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HOMOMORPHISMS OF MINIMAL FLOWS
AND GENERALIZATIONS OF WEAK MIXING

DOUGLAS MCMAHON AND TA-SUN W U

In this paper we are concerned with generalizations of weakly
mixing. Let φ: (X,T) -> (Y,T) be a homomorphism of metric minimal
flows and let S(φ) denote the relativized equicontinuous structure rela-
tion. The main result is that if φ has a RIM, λ, and z €Ξ Z such that the
support of λz equals the fiber Xo = φ~ ι(z), then:

oc{Vλ X K) D S(φ)(V{) X • XS(φ)(Vn),

and also there exists a dense set of points xϊ9 x2, x 3 , . . . in Xo such that
oc(xl9 x2, x3...) D S(φ)(xx) X S(φ)(x2)x....

0. Introduction. This paper is chiefly concerned with homomor-
phisms of minimal flows (on compact Hausdorff spaces by a discrete
phase group) having relative invariant measures (RIM's). If φ: X -> Z has
a RIM, λ, we will frequently restrict our attention to points z in Z with
the support of λ z equal to Φ~\z) since otherwise the results would be
substantially more difficult to state (and prove).

The major motivation for this paper is a generalization of weakly
mixing — if (X, T) is a metric minimal flow having an invariant measure,
then it is well known that Q = X X X implies cls(jc, x')T = X X X for
some x9 xr in X\ we show that even when Q φ X X X & similar statement
holds, that C1S(JC, x')TD Q(X) X Q(x') for some JC, x' in X. The main
results of this paper are generalizations of this idea. Some may also be
viewed as a study of the recurrence properties of various subsets of X. We
will now mention some special cases of the main results.

Suppose φ: X -> Z has a RIM, λ, and X, Z are minimal and metric.
Then S(φ) = {(x, x'): (xu9 x'ύ) E Q(φ) for some u G /} (see 2.1). Sup-
pose z E: Z such that the support of λz equals the fiber Xo = φ~\z). If
TV = oc(Vx X Vn) where Vt is an open set in Xθ9 then N D 5f(φ)(K1) X
• XS(φ)(Vn) (see 1.1). Also there exists a dense set of points xx, x2,
x3 ••• in Xo such that ^c(x1? JC2, JC 3,.. .) D ^(ΦXΛ:!) X S'(Φ)(Λ:2) X . . . ,
(see 1.5). If R is the smallest closed invariant equivalence relation contain-
ing (JCJ, JC2), xX9 x2 as above, then φ': X/i? -> Z is almost auto-
morphic, that is, Q(Φ')(y) = {y} for some y in ^/i? (see 1.4). If N =
oc({x} X F j X X F J where Vl9...,Vn are open sets in Xo, then Λ̂  D
S(φ)(x) XVλX- XVn (see 2.9) and # D S(Φ)(JC)K X SίΦXFDi? X
• XS'(φ)(ϊ^)t) for every v in J (see 2.11). In part we showed the last
statement as a possible start in determining whether or not for each x in
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Xo there exists x' in Xo with ds(jc, x')T 2 S(φ)(x) X S(φ)(xf). If xn yt E
* 0 and x = (*,) E ΠX, J = U ) E ΠX, then (x, >,) E β(Πφ) iff (*„ >>)
E g(Φ) for every i, (see 2.13).

DEFINITIONS AND NOTATION. Let (X, T) be a flow with compact
Hausdorff phase space X and discrete phase group T. We will write X for
both the flow and the phase space. Suppose Φ: X -> Z is a homomorphism
of flows. We will assume φ is onto. We denote the orbit closure of x by
oc(x) (= C1S(JC7")). We let Xm denote the set of transitive points (points
with dense orbit), Rm(φ) = {(*, *') E Xw X Xm: φ(x) = φ(x')}>
βm(Φ) = {(*> * ' ) : ώere exist nets tn in Γ and (JCΠ, x'n) E Λm(φ) such that
(xn, x'n) -> (x, x') and (xn, x'n)tn -+ (x0, xQ)} for any x0 in Xm, Sm(φ) is
the smallest closed (in Rm(Φ)) invariant equivalence relation containing

When X is minimal Xm = X, Λw(φ) = Λ(φ), β j φ ) = Q(φ) is the
relativized regionally proximal relation Sm(φ) = S(φ) is the relativized
equicontinuous structure relation. If X is minimal and Z is the singleton
flow, we denote Q(φ) by Q and S(φ) by 5. Let P denote the proximal
relation on any minimal flow.

Neighborhoods are assumed to be open, we denote the set of neigh-
borhoods of x by %x. The Stone-Cech compactification of T is denoted
by βT, M c βT denotes the universal minimal set (a minimal right ideal
in βT), J c M denotes the set of idempotents in M.

The set of closed subsets of X is denoted by 2X and is given the usual
Hausdorff topology. For A G 2 X , / J G βT, we denote the limit in 2X of Atn

by A o p, where tn ->/? in βT; Ap = {ap: a E A}. A homomorphism of
minimal flows, φ: X -> 7, is relatively incontractible (RIC) iff for every
p G M, Φ~ι(yp) — (φ~\y)u) ° JP where jμ E 7, w E / with yu—y (see
[5b] for details).

