, x5) D Q(¢)(x;) X Q(¢)(x,). This holds for all z that satisfy three
types of conditions, z € Z, N Z, N Z,, where z,, z,, z, are as follows.

First consider 7: X —» X/S(¢), with X metric. Then by Lemma 3.1 of
[9] there exist a residual subset X; of X such that « is open at each x in X].
By Proposition 3.1 of [10] the set Z, = {z € Z: X; N ¢~ '(z) is residual in
¢~ !(z)} is residual in Z. Note for x € X, every neighborhood V of x has
7(V) a neighborhood of #(x) and ¥V’ = ¥V N «~ (int(7#¥')) a neighbor-
hood of x with #~Y(#(V’)) = 7~ (int(#V)) open, that is S(¢)( V') =
7~ '(m(V”)) open. As noted in [10], V' C cls(V").

More importantly, for fixed z € Z, every open set V* in ¢~ !(z)
contains an open set ¥*' in ¢~ !(z) such that S(¢)(V*’) is open — indeed
V* = ¥V N ¢~ '(z) where V is open, and V* N X, # @ and so there is an
open set ¥’ such that V" N ¢~ '(z) # @ and S(¢)(V’) is open, thus
V¥ =V N ¢~ !(z) has S()(V*) = S(¢)(V' N ¢~ '(2)) = S(¢)(V) N
¢~ !(z) open in ¢ }(z). Also V C cls(V"), so V* =V N ¢ '(z) C (cls V")
N ¢ 1(2).

REMARK. Note that in the non-metric case if Y is a singleton we have
that every open set V' contains an open set V* such that S(V*) is open,
V Ccls(V*),and A N V C V* where 4 = {x: ¢: X - X /S is open at x}.
To prove this consider ¢: X - X/S. Then ¢(V') has non-empty interior
W. Take V*=V N ¢ (W). Then S(V*) =o¢ (o(V N o (W) =
6 (W). Let x € V, then for any neighborhood U of x, U N V # 0 and
¢(U N V) has non-empty interior. So ¢(UNV)YC W and UN V C
¢ Y(W). Thus ¥V C cls(V N ¢~ (W) = cls(V*).

Recall that given a function f from a metric space X onto a metric
space Z, if f is a Borel map (in particular, when it is either upper
semi-continuous or lower semi-continuous), then f is continuous at a
residual subset of X.
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Define ®: X — 2% by ®(x) = S(¢)(x). Then ® is upper semi-con-
tinuous. There exists a residual set X, of X such that ® is continuous at
each x € X,. Then there exists a residual set Z, of Z such that X, N ¢~ !(z)
is residual in ¢~ !(z) for z € Z,.

Finally, if ¢: X — Z admit a relative invariant measure (RIM), A, then
the function g: Z — 2% defined by g(z) = support of Az is lower semi-
continous. Then one can show that there exists a residual set Z; of Z such
that the support of Az equals ®~'(z) for z in Z, (Proposition 3.3 of [4]).

1.1. PROPOSITION. Suppose for i = 1,2,...,n ¢;: X, = Z has a relative
invariant measure \;, z € Z with ¢, (z) = support of \,,, and V, are open
subsets of ¢ '(z) with Q(¢,)(V;) open in ¢; '(z). Then

N =oc(V, X --- XV,) 2 Q(¢)(V}) X - - - XQ($,)(V,,)
= S(¢)(V) X --- X8(¢,)(,,).-

Proof. The last equality follows from 1.5 of [6].

Now N D Q(¢,)(V)) X V, X --- XV, by Corollary 1.4 of [6] since
V, X --- XV, is open and X, X --- X X, has a relative invariant measure.
So NDO(N) X Q(V,) X V3 X --- XV, by 14 of [6] since Q(V;) X
V, X --- XV, is open, the proposition follows by induction.

1.2. PROPOSITION. For i =0,1,...,n. Suppose (X,, T) is a minimal
flow with T abelian. Then for any x, in X, and for any open sets V; in X,
i=1,2,...,n there exist open sets Uy, U,,...,U, such that x, € cls(U});
ucv,i=12,..,n;and

oc({xo} X V} X -+ XV,)
D oc(Uy X Uy X -+ XU,) 2 cls[Q(Uy) X @(Uy) X -+ - XQ(U,)]
2 {xo} X Q1) X --- XQ(U},).
If X, —» X,/ Q is open at x,, then we can take U, with x, € Uj,.

Proof. Let V(t,, t,,...,t,) denote Vit; X Vyt, X --- XV, t, wheret; €
T. Then there exist finite many n-tuples sy, s,,...,s,, in [I} T such that
UW(s;) =11 X,. Let Y =TI} X,. Then U][{x,} X V(s;)] = {x,} X Y.
So U7 ([{xe} X V(s)lt) = (Ul{xo} X V(s)Dt = ({x0} X Y)t =
{xot} X Y. Therefore U7 cls([{x,} X V(s)IT) = X, X Y and thus
cls([{xq} X V(s;)]IT) has non-empty interior, I, for some i. Then for
some ¢t in T, [{x,} X V(s;)]t N I+* &. So there exist open sets U,
Uj,...,U; with x, € Uj, and U] X --- XU, C V(s;) such that (U; X U]
X - XUNCI and so Uy X U] X -+ XU, Ccls([{x,} X V(s)IT).
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Lets; = (¢,,...,t,), then since T is abelian,
Uy X Ut X - XUt cels([{xo} X V) X -+ XV,]T).