Let 91L(X) be the set of Borel probability measures on X. For μ in
9IL( A') define μt by μ^/" 1 ) for every measurable set A. A RIM (relative
invariant measure — also called a section) λ for φ: X -* Z is a homomor-
phism λ: 7 -» 9H(X) such that the support of λ is contained in the fiber
φ~\z). If z is fixed, then for any RIM, λ, Sλ denotes the support of λz.
Also we define φ: °fl(X) -> 9L(Z) by ά(μ)(A) = μ(φ~\A% A a mea-
surable subset of Z. For B C 9IL( A) we denote the closed convex hull of

Given φ: JST-* Z, fl: 7 ^ Z, X o z y = {(x, y): φ(x) = θ(y)}. If TV is
a subset of A X Y,NX = N(x) = {y E 7: (x, >>) E iV) is a set such that
{x} X Nx = N Π ({x} X 7). For our purposes we will consider sets N
contained inXozγand thus Nx C β~HΦί ^))-

For the convenience of the reader we will now state some simplified
results of [6] that we will be using. First we note that the assumption that
7 be point-transitive in [6] was not needed.
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COROLLARY 1.4 of [6]. Suppose X is point-transitive, φ: X -» Z,
θ: Y -» Z are surjective homomorphisms, and θ has a RIM, λ. If x0 E λ^,
4̂ α Borel set contained in θ~ι(φ)(x0), and N = cls(({x0} X v4)Γ), then for

x E S(φ)(x 0), λ Φ ( * 0 ) ^ Π ^ ) = λΦ(-o)(^) ( ί A f l* »> λΦ(-o)(^ x Λ Γ χ) = °) V
in addition A — B Π C where B is a Borel set contained in the support of

λφ(Λ.o) with λφ(jCo)(2?) = 1 and C is a non-empty open set, then A C Nx.

Compare this with Lemma 2.6 below.

THEOREM 1.5 of [6]. Suppose X is minimal and Q: X -> Z has a RIM,
λ. Then for x in the support ofλφ(x), Q(φ)(x) — S(φ)(x).

1. A main consequence of this section is that if φ: (X, T) -> (Z, T)
has a RIM, λ, then for some z in Z there exist xx, x2 E Φ " 1 ^ ) such that
oc(xv x2) D βίΦX*!) X β(Φ)(^2)

 τ h i s holds for all z that satisfy three
types of conditions, z E Zx Π Z2Π Z3, where zl9 z2, z3 are as follows.

First consider π: X -» X/S(φ), with Jί metric. Then by Lemma 3.1 of
[9] there exist a residual subset A\ of X such that TΓ is open at each x in Xx.
By Proposition 3.1 of [10] the set Zx = {z E Z: ^ n f ! ( z ) is residual in
φ - 1(z)} is residual in Z. Note for x E Xl9 every neighborhood Voί x has
τr(F) a neighborhood of π(x) and V = V Π 7τ~ι(int(7τV)) a neighbor-
hood of x with π~1(flr(F)) = ^"1(int(flrF)) open, that is S(φ)(F) =
TΓ-^TΓCF)) open. As noted in [10], F c cls(F).

More importantly, for fixed z G Z j every open set V* in Φ" 1 ^)
contains an open set F*' in φ - 1 (z) such that S(φ)(V*') is open — indeed
V* = V Γ) φ~ι(z) where Fis open, and V* C\ Xx φ 0 and so there is an
open set V such that V Π φ~\z) φ 0 and 5(φ)(F0 is open, thus
F * / = F Π φ " 1 ( z ) has S(φ)(V*') = S(φ)(V Π φ~\z)) = S(φ)(V) Π
φ~\z) open in φ-^z). Also F C cls(F), so F* = V Π φ~\z) c (clsF)
Π φ- !(z).

REMARK. Note that in the non-metric case if Y is a singleton we have
that every open set F contains an open set F* such that S( F*) is open,
F c cls(F*), and ^ Π F C F* where A = {x: φ: X-* X/S is open at x).
To prove this consider φ: X ^ X/S, Then φ(V) has non-empty interior
W. Take F* = FΠ φ~\W). Then S(F*) = φ- ! (φ(Kn Φ~\W))) =
Φ~\W). Let Λ: E F, then for any neighborhood U of x, UΠ V φ 0 and
Φ(£/Π F) has non-empty interior. So φ(J7 Π F) C ίF and UΠVQ
Φ~\W). Thus F C cls(F Π φ~\W)) = cls(F*).

Recall that given a function / from a metric space Jf onto a metric
space Z, if / is a Borel map (in particular, when it is either upper
semi-continuous or lower semi-continuous), then / is continuous at a
residual subset of X.
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Define Φ: X-* 2X by Φ(x) = S(φ)(x). Then Φ is upper semi-con-
tinuous. There exists a residual set X2 of X such that Φ is continuous at
each x E X2. Then there exists a residual set Z 2 of Z such that X2 Π φ~ \z)
is residual in φ~\z) for z E Z 2.

Finally, if φ: Jf -» Z admit a relative invariant measure (RIM), λ, then
the function g: Z -> 2X defined by g(z) = support of λz is lower semi-
continous. Then one can show that there exists a residual set Z3 of Z such
that the support of λz equals Φ~!(z) for z in Z3 (Proposition 3.3 of [4]).

1.1. PROPOSITION. Suppose for i = 1,2,... ,n φt: Xi -> Z Λαs α relative
invariant measure λi9 z G Z with φ~\z) = support of\iz, and Vt are open
subsets ofφ7\z) with β(Φ,)(F;) open in φf\z). Then

N = oc{Vx X - X Vn) D g ^ X F i ) X • • XQ(φn)(K)

= S(φι)(Vι)X .χS(φn)(Vn).

Proof. The last equality follows from 1.5 of [6].
Now N D β(φ,)(Fi) X F 2 X X F w b y Corollary 1.4 of [6] since

V2 X X Vn is open and X2 X X Xn has a relative invariant measure.
So N D Q(Vλ) X β ( F 2 ) XV3X -XVn by 1.4 of [6] since Q(VX) X
V3 X - - X Vn is open, the proposition follows by induction.

1.2. PROPOSITION. .For / = 0,1,...,«. Suppose (Xi9T) is a minimal
flow with T abelian. Then for any x0 in Xo and for any open sets F in Xi9

i = l,2,...,/7 /Λ̂ / e ex/^ 6>p̂ w sets UO9Ul9...9Un such that x0 E cls(ί/0);

oc({xQ}XVxX XVn)

D oc(C/0 X ί / ^ X ί / j D ds[β( l/ 0 ) X Q{Uλ) X Xβ(£/π)]

at JC0, ίΛ^« >ve cβ« take Uo with x0 E t/0.

Proo/. Let F(r 1 ? /2,.. .9tn) denote ^ ^ X F 2 / 2 X X Vntn where /,. E
T. Then there exist finite many n-tuples sl9s2,...9sm in Π f Γ such that
U K(J,.) = ΠΓ -X . Let y = ΠΓ-X;. Then Un

λ[{x0] X V(st)] = {x0} X Y.
So UΓ([{JC0} X V(Si)]t) = (U[{x0) X V(Si)])t = ({x0} X Y)t =
{xot} X Y. Therefore U"cls([{x0) X V(Si)]T) = Xo X Y and thus
cls([{x0} X V(Sj)]T) has non-empty interior, /, for some /. Then for
some t in Γ, [{JC0} X V(Sj)]t Π / φ 0 . So there exist open sets UQ9

U;,..., U'n with JC0 E ί/o

r, and C/; X X U'n C F(5y) such that ( t ^ X U[
X '-XUβtQl and so U^XU[X -X V'n C C1S([{JC0} X F(
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Let Si = (tλ9...9tn)9 then since Γ i s abelian,

Uί X I/ft"1 X . . . XUX1 C cls([{x 0} X F, X - . . X Vn]τ).

Then by the remarks above there exist open sets Ui C U-t~ι such that

is open ί = 0,1,...,w, and x0 E t/0' C els C/o. When Xo -» X 0 / g is
open at x0 we have x 0 G ί/0. Then the proposition follows by 1.1.

1.3. THEOREM. Suppose for i — 1,2,... ,φ : X. -> Z Aαs a RIM, λ ,
Λ; is a metric minimal flow. Let z0 E Πf=ι(Z[ Π Z\ Π Zj), (Zj = Z,. as
above for φy). G/ϋe« jcf. j'/i Λ^ = φ~ ι (z 0 ) and dense G8 subsets Gi of XQ there
exist points x\ in Gι such that x\ E B{xi9 \/i) and oc(x'v x2,...) D
Q(Φι)(*[) X QiΦiXx'i) * * * - (Recall β(φ)(x) = S(φ)(x) for xE
φ- f (Z 3 ) .)

/. Let J5(jμl9... 9yn\ ε) denote B(yx, ε) X Xfi( j w , ε). Fix ε > 0.
Consider any set {x7}, xt E. X^ Π Xι

2. For each i use the continuity of Φf. at
Λ:,- to associate a neighborhood ί̂ * = U^{xt, ε) of xz with JCZ and ε such
that if x E U* and j , E β(Φ, )(*, )> t h e n β(Φ, )(^) n B{yi9 έ)φ 0\ and if
εr > ε, then U?(xi9 e*) D ^*(JC Z , ε). Let Ĉ  = Ut(xi9 e) = U* Π Xl

0 and
yt E βίΦj X^,-); n o t e ẑ E ί̂  N o w f°Γ e a c h n consider the set Wn =
^ ( ^ , . . . Λ ; 8 ) = { w ε ί / 1 X X ί/π: w/ E 5 ( > v .. Λ ; ε) for some / in
T). Clearly Wn is open (in Xλ

0 X XXfi). Also M^ is a dense subset of
[/,X Xί/B; since for any basic open subset V — Vλ X X Vn of
u\ X * " x unin ^o x * x ^ o t a k e a n ° P e n s u b s e t ^ * = V\ x x K
with β(ΦJ )(ϊ? t) open. Then for any point (jcf,.. . ,**) in V*9 there exists
y* E βίΦyXx?) Π B(yi9 ε) for / = 1,... 9n9 and by 1.1, we have oc(V*) D

x x β ( Φ J 3 ( ^ - Λ*); s o t h e r e e x i s t s * i n ^ w i t h

,...9yn\ ε) ^ 0, and thus Wnis dense.
Consider a cover of βίΦjXxj) X X β(Φ π )(* w ) by sets of the form

B(yl9...9yn; ε) where yi E: Q(φi)(xi). Take a finite subcover and the
(finite) intersection Bn of the corresponding Wn

9s9 then Bn is open (in
XQ X . . . XX£) and is dense in C/, X X Un. By continuity, for each b
in Bn, there is a neighborhood E(b) of b contained in Bn such that any
given open set in the finite subcover contains E(b)t for some t in T. From
this it is clear that for any (yl9...9yn) in QiΦ^xJ X X β ( Φ j K ) ,
£(ft)f C 5 ( ^ , . . . 9yn; 2ε) for some ί in T.