Then by the remarks above there exist open sets U, C U/z; ! such that
O(U;) isopeni=0,1,...,n, and x, € Uj C cls U,. When X, - X,,/Q is
open at x, we have x, € Uj,. Then the proposition follows by 1.1.

1.3. THEOREM. Suppose for i = 1,2,...,@,: X, > Z has a RIM, A,, and
X; is a metric minimal flow. Let zy € N2 (Z{ N Z5 N Z3), (Z; = Z; as
above for ¢,). Given x; in Xy = ¢, '(2,) and dense Gy subsets G' of X there
exist points x; in G' such that x; € B(x,;, 1/i) and oc(xi, x5,...) D
Q(?;%(J)‘f)) X Q(h,)(x3) X -+-. (Recall Q(¢)(x) = S(¢p)(x) for x €
¢ (Z£3)

Proof. Let B(y,,...,Y,; €) denote B(y,, €) X - -+ XB(y,, €). Fix e > 0.
Consider any set {x;}, x; € X, N Xj. For each i use the continuity of ®, at
x; to associate a neighborhood U* = U#*(x;, €) of x; with x, and & such
that if x € U* and y, € Q(¢,)(x;), then Q(¢,)(x) N B(y;, &) # T; and if
¢ >e¢, then U*(x,, e*) D U*(x,,&). Let U = U(x,, &) = U* N X} and
¥: € Q(9;)(x;); note x; € U.. Now for each n consider the set W, =
W(Ppse-sY; €) = {w € U, X -+« XU,: wt € B(y,,...,),; € for some ¢ in
T). Clearly W, is open (in X X - - - X X7). Also W, is a dense subset of
U, X --- XU,; since for any basic open subset V=1V, X --- XV, of
U, X --- XU,in X} X - -+ X X7 take an open subset V* = V¥ X - .. X V*
with Q(¢,;)(V¥) open. Then for any point (x¥,...,x¥) in V*, there exists
y* € 0(¢;)(xF) N B(y;, ¢) fori =1,...,n, and by 1.1, we have oc(V*) D
QP (V) X --- XQ(9,) D (¥5,...,yF); so there exists ¢+ in T with
V*t 0 B(y,,-..,Y,; €) # 0, and thus W, is dense.

Consider a cover of Q(¢,)(x;,) X -+ XQO(¢,)(x,) by sets of the form
B(y,,...,y,; € where y, € Q(¢,)(x;). Take a finite subcover and the
(finite) intersection B, of the corresponding W,’s, then B, is open (in
X} X -+ XX¥) and is dense in U, X -+ - X U,. By continuity, for each b
in B,, there is a neighborhood E(b) of b contained in B, such that any
given open set in the finite subcover contains E(b)? for some ¢ in 7. From
this it is clear that for any (y,,...,y,) in Q(¢,)(x;) X --- XO(¢,)(x,),
E(b)t C B(yy,---,),; 2¢) for some ¢t in T.

Now consider a given collection x; € X{, i = 1,2,.... We may assume
x;, € XN X;. Let H}, i, j=1,2,..., be dense open subsets of X; such
that H/,, C Hj and N H{ = X; N X; N G' for i =1,2,.... Start an
induction with x, x,, n = 2 and & = 1. Take B, as above and b, € (X; X
X?) N (G' X G?) N B, N [B(x,,1) X B(x,, %) Let E, = (H! X H}) N
E(b,) N B(b,,3) N[B(x;,1) X B(x,,3)]; note it is a neighborhood of b,
in Xj X X§. Now consider b, X {x,}, n = 3, ¢ = }, and take B, as above



406 DOUGLAS MCMAHON AND TA-SUN WU

and b, € (X! X X2 X X2) N (G' X G® X G*) N B, N [E, X B(x,, })].
Take a neighborhood E; of b, with cls(E;) C (Hi X H} X H}) N E(b,)
N B(by, §) N [E, X B(x3, 1)]. Consider by X {x,}, n = 4, ¢ = §, take B,
as above and b, € (X; X XX X3 X XHN(G' X G*X G* X GHN
[E; X B(x,,%)] N B,. Continue in this way.