Now consider a given collection xt E: X^9 i — 1,2, We may assume
x,. G I o Π ί [ Let Hj9 i9 j = 1,2,..., be dense open subsets of JΓ̂  such
that i J j + 1 c i ί j and n^°= 1iί; = Xι

2 Π ^ Π G' for ί = 1,2,.... Start an
induction with jcl5 JC2, n = 2 and ε = ^. Take 5 2 as above and ό2 E (X\ X
X2

2) Π (G1 X G 2 ) Π 5 2 Π [5(x l 5 1) X B(x2, i)]. Let £ 2 = (/// X iί2

2) Π
E(b2) Π J?(Z>2, i ) Π [B(xv 1) X 5(x 2 ,1)] ; note it is a neighborhood of b2

in XQ X XQ. NOW consider ό2 X {x3}, Λ = 3, ε = | , and take 5 3 as above



406 DOUGLAS McMAHON AND TA-SUN WU

and b3 G (X,1 X X\ X X\) Π (G1 X G 2 X G3) Π B3 Π [£ 2 X £(x3,})].
Take a neighborhood £ 3 of b3 with c l s ^ ) C ( ^ X H\ X Hi) Π E(b3)
Π £(Z>3, ̂ ) Π [£ 2 X B(x3,})]. Consider 63 X {x4}, w = 4, ε = i, take J54

as above and 64 G (Xj X X\ X JT| X X\) Π (G1 X C 2 X G 3 X G4) Π
[E3X B(x4,$)] Π B4. Continue in this way.

Note i χ = b 2 (£BXΠ?+ 1A;.) is a singleton, say {(*,', *£,...)}, and
note (x[9x'2,...) e[(ΛΓJ Π ^ Π G ι) X (JST2

2 Π I 0

2 Π G2) X (X,3 Π Xo

3 Π
G3) X • ] Π [£,(*,, 1) X *(x 2 , \) X 5(x 3 ? i ) X ]. We claim
oc(x'ι,x'2,...)DQ(φι)(x'ι)XQ(φ2)(x'2)X . . For any ( j l 9 j 2 , . . . ) in
Q(Φ\)(χι) x δίΦίX^i) x •> a ^ a s i c neighborhood of it is of the form
B(yv... ^ λ) X Π*+i X for some « and λ > 0. Let V[ = U(x'i9 λ) for
ι = l , 2 , . . . , / i . Take y such that ^ G ί/( X ••• X ί / ; x Π ;

n + 1 I and
7 + 1) < λ. Then

x-xβ(*,)W]nί(Λ,...Λ;λ) ^ 0,

where b} = (feyl,... ,fyn), (since fey7 G U?). Let (.yf,... ,^*) be a point in this
intersection. Then there exists t in Γ such that (x[, xr

2,...)t G £y.+ 1ί C
B(yf9... Λ ; 2/(7 + 1)) C Λ ( Λ , . . . ,yn; 3λ). Thus ( Λ , Λ , . . . ) G
oc(x[9x'2,...).

1.4. COROLLARY. Suppose X is metric, minimal flow and φ: X -> Z has
a RIM. Then there exists (JC0, x,) G ̂  X Xsuch that φ': Y = X/i?(xo» ^ I )
-> Z is an almost automorphic extension of Z (i.e., there is a point y in Y
with Q(Φ')(y) — {y}) where R(x0, x{) is the smallest closed invariant
equivalence relation containing (x0, xY).

Proof. This is clearly the case if we take (JC0, xx) such that oc(x0, xx)

Ώ Q(Φ)(χ0)

2. In this section we develop some connections of a RIM on φ:
X-* Y to the relativized equicontinuous structure relation, 5(φ), and
apply them to study the orbit closures of sets of the form {x} X A2

X XAn in a product space and to give a special characterization S{φ)
in the case when (R(Φ), T) has a dense set of almost periodic points.

Suppose φ: X -+ Y has a RIM, λ, X is minimal and N is a closed
invariant set in R(φ). Then φN: R(φ) -» [0,1] defined by φN(x9 x') =
\Hx){N(x)ΔN{x')) = 2λφ(JC)(JV(jί) \ JV(JCO) is continuous, [6] where
{JC} XiV(jc)=:iVΠ({x} XX) and Δ is the symmetric difference. So
for each N9 ΦN(x, x') is a pseudo-metric on each fiber that is invariant,
φN(xt, x't) - φN(x9 x*). Defining RN = {(x, x') G R(φ): φN(x, x*) - 0},

we have X -* X/RN -> 5̂  and ψ^ is an isometric homomorphism (and thus

almost periodic).
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Consider S*(φ) = {(x, x'): ΦN(x, x') = 0 for all closed invariant
subsets N of R(φ)}. Then by 1.2 of [6] S(φ) C S*(φ). We wish to show
that S*(φ) c S(φ). Note by 1.2 of [6] S*(φ) is closed and invariant.
Suppose (x, x') G S*(φ). Let φ(x) = z0, let JCX G 5 λ = support of λZo,
and let pu G M such that JC/W = jclβ Note (xpu, x'pύ) G S*(φ). For any
V G 9LXi consider N = oc({x>κ} X F Π S λ ) . By 1.4 of [6] N D {jcj X
( F Π 5 λ ) , so iV Π V X ( F Π S λ ) φ 0 , so there exists / κ in Γ and x κ in
V Π S ,̂ such that xvtv G F and xfputv G F. Thus JC' = xpu G
Q(Φ){x'pu) and so (JCW, JC'K) G β(φ) and (x, x') G 5(φ). Thus we have
the following proposition.

2.1. PROPOSITION. If φ: X^Z has a RIM, λ, then {(x, x') G
λφ(x)(N(x)ΔN(x')) — 0 for all closed invariant sets N in R(φ)} = S(φ) =
{(x, x') G i?(φ): (xw, x'ύ) G g(φ) /or some (and thus every) u G /}.

2.2. PROPOSITION. Suppose Φ: X -> Y has a RIM, λ, α«d
minimal. If φ is open and S(φ) — R(φ), then Q(φ) = S(φ).

Proof. Let (x, x') G i?(φ) = 5(φ), we will show(x, c') G
β(φ). Let [/ and F b e open neighborhoods of x and xr respectively. Let
x0 be any point in the support of λφ(jc). Since φ is an open map,
φ(V) Π φ(U) is an open neighborhood of φ(x). There exist t0 in Γ with
xoto G F and Φ(JCO^O)

 E Φ(H n ^(i7)- S o t h e r e ^ xλ C U with φ(jc!) =
Φ(xoto); then (x^" 1 , JC0) G i?(φ) = 5(φ) and by 1.5 of [6], xλq

x G
S(Φ)(x0) = Q(Φ)(xp). Therefore (xl9 xot) = (xxq\xo)to G Q(φ) and
(x, xθ G Q(φ) =

2.3. LEMMA. G/ϋe« φ: X -> 7, β: 7 -> Z, X minimal. Let x G X and
y = φ(x). Γ/ieπ /or any y' G S((?)(>;) ί/iere exists xr G 5(β o φ)(x) with
yr — φ(x') (Note this is somewhat stronger than the statement φ X
φ(S(θ o φ)) = S(θ).)

Proof. By 14.2 of [2b], φ X φ(Q(θ o φ)) = β(^). Consider M ^ I
with ψ(m) = cm. Then φXφ(ψX ψ(Q(θ o φ o ψ))) = β(^). Let w G /
with xu — x. Note β ( ^ ° φ ° ψ) is left invariant under G = Mow, Mo =
(θ o φo ψ)~\y); and so 5(^ o φ o ψ) is also, since g X g(S(0 ° Φ ° ψ)) is
a closed invariant equivalence relation containing g X g(β(0 ° Φ ° ψ)) =
Q(θ o φ o ψ)5 for gGG. Let i? denote φ X φ(ψ X ψ(S(β ° φ ° ψ))). Also
S(^) D φ X Φ(S(0 ° Φ)) 2 R To show the reverse inclusion first note
Q(θ) = φX φ(ψ X ψ(β(0 ° Φ ° ψ))) C iϊ. Also R is closed and invariant;
we will now show that R is an equivalence relation and thus S(θ) Q R and
the lemma will follow. We only need to show that if (yl9 y2) G R and
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(Ĵ 2» Λ) *= ̂ ' then (JΊ> Λ) e ^ Let ra1? ra2, m'2, m 3 G M with (m 1 ? m 2 ),
(m'2, m3) E S(θ oφo ψ) and φ ° ψ ( m . ) = J/J9 i = 1,2,3 φo ψ(m'2) = j ; 2 .
Choose m E M so that mra2 E m 2 / . Then (mra2, mm3) E S(0 o ψ o ψ )
and (ra 2, mw 2) E S(0 ° φ ° ψ), and so (mx, mm3) E S(0 ° φ ° ψ). Also
φ o ψ(mm3) — y3 since φ o \p(mm'2) = Φ ° ψ(m'2); so (j/1? ̂ 3) E i?. Thus
we have that S(0) = φ X φ(S(θ o φ)) = i?.

Now suppose y' E 5'(φ)(y), and (m, mr) E 5(0 ° φ ° ψ) with
φ o ψ(m) = JK, φ o ψ(m') = ^ r . We may assume m = mu since 5(0 ° φ ° ψ)
is an equivalence relation. Then (w, m~~ιm') E 5(0 ° φ o ψ) and ψ(w) — x.
Let xf = ψ{m~λmf). Then (x, xr) E 5(0 o φ) and φ(jcr) = 7 ' . Thus the
lemma is proved.