Note N*_,, (E, X II¥,, X,) is a singleton, say {(x{, x3,...)}, and
note (x/, x5,...) E(X N XI N GY X (X2 N X2N G2 X (X3NX3n
G*) X -1 N [By(x;5 1) X B(x,, 1) X B(x;3,%) X---]. We claim
oc(x, x3,...) 2 Qe )(x1) X Q(¢,)(x3) X ---. For any (y, ,,...) in
O(¢,)(x7) X Q(¢3)(x3) X..., a basic neighborhood of it is of the form
B(yy,..y,; A) X I®,, X for some n and A > 0. Let U/ = U(x/, A) for
i=12,...,n. Take j such that b, € U X --- XU; X I}, X and
1/(j+ 1) <A.Then

[Q(¢1)(bjl) Xoees XQ(¢n)(bjn)] N B(yp,..-> Y A) # 9,

where b; = (b;y,...,b;,), (since b; € U)). Let (yf,...,y;) be a point in this
intersection. Then there exists ¢ in T such that (x, x3,... )t € E; ;1 C
B(yt,....085 2/(j+ 1) CB(yy,....y 3N). Thus (yy, yp,...) €

oc(x], X5y ..).

1.4. COROLLARY. Suppose X is metric, minimal flow and ¢: X — Z has
a RIM. Then there exists (x4, x,) € X X X such that $": Y = X/R(x,, x,)
— Z is an almost automorphic extension of Z (i.e., there is a point y in Y
with Q(¢')(y) = {y}) where R(xy, x,) is the smallest closed invariant
equivalence relation containing (x,, x,).

Proof. This is clearly the case if we take (x,, x,) such that oc(x, x,)

2 Q(6)(x0) X Q(d)(x1)-

2. In this section we develop some connections of a RIM on ¢:
X - Y to the relativized equicontinuous structure relation, S(¢), and
apply them to study the orbit closures of sets of the form {x} X 4*
X -+ XA" in a product space and to give a special characterization S(¢)
in the case when (R(¢), T) has a dense set of almost periodic points.

Suppose ¢: X — Y has a RIM, A, X is minimal and N is a closed
invariant set in R(¢). Then ¢,: R(¢) — [0, 1] defined by ¢, (x, x’) =
Ao N(X)AN(x")) = 2A,(N(x) \ N(x")) is continuous, [6] where
{x} X N(x) =NN ({x} X X) and A is the symmetric difference. So
for each N, ¢,(x, x’) is a pseudo-metric on each fiber that is invariant,
$x(xt, x't) = by(x, x'). Defining Ry, = {(x, x’) € R($): y(x, x') = 0},

we have X - X/R,, S Yand Yy is an isometric homomorphism (and thus
almost periodic).
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Consider S*(¢) = {(x, x): ¢n(x, x’) =0 for all closed invariant
subsets N of R(¢)}. Then by 1.2 of [6] S(¢) C S*(¢). We wish to show
that S*(¢) C S(¢). Note by 1.2 of [6] S*(¢) is closed and invariant.
Suppose (x, x’) € S*(¢). Let ¢(x) = z,, let x, € S, = support of AL
and let pu € M such that xpu = x,. Note (xpu, x’'pu) € S*(¢). For any
V eN, consider N = oc({x'pu} X V' N §,). By 1.4 of [6] N D {x,} X
(VN Sy, soNNVX(¥VNS,) # 3, so there exists ¢, in T and x, in
VNS, such that x,t, € V and x'put, € V. Thus x’ = xpu €
Q(¢)(x’'pu) and so (xu, x'u) € Q(¢) and (x, x’) € S(¢). Thus we have
the following proposition.

2.1. PROPOSITION. If ¢: X — Z has a RIM, A, then {(x, x’) € R(¢):
A g N(x)AN(x")) = O for all closed invariant sets N in R(¢)} = S(¢) =
{(x, x") € R(¢): (xu, x'u) € Q(¢) for some (and thus every) u € J}.

2.2. PROPOSITION. Suppose ®: X — Y has a RIM, A\, and X and Y are
minimal. If ¢ is open and S(¢) = R(), then Q(d) = S(¢).

Proof. Let (x,x") € R(¢) = S(¢), we will show(x, x) € Q(¢) =
Q(¢). Let U and V be open neighborhoods of x and x’ respectively. Let
X, be any point in the support of A, . Since ¢ is an open map,
o(V) N ¢(U) is an open neighborhood of ¢(x). There exist ¢, in T with
Xoto € V and ¢(x42,) € ¢(V) N ¢(U). So there is x; C U with ¢(x,) =
o(xotp); then (x,t,', xo) € R(¢) = S(¢) and by 1.5 of [6], x,;' €
S(9)(xo) = Q(#)(xo). Therefore (x,, xof) = (X5, Xo)to € Q(¢) and
(x, x) € Q(¢) = Q(9).

2.3. LEMMA. Given ¢: X > Y, 0: Y - Z, X minimal. Let x € X and
Y = ¢(x). Then for any y" € S(0)(y) there exists x’ € S(0 o ¢)(x) with
Y = ¢(x’). (Note this is somewhat stronger than the statement ¢ X

»(S(0 ° ¢)) = S5(6).)