2.4. LEMMA. Let M be the universal minimal set, Z a minimal flow, z a
fixed element of Z, u E / with zu — z, and ψ: M -* Z be defined by

z/?,/> EM.
E S(Ψ)(M) andpv=p, v E J,

. If m E S(ψ)(w), then mp E S(ψ)(up) = ^(ψXw) since up — p
and 5(ψ) is a closed invariant equivalence relation. So S(\p)(u)p C

and so S(ψ)(u)p C 5(ψ)(w)ϋ.
Let /7-1 be the inverse of /? in the group Mu. Then 5'(ψ)(w)/?~1 E

and S(ψ)(fi)ϋ - SW)(u)p-ιp C

2.5. COROLLARY. Ifr/ng //ze ̂ m e notation as in Lemma 2.4 β«J v G J;
ifp E S(ψ)(u),pv =p, andφ: X-> Z, /ACT ^ ( Φ X X ) ^ = S(φ)(x)v for all
x in X with φ(x) — z and xu = x.

Proof. Straightforward.

The following lemma is a variation of Corollary 1.4 of [6].

2.6. LEMMA. Suppose φ: X -> Z, 0: Y -> Z,Z minimal and θ has a RIM

(section), λ. Lei r E X am/ z = Φ(^), feί F be an open set in the support of
λz, and let N = oc({r) X V) and v E /, with zv = z. ΓAew N D {/T} X t;.
(Note X and Y are not required to be minimal, otherwise it would be trivial
in view of 1.4 of [6] since rv and r are proximal and so (rv, r) would be in
S(Φ) )

Proof. We will assume the reader is familiar with the notation and
definitions in [6]. Let W e %(Nro) with λz(W) < λz(Nrv) + ε. Then there
exists t in Γfor which Nrt C Wand Nrvt C Wand | λzl(W) - λz(W) |< ε.
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λz(Nr\Nrυ) = λzί(Nrt\Nrvt) <λzt(W\Nrvt)

= λzt(W)-λ2ί(Nrvt)

409

^K(W)-λ2(W)\+\λ2(W)-λz(Nj\

<2e.

Thus λz(Nr\Nrv) = 0. Now λz(V\NrΌ) < λ(Nr\Nrυ) = 0, and so V\NrΌ

— 0 since V\Nrv is open in the support of λz. Thus V C Nrv.

2.7 LEMMA. Suppose φ: X -* Z, #: y-» Z, Z minimal, and θ has a
RIM. Let x0 E X, z0 = φ(xo)9 and let A be a non-empty subset of the set
{λ: λ is a RIM for θ}. Let Sλ be the support ofλZo and S — cls( U λ G Λ Sλ).
Let C be an open set in θ~\z0) and A — S Π C. Consider N —
oc({x0} X A). Then NXD A for all x E Sm(φ)(x0). Note if X is minimal,
Sm(φ) = S(φ). In addition ifvEJ with zov = z0, then N D {xQv} X A.

Proof. By 1.4 of [6], A Π Sλ = C Π Sλ C Nx for every λ in Λ. So
i ί Π ( U S λ ) = C Π ( U S λ ) C ^ and cls(C Π (U Sλ)) C Nx. If y <E C Π
S, then for every open neighborhood Fof j in fl"1^) with F C C , there
exists jμλ in Sλ for some λ in Λ with yλ G V Q C; thus 4̂ = C Π 5 C
cls(C Π ( U S λ ) ) C Nx. The additional statement follows similarly from
2.6.

2.8. PROPOSITION. G/t eft homomorphisms a: W -* X, φ: X -> Z where
φ has RIM λ and W is minimal, let ψ = φ © α. 77zew /Λ r̂e ex/̂ /5 α strongly
proximal extension θ: Z -> Z 5wc/z //zύf/ the following diagram commutes

W~ Q W oz Z"

where W and X are the unique minimal sets in W°zZ and X ° z Z
respectively. And ψ Λ 5̂ ύf RIM γ, //zα/ induces the RIM λβ( j f ) X δy, ̂  G Z
OH φ . (δ^ w the point mass at v E Z ).
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REMARK, (a) Compare this with 5 of [7].
(b) When W is the universal minimal set M, we have M which is in

fact isomorphic with M through the map (p, γ) -> p.
(c) If Z is a universal strongly proximal flow, then θ: Z -> Z is an

isomorphism and any RIM on φ can be lifted to a RIM on ψ.

Proof. We assume the reader is familiar with the contents of [4]. Let
x 0 E Xo, w0 E W with a(w0) = x 0, and u E J with_H>ow = w0. Consider
ψ: <Ul(W) -> 9L(Z), ά: 91t(PF) -* 91t(X) Let P = co(oc(λ,o)) and note
φ: P - * 9 1 t ( Z ) is 91t(Z) irreducible since λ is a RIM. Let Q be a
P-irreducible subset of &~*(P) and note that β is also 91L(Z) irreducible.
Let Z = ex(β) and θ — ψ | Z — the restriction of ψ to Z we identify z
in Z with δz and consider θ: Z -> Z. Let X , W be the unique minimal
sets in {(x, *>) E X X Z~: φ(x) = θ(v)}9 {(p, v) <Ξ W X Z~: φ o a(p) =
θ{v)} respectively. Let φ be the projection of X onto Z and ψ be the
projection of W onto Z . For each v in Z the measure P X δ, on W X Z
is supported in W~ and the map γ: Z~ -> 9lt(H/?")γIf = v X δ,, is a RIM
for ψ~: Ĥ ~ -> Z~. Also (ά X id): W~ -> X~ induces a RIM β = (ά X id)(γ)
on φ~: Jί~-> Z~ by βv = (ά X id)(γ j = ά(^) X δ/? note ά(^0)^= λZo for
some v0 in Z and so θ(v0) = z0 and yS,, = λ^(ϊ;) X δ̂  for v in Z .