Proof. By 14.2 of [2,], ¢ X #(Q(8 o ¢)) = O(8). Consider M % X
with ¢(m) = xm. Then ¢ X ¢(¢ X Y(Q(f o d o Y))) = Q(F). Let u € J
with xu = x. Note Q(f o ¢ o ¢) is left invariant under G = Myu, M, =
(@o¢poy) !(y); and so S(8 o ¢ o ) is also, since g X g(S(f o ¢ o Y)) is
a closed invariant equivalence relation containing g X g(Q(f o ¢ o)) =
Q(0 0o ¢ o), for g € G. Let R denote ¢ X (¢ X Y(S(8 ° ¢ © ¢))). Also
S(0) D ¢ X ¢(S(6°¢)) DR. To show the reverse inclusion first note
0(0) = ¢ X d(y X Y(Q(f ° ¢ o)) C R. Also R is closed and invariant;
we will now show that R is an equivalence relation and thus S(8) C R and
the lemma will follow. We only need to show that if (y,, ,) € R and
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(72, y3) € R, then (y,, y3) € R. Let m,, m,, m},, my; € M with (m,, m,),
(m5, my) € S(Bopoy) and dpoY(m,) =y, i =123 ¢poY(m))=y,.
Choose m € M so that mm’, € m,J. Then (mm/’y, mm;) € S(0 o ¢ o )
and (m,, mm}) € S(f o ¢ o ¢), and so (m,, mm;) € S(f o ¢ o ). Also
¢ o Y(mm3) = y; since ¢ o Yy(mm’) = ¢ o Y(m}); so (y,, y;) € R. Thus
we have that S(0) = ¢ X ¢(S(0 - ¢)) = R.

Now suppose )y’ € S(¢)(y), and (m, m’) € S(8 o ¢ o ) with
oo Y(m) =y, ¢oY(m’)=y. Wemay assume m = mu since S(f o ¢ o ¢)
is an equivalence relation. Then (u, m~'m’) € S(0 o ¢ o ¢) and Y(u) = x.
Let x’ = y(m~'m’). Then (x, x’) € S(0 o ¢) and ¢(x’) = y’. Thus the
lemma is proved.

2.4. LEMMA. Let M be the universal minimal set, Z a minimal flow, z a
fixed element of Z, u € J with zu =z, and y: M — Z be defined by

Y(p) =zp,p EM.
If p € S(Y)(u) and pv = p, v € J, then [S(Y)(u)]v = [S(Y)(u)] p.

Proof. If m € S(Y)(u), then mp € S(¢)(up) = S(¢¥)(u) since up = p
and S(y) is a closed invariant equivalence relation. So S(y)(u)p C

S(¢)(u) and so S(¢)(u)p C S(¢)(u)v.
Let p~! be the inverse of p in the group Mv. Then S(y)u)p~' €

S(¥)(u) and S(¥)(u)v = SN u)p~'p C S(¥)(u)p.

2.5. COROLLARY. Using the same notation as in Lemma 2.4 and v € J,
if p € S(Y)(u), po =p, and ¢: X > Z, then S($)(x)p = S($)(x)v for all
x in X with ¢(x) = z and xu = x.

Proof. Straightforward.
The following lemma is a variation of Corollary 1.4 of [6].

2.6. LEMMA. Suppose ¢: X - Z,8: Y — Z, Z minimal and 0 has a RIM
(section), N\. Let r € X and z = ¢(r), let V be an open set in the support of
A.,andlet N = oc({r} X V) andv € J, with zo = z. Then N D {rv} X v.
(Note X and Y are not required to be minimal, otherwise it would be trivial
in view of 1.4 of [6] since rv and r are proximal and so (rv, r) would be in

S(¢).)

Proof. We will assume the reader is familiar with the notation and
definitions in [6]. Let W € 9U(N,,, with A (W) < A_(N,,) + &. Then there
exists #in 7 for which Nt C Wand N,;t C Wand | A, (W) — A (W) |<e.
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Then
MANAN,) = A (NN, 1) S A (WAN,,1)
= N (W) = AL (N,,1)
= A (W) = A(N,,)
=\ (W) =L (W)] + (W) = A (N,,)]
< 2e.

Thus A (NN,,) =0. Now A(V\N,)) =A(N,\N,,) =0, and so V\N,,
= @ since V'\ N,, is open in the support of A,. Thus V' C N,,.

2.7 LEMMA. Suppose ¢: X - Z, §: Y —> Z, Z minimal, and 6 has a
RIM. Let x, € X, z, = ¢(x,), and let A be a non-empty subset of the set
{A: Ais a RIM for 8}. Let S, be the support of X, and S = cls(U, ., Sy).
Let C be an open set in 07 (zy) and A = 'S N C. Consider N=
oc({xy} X A). Then N, D A for all x € S,(d)(x,). Note if X is minimal,
S, (¢) = S(¢). In addition if v €J with zyo = z,, then N D {x,v} X 4.

Proof. By 1.4 of [6], AN S,=CNS, CN, for every A in A. So
ANUS,)=CnNn(US,)CN, andcls(CN(US,)) CN,.IfyeCn
S, then for every open neighborhood V of y in 6~ '(z,) with ¥ C C, there
exists y, in S, for some A in A with y, €V CC; thus 4 =CN S C
cls(C N (US,)) C Ny. The additional statement follows similarly from
2.6.