2.9. THEOREM. Suppose for i — 1,2,3,... ,Λ, φ,-: X1 -> Z are homomor-
phisms and X1 is a minimal flow. Suppose φλ has a RIM, λ. Lei z 0 E Z,
^o ~ ΦΓ1(zo) T^^w, /Λere ejcw/ non-empty subsets /* C / ' o / / 5t/cΛ that
Xj)J*9 X^r are compact subsets ofXj> and such that given A1 = (Xj>J*) Π V1

where V' is an open subset of XQ, X, X' E X\Jf with (x, x') E Siφ^, and
N = oc({x) XA2X XAn) we have N D {x'j X A2 X - XA\

REMARK (a) If w, v E / ' , x ^ E Λ^, x 2 ϋ E ^r0

2, and

N = oc({(x,iι, JC 2U)}) X Λ3 X XAn;

then TV D {(JC^, x2u)} X A3 X -
(b) jri /* D U {J^w: w E / for which x'u E 5μ for some x* in Jtj and

some RIM, μ, for φ j where Sμ is the support of μZQ.
(c) /* and / depend on Z but not on the φ/s.
(d) For n — 2 compare this with 1.4 of [6], where φ 2 has a RIM and φx

is not required to have a RIM.

2.10. COROLLARY. // X = JJΓ1", i = 1,2, x E Xo/*, x ' E ^ 0 / ' ,
(x, x') E S'(φ), /Λβn /Λere exist xn in X0J* and tn in T with xn -> x,
xn/n -» x, x'tn -> x; //i particular (x, x') E β(φ) .

* of 2.9. Let u E / with zou = z 0. Define ψ: M -> Z by /? -> z0/?.
Let M o = Ψ ^ ^ Z Q ) . Fix XQ E Φ ^ ^ Z Q ) = A^ with x^u — x'o and define at:
M ^ X1 by ai(ρ) = xl

op. Note ψ = αf. o φ.. By 4.1 of [4], there is a
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strongly proximal extension Z of Z, Z is minimal, θ: Z -> Z is strongly
proximal, such that the projection ψ of M onto Z has a RIM where M
is the unique minimal set in M ° Z Z = {(m, z) E M X Z: ψ(m) = #(z)}.
By 2.7 we see that we are interested that the union of the supports of the
RIM's on ψ~ be as large as possible. We will now determine one aspect of
the size of this union by "translating" measures. Given a RIM γ on ψ
define the translation py by pyv{A) = yv{pA) for p E Mo = ψ ~\ψ(u))
and *> E Z . It is easy to see that py is again a RIM on ψ . Let γ 0 =
ψ (w), Γ be the set of all RIM's on ψ~, and £ , γ E Γ, be the support of
yVo. From the above it is easy to see that cls{ U 5 γ : γ E Γ} is of the
form MQJ* CMQQMQX {P0} for some subset/* of/.

Now to prove the theorem we first show a similar result for φ} and
then reduce it to φ,. Suppose A* = (XQJ*) Π V' where V' is open in X*
and ((*, *Ό)> (x',Po))eS(φ~x). Let N~ = oc({x0, v0}) X (A2 X {P0})
X X(An X {*>0}). Then if (/?, *>0) E Λf0 with aλ(p) - x, there exist
(/?', ir0) E Afo with ax(p') = x' and ((/?, ?0), ( ^ , ^0)) E S(ψ"). Consider

N* = ^{{(/?, ^0)} X ( α 2 - J ( r 2 ) X {̂ 0} Π M o > )

For 1 = 2,3,...,«, let γ,. E Γ, then Πγf is a RIM and Svγ = ΠSγ so
cls( U {5Πγ/: γ, e Γ, / = 2,... ,*}) = Π^ M0V*. So by 2.7

N* D {(p'9 v0)} X ^ ^ 2 ) X {,0} Π M~0J*]

D {(x'9 P0)} X (A2 X { 0̂}) X X(An X {*>0}), since if ai(Pi) -
at E ^ ; then αzwf = a. for some uf E /* and (j^wf, y0) E ( α " 1 ^ ' ) x

{ 0̂}) ΠM 0 V*. Thus

N = OC({JC) X ^t2 X XΛ") D {x7} X ^l2 X XAn.