2.8. PROPOSITION. Given homomorphisms a: W — X, ¢: X — Z where
¢ has RIM A and W is minimal, let § = ¢ o a. Then there exists a strongly
proximal extension 0: Z — Z such that the following diagram commutes

~

Wet———oo- W C W Z

i ~
l o f Y
v X<—| X~ EXx%2Z"
¢l o~
Y
<77
z - z

where W~ and X~ are the unique minimal sets in W o?Z " and X 0% Z"
respectively. And ¥ has a RIM v, that induces the RIM Ay, X 8,, v € zZ
on ¢ . (8v is the point mass at v € Z).
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REMARK. (a) Compare this with 5 of [7].

(b) When W is the universal minimal set M, we have M which is in
fact isomorphic with M through the map ( p, y) — p.

(c) If Z is a universal strongly proximal flow, then §: Z" - Z is an
isomorphism and any RIM on ¢ can be lifted to a RIM on 4.

Proof. We assume the reader is familiar with the contents of [4]. Let
Xy € Xy, wy € W with a(wy) = x,, and u € J with_wyu = w,. Consider
\p M(W) = M(Z), &: DM(W) > IM(X). Let P =co(oc(A, )) and note
¢: P - M(Z) is IM(Z) irreducible since A is a RIM. Let Q be a
P-irreducible subset of & l(P) and note that Q is also M (Z) irreducible.
Let Z =ex(Q) and 6 = 11/| Z"~ — the restriction of § to Z ; we identify z
in Z with §, and consider 6: Z - Z Let X , W be the unique minimal
sets in {(x,») € X X 7" p(x) = 0(»)}, {(p, V) EWXZ :poa(p)=
0(»)} respectively. Let <1> be the projection of X onto Z" and ¢ be the
projection of W onto Z . For each v in Z the measure » X §, on W X A
is supported in W~ and the map y: Z° — OU(W )y, = » X §, is a RIM
fory : W — Z . Also(a X id): W — X induces a RIM B8 = (& X id)(y)
on ¢ : X —Z by B,=(aXid)(y,) = a(») X §,; note &(,) = \,, for
some v, in Z and so 8(»,) = z, and B, = Mgy X 8 forvin Z .

2.9. THEOREM. Suppose for i = 1,2,3,...,n, ¢,: X' > Z are homomor-
phisms and X' is a minimal flow. Suppose ¢, has a RIM, A. Let z, € Z,
X¢ = ;7 \(24). Then, there exist non-empty subsets J* C J' of J such that
X(J*, X5 J' are compact subsets of X and such that given A' = (X{J*) N V'
where V' is an open subset of X}, x, x’ € X}J' with (x, x") € S(¢,), and
N =oc({x} X A% X -+ XA") we have N D {x'} X A* X - -+ XA4".

REMARK (a) If u, v € J’, x,u € X;, x,0 € XZ, and
N = oc({(x,u, x,0)}) X A3 X - -+ XA";

then N D {(x,u, x,u)} X 4> X -+ XA". ‘

(b) X;J* O U{Xju: u € J for which x'u € S, for some x’ in X, and
some RIM, u, for ¢,} where S, is the support of . .

(c) J* and J depend on Z but not on the ¢,’s.

(d) For n = 2 compare this with 1.4 of [6], where ¢, has a RIM and ¢,
is not required to have a RIM.

2.10. CorOLLARY. If X=X', i=1,2, x € X,J*, x’ € X,J', and
(x, x") € S(¢), then there exist x, in X,J* and t, in T with x, — x,
x,t, = X, x't, = x; in particular (x, x") € Q(¢).

Proof of 2.9. Let u € J with zyu = z,. Define y: M - Z by p - z,p.
Let M, = ¢~ (z2,). Fix xj € ¢, '(z,) = X§ with xju = x{, and define a;:
M - X' by a,(p) = xop. Note ¢ =a;0¢,. By 4.1 of [4], there is a
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strongly proximal extension Z~ of Z, Z~ is minimal, §: Z~ — Z is strongly
proximal, such that the projectiony” of M onto Z has a RIM where M
is the unique minimal setin M oZZ" = {(m, z) € M X Z: Y(m) = 6(z)}.
By 2.7 we see that we are interested that the union of the supports of the
RIM’s on ¢ be as large as possible. We will now determine one aspect of
the size of this union by “translating” measures. Given a RIM yon
define the translation py by py,(4) = v,( pA) for p € My= ¢ ~(Y(u))
and » € Z . It is easy to see that pY is again a RIM on ¢ . Let Yo =
¥ (u), T be the set of all RIM’s on y”, and S,,y € I, be the support of
Y,,» From the above it is easy to see that cls{ US,:y €T} is of the
form M,J* C M, C M, X {»,} for some subset J* ofJ

Now to prove the theorem we first show a similar result for ¢, and
then reduce it to ¢,. Suppose 4’ = (X;J*) N V' where V' is open in X’
and ((x, %), (¥ w) € S(g)). Let N = oel{xq, m)) (A2 X (%))

- X(A" X {»,}). Then if (p, »)) € M, with a,(p) = x, there exist

(p VO) € M, with ay( p") = x’" and (( p, %), (P', »,)) € S(¢). Consider

N* = oc{{(p, vy)} X (a;'(Vz) X {1} N MyJ*)
X o X (e, (V") X {m} N MyJ*)}.

For i =2,3,...,n, let v, €T, then Ily, is a RIM and S,, =1IS, so
cls(U {8y, : y,EF i=2,...,n)) =1%M,J* So by 2.7

N* 2 {(p’, %)} X[“z—l(Vz) X {r} N MOJ*]
x - x[a1(77) X {35} 0 M5 7],

and N D {(x', 1)} X (A% X {g,}) X -+ X(4" X {vo}) since if a,( p;) =
a, € A' then a,u* = g, for some u* EJ* and (p,u¥, vy) € (e (V') X
(%)) N M, J*. Thus

N=oc({x} X A2 X ++- XA") D {x'} X 4> X - -- X A".

We will now show that if (x, x’) € S(¢,) and (x, »,), (x’, »,) € X',
then ((x, 7,), (x', #y)) € S(¢;), where X " is the unique minimal set in
X'o%2Z . (WeletJ = {v € J: v = »,} and note for x € X, (x, v,) €
X" iff x € X1J".) First suppose x € S,, then there exist x, in S, and 7, in
T with x, = x, x,t, = X, x't, »> x by 1.5 of [6]. Now S,\X {70} CX'
since )\0(,,) X8,vEZ isa RIM on é; by 5 of [7]. So (x,, 7)) € X and
we have ((x, vo) (x', 7)) € S(¢;). Now suppose x & S, let x, € S, and
w € J* such that (x,, »)w = (x,, ,). Let pw € M with xpw = x,; then
(x’pw, xpw) € S(¢,) and ((x’'pw, v,), (xpw, v,)) € S(¢,). Multiplying on
the right by (pw)™' € Mw, we get ((x'w, vy), (xw, v,)) € S(¢;) and
therefore ((x', vy), (x, 7)) € S(¢,). Remark (a) is easily proved as above
applying Lemma 2.7 to ¢*: oc(x,u, x,v) = Z. Remark (b) follows from 5
to [7] and 2.8.
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2.11. THEOREM. Suppose for i = 1,2,...,n that ¢;: X; > Z has a RIM,
w;, and X, is minimal flow. Suppose z € Z such that the support S, of u,,
equals the fiber ¢;7\(z2), for i = 1,...,n. Suppose X, is a minimal ﬂow and
b0 Xy = Z is a homomorphism. Gwen x in ¢y '(z) C X, and open sets V, in
¢ (z) C X,, the set N = oc({x} X V; X -+ XV,) D S(¢)(x)v X
O(o))(V)v X --- XO(p,)V,)v for every v in J, and thus N D
[S(¢o)(x)v] ° v X [Q(¢)(F)v] 0 v X -+ X[Q(¢,)(V,)v] o v.

Proof. Let v €J with zo =z. We will show N D S(¢y)(x)v X
Q(¢)(V)v X --- XQ(9,)(V,)v by induction. But first some pre-
liminaries. Let (x,, x;,...,X,) be an element in the right hand side. Then
we have x,v = x, and for some r, in V,, x, € Q(¢)(r,). Suppose v, € J
with r,v, = r; definea: M - X, by a(p) =r,p, then¢p, ca=y: M > Z
where ¥(p) = zp. So by 2.3 we see that there exists p, in S(¢)(v) =
S(¢)(v,) such that r,p = a( p,) = x, and p,0 = p, since x,v = x,. By 2.5
S(¢o)(x)p, = S(p)(x)v and since x, € S(Py)(x)v there exists r, in
S(¢y)(x) with rop1 = x,, and we may assume rv; = 7,. Now (a) N D
S(¢O)(x) XV, X--- XV, by 14 of [6] and so N D {(ry, r;)} X
V, X - XV,. Now con51der the flow oc(ryv,, ryv;). It is minimal and has
an 1nduced map ¢: oc(rov,, rv;) - Z. Thus by 14 of [6] ND
S()(ryoy, rv)) X Vy X +-- XV, which equals S(¢)(xq, x;) X V,
X - XV, since (70, 10 1)P1 (an x;) and p; € S(¥)(v).

Now we note that when n = 1 we have for any x, € S(¢,)(x)v and
x1 € Q(¢)(V))v, (b) oc({x} X V}) D S()(xo, X;) D (o, ;) and so
oc({x} X V) 2 S()(x)v X Q(¢,)(V))v.

Proceeding by induction, assume that the theorem is true forn = k —
1 and prove it for n = k. With n = k, we have for any x, € S(¢,)(x)v
and x; € Q(¢,)(V})v, (¢) oc({x} X ¥} X -+ XV}) D oc(S(d) (x4, x;) X
Vy X XV) 2 oe({xg, x)} XV X-oo XV) 2 S(¢)(Xo, x,)0 X
0(6,)(7)v X -+ X Q(6)(V)v 2 {xp} X {x,} X Q(,)(V3)v

<o XQ(¢,)(V,)v by induction. And so oc({x} X V; X --- XV,) D
S(30)(x)v X Q(6)(V1)0 X Q(¢,)(Vy)v X -+ X (¢ )(V,)v; thus  the
theorem is proved for every v € J with zo = z and thus for every v € J.

2.12. THEOREM. Suppose for i = 0, 1,...,n that ¢,: X' —> Z has a RIM,
u;, and X' is minimal. Suppose z € Z and X} = ¢, '(z). Let J* and J’ be as
in2.9. Let V' be openin X{, A' = V' N X,J*, and x € X{. Then
N = oc({x} X A' X - -+ X4")
2 O(d)(x)v X Q(¢,)(A4) v X - XQ(¢,)(4")v

for every v in J.
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Proof. We indicate where the proof differs from the above. Of course
V, is replaced by 4’ and J by J*. Statement (a) would read “Now
N D S(¢p)(x) N X2J* X A' X --- XA™ by Proposition 2.9.” Note
S(Po)(x) N X3J* = S(¢y)(x)J*. Statement (b) would read “oc({x} X 4")
D S(¢)(xq, x,)J* D (x4, x,).” Statement (c) would read

“oc({x} X A" X -+ + XA4") D 0c(S($)(xg, x,)J* X A2 X -+ - XA").”

2.13. COROLLARY. Suppose I is an index set and fori €T, ¢;: X, > Z
has a RIM and X, is minimal. Suppose z € Z and x,, y, € X, with
X i € XoJ* = ¢; '(2)J*, x = (x;) € Lier X, ¥ = () € Uer X, where
J* is taken as in 2.9. Then (x, y) € Q(ll¢,) iff (x;, y;) € O(¢,) for every i
inT.

Proof. (=) Clear.

(<) Suppose u € J*. Let [I,cp U X ;o X; and ;e p V; X I, p X;
be neighborhoods of x and y respectively, where F is a finite subset of T'.
Let 4,= U N X,J* and B, =V, N X;J*. Then N = oc(IlI4; X [IB;) D
MQ(A,)u X Q(BYu 2 NQ(x)u X NQ(y)u > M{x,u} X [{xu}; and
the corollary clearly follows.

ReEMARK. The above was known under various more specialized
conditions, see [1, 3].

2.14. COROLLARY. Suppose ¢: X - Z has a RIM, A, let z € Z,
Xog € XoJ* = ¢7Y(2)J*, T an index set, and x; € S($p)(xo)J*, i € T. Then
there exist nets t, in T and x| in XyJ* with x! - x;, x['t, >x, for i €T,
and xyt, = x,. " §

Proof. Let u € J* with x,u = x,. For any neighborhood V; of x, in X,
let A, = V; N X,J*. Then

oc({xo} X T4,) 2 Q(¢(x,)u) X (IQ(9)(4,)u)
2 Q(e)(xo) X Q) (x,)u 3 {x0} X [{x,};
and the corollary clearly follows.

2.15. LEMMA. Suppose Z is a minimal flow and z, € Z. Define
V: M—>Z by p-z,p and let My, =y~ \(z,). Suppose ¢ is RIC and
has a RIM, A. Then there exist w € M, N J such that for p in cls(Myw)
and q in Q(Y)(p) there exist nets p, in Myw and t, in T such that p, - p,
DPot, = P> qt, = p. In particular for p in cls(Myw), Q(¢)(p) = {q: there
exist nets p, in Myw and t, in T with p,—>p, p,t,—>p, qt, > p}
= N{cs(BT(p) N cls(Mw)): B =V X V, V an open set in M}. (Recall
that S(¥) = Q(¥) if ¢ in RIC, see [9].)
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Proof. Let S, be the support of A, and p € S, C M,,. Suppose u € J
with pu = p and g € M,u, then p. defined by p,(4) = A, (gp~'4) is a RIM
and g € §,. So if § = cls(U {S,: pis a RIM for ¢}), then § = M, J, for
some subset J, of J N M,,. Now consider the left flow (M,u, S) with the
action being multiplication on the left and M,u is a group given the
discrete topology. Then it contains a minimal set (M,u, cls(Mw)) for
some w in J,.

Suppose V' is an open subset of M, and V' N Myw # J. Then there
exists a finite set F of f’s in Myw such that U . F(V' N Myw) D Myw.
Let B= B, =cls(V N Myw) =cls(¥ N Mow) Then U, F(Bow)=
[U serfBlew D Myw o w = M, since ¢ is RIC. So Ufep(S N f(B o w))
2 S So int(S N f(B o w)) # & for some fin F where the interior is with
respect to S, and thus int(S N (Bow)) #* J. Let p € Mow and p* €
ﬂVe% cls int(S N (B, o w)).

Suppose ¢* € Q(¥)( p*) and consider

Ny, = oc({g*w} X int[S N (B, ° w)])

then by Lemma 2.7
N, 2 {p*} X cls(int[S N (B, o w)]) 3 (p*, p*).

Let U € 9. Then there exist t = ¢, in T and r = ry,; in S N (B, o w)
such that g*wt € U and rt € U. Then there exist s = s, and m = m, in
V N Myw such that g*s is near g*w and ms is near r; that is, g*s € Ur™!
and ms € Ut~ '. Thus we have nets m,,, in Myw and s, in T with
vu = P> MyySyytyy = p* and g*sy by, — p* thus (g%, p) € Q(¥).

So we have assumed ( p*, ¢*) € Q(¢¥) and shown (g*, p) € Q(¢).
Now suppose (p, q) € Q(¢¥); we can repeat the preceeding paragraph
with g in place of ¢* to obtain the lemma.

2.16. PROPOSITION. Suppose ¢: X — Z is a homomorphism of minimal
flows such that the set D(¢) of almost periodic points in R(¢) is dense. Let
X0 € X, ¢(xy) =z, and X, = ¢ '(z,). Then there exists w € J with
zow = z, such that for x, y in c( X,w) with y in Q(¢)(x) and for p €
cls(Mw) with x,p = x, there exist q in M and nets p, in Mw and t, in T
such that x,q =y and p, - p, qt, = p, p,t, = D.

Proof. Let X, € X, = ¢~ '(z,). Define B: M - X by B(p) = x,p. Let
Y=¢oB: M- Z M,=1y !(z,). Take a proximal extension Z* of Z, 6:
Z* - Z such that ¢*: M* C M o%Z* - Z* is RIC and has a RIM. Let
zF €07V (zo), M = ¢*71(2¥), and let w € J N M{ as in Lemma 2.15. If
x € cls(Xyw) and y € Q(¢)(x), then by 2.1.4 of [6], ((x, z), (y,z)) €
Q(¢*) for some z in Z*, and thus ((xw, z,), (yw, z,)) = ((xw, zw),
(yw, zw)) € Q(¢*). Since x, y € cls(X,, w), (x, z,), (¥, z5) € X* and so
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(%, Z5), (xw, 29)) € P, (3, 20), (¥W, 25)) € P and (%, z5), (¥, 2)) €
0(¢*). Let p € cls(Myw) with (x,, z,)p = (x, z,). By 14.2 of [2,] we can
take g in Q(y)(p) with (x,, zy)g = (», z,)- The proposition clearly
follows from Lemma 2.15.

A stronger result can be obtained if we assume Z is a singleton. Fix x,,
in X and define y: M — X by p = x,p. Let u € J. Then Mu is a group.
Give it the discrete topology and consider the (left) flow (Mu, M) with
the action being multiplication on the left. Then it contains a minimal set
(Mu, Mw) for some w in J C M. Note (Mw, Mw) is also minimal. See 2.10
of [8] for related results.

2.17. THEOREM. Suppose X is a minimal flow and has an invariant
measure. Let w € J such that (Mw, Mw) is a minimal (left) flow as above.
Let x € X. Suppose x(Mw o w = X, (that is, X is incompressible). Then for
each x in Xw = xoﬁl—_w, piny~l(x)N Mw and x' in Q(x), there exist nets
m,in Mw and t, in T withm, - p, x,m, = Xop = x, X't, > x*, xomt, -
x* for any x* in X. In particular, for x in Xw,

Q(x) = {x': there exist nets x, in Xwand t,in T
with x,, - x, x,t, = X, x't, = x}
=N {cls(aT(x) N Xw): a =V X V, V an open set in X}
= N{cls(aT(x) N Xw): « = V' X V, V an open set in X }.

Proof. Suppose x € xOM_T&_p EYy (x)N Mw and V € 9N,. Then
V' N Mw # & and is open in Mw. Then since (Mw, Mw) is minimal, there
exists a finite set F of f’°s in Mw such that UfeFf(V N Mw) D Mw. Let
B =B, =V N Mw. Then UjepxofBow = xq U, fB o
xO[U FfB] ow D x)Mwow= X So int(x,fB o w) #* @ for somefm
ﬁen int(B o w) #* @&. Therefore int(x,Bow)#* J. Let x* €
ﬂ,,e% cls int(xy B, o w).

Suppose x* € Q(x*) and consider N, = oc({x*w} X int(x,B, o w)).
Then by 1.4 of [6],

N, D {x*} X clsint[x,B, o w] 3 (x*, x*).

Let U € 9,.. Then there exists t =, ,in T and y =y, ,in XyB,ow
such that x*wr € U and yr € U. Then there exists s = s, , in T and
m = m,, in VN Mw such that x*s € Ur™' and x,ms € Ur™'. Thus we
have nets m, ;, in Mw and s, ¢, in T with my, , > p, xom ; = X,p,
XMy ySy,uty,u = X* x¥sy, yty y = x*. Thus (x*, x) = (x*, x,p) € Q.
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So we have assumed (x*, x¥) € Q and shown (x¥#, x) € Q. Now
suppose (x, x’) € Q; then (x*, x’) € Q and we can repeat the preceding
paragraph with x’ in place of x* to obtain the theorem (note the x* can
be replaced as the limit by any point in X since X is a minimal flow).
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