We will now show that if (x, x7) E ^(φ!) and (x, v0), (x\ v0) E Xι~,
then ((x, ^ 0 ) , (X', ̂ O ) ) E S'(φ^), where ^ί1 is the unique minimal set in
X1 ozz~. (We let / ' = {v E / : vov = ^0} and note for x E JΓj, (x, v0) E
X Γ iff x E -XQ ̂ ' ) ^ r s t suppose x E S λ, then there exist xn in »SA and rM in
T with xn -> x, xw/w -• x, x7Λ -> x by 1.5 of [6]. Now S λ X {̂ 0} Q Xι~
since λ t f ( | f ) X δv, v G Z~ is a RIM on φ~ by 5 of [7]. So (xw, ^0) E X Γ and
we have ((x, P0), (x r, y0)) E S(φ]). Now suppose x ^ Sλ9 let X! E S λ and
w E /* such that (x1 ? ^0)w = (x l 9 v0). Let pw E: M with x/?w = xf, then
(x'pw, xpw) E SίΦϊ) and ((x'/nv, ^ 0 ) , (xpw9 v0)) E 5(φ[). Multiplying on
the right by (pw)~ι E Mw9 we get ((x'w, PO)9 (XW9P0)) G S(φΊ) and
therefore ((x', y0), (x, ^0)) E S(φ~λ). Remark (a) is easily proved as above
applying Lemma 2.7 to φ*: oc(xxu, x2υ) -> Z. Remark (b) follows from 5
to [7] and 2.8.
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2.11. THEOREM. Suppose for i = 1,2,...,« that φt: Xt -> Z has a RIM,
μi9 and Xt is minimal flow. Suppose z E Z such that the support Sμ of μιz

equals the fiber φ~ι(z), for i = 1,... ,n. Suppose XQ is a minimal flow and
φ0: XQ -> Z w β homomorphism. Given x in ΦQ\Z) C Z O α«<i ςp^Λ jeto Ĵ  w
φ ~ ] ( z ) c A;, ίλe setf N = oc({x} X F, X X F J D S(φ o ) (x) t ; X

β ί Φ l X ϊ 7 ! ) ^ X ••• XQ(Φn)(Vn)V f°r eVerΎ V i n J> a n d thuS N Ώ
[S(φo)(x)v] o v X [Q{φxWx)υ} o t ) X . X[Q(Φn)(Vn)v] o v.

Proof. Let υ E / with zi? = z. We will show iV D 5(φo)(A;)t? X
Q(Φ{)(Vx)v X - - XQ(φn)(Vn)v by induction. But first some pre-
liminaries. Let (jt0, JC19. .. ,xn) be an element in the right hand side. Then
we have xγv — xλ and for some rλ in Vl9 xλ E Q(Φ)(r}). Suppose vλ E J
with rιυι = r,; define α: M -• Xj by a(p) — rλp, then φλ o α = ψ: M -> Z
where ^(/?) = zp. So by 2.3 we see that there exists pλ in 5r(ψ)(t;) =
^(ΨX^i) s u c h that rλp — a(pλ) = Xj and/7ji^ = pλ since Xjϋ = JC^ By 2.5
S(φ0)(*)/>, = S(φo)(x)t; and since x0 E S(Φ 0 )(Λ:)U there exists r0 in
S(φo)(x) with rQpx — x09 and we may assume roυx — r0. Now (a) N D
S(φQ)(x) X Vx X ••• XVn by 1.4 of [6] and so N D {(r0, rx)} X
V2 X X Vn. Now consider the flow oc(r0vx, r^ j ) . It is minimal and has
an induced map φ: oc{r0υx, rxvx) -> Z. Thus by 1.4 of [6] N D
S(φ)(rovl9 rxvx) X V2 X •• XVn which equals S(φ)(x0, xx) X V2

X - X Vn since (rovλ9 rxvx)px = (x 0 , x ^ and/?! E 5(ψ)(ϋ).

Now we note that when w = 1 we have for any x0 E S(φo)(x)υ and
*i e βfΦOίKOϋ, (b) oc({x] X Vx) D S(φ)(x0, xx) 3 (x0, xx) and so
oc({x} X Vλ) D S(φ»)(x)v X Q(φxWλ)υ.

Proceeding by induction, assume that the theorem is true for n — k —
1 and prove it for n — k. With n = k, we have for any x0 E S(φo)(x)v
and xx E βίΦiXFΌϋ, (c) oc{{x) X ^ X X ^ D oc(S(φ)(x0, x ^ X
V2X- XVk) D o c ( { x 0 , J C J ) } X V2 X ••• X K Λ ) D S(φ)(x0, xx)v X
Q(Φ2)(V2)v X ••• X β ( Φ * ) ( F * ) υ D { x 0 } X {xx} X Q(Φ2)(V2)v
X ' - * Xβ(Φit)(^)ϋ by induction. And so oc({x} X Vx X X Vk) D
S(φo)(x)t; X βίΦOίFJϋ X β(Φ2)(F2)t; X XQ(φk)(Vk)v; thus the
theorem is proved for every υ E / with zυ — z and thus for every v E /.

2.12. THEOREM. Suppose for / = 0,1,...,/? ί/z^ φ£: X
£ -* Z has a RIM,

μ,, α«ί/ X' w minimal. Suppose z E 2 α«ί/ XQ = φΓ^z). Le/ /* andJ' be as
in 2.9. Lei K1" 6e ope/2 in Aj, ^ z = K' Π X ^ * , ^ ^ ^ ^ *o

= o c ( { x } X ^ 1 X ••• XAn)

Ώ Q(Φo)(χ)v x Q{Φx){Λι)v x

/or
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Proof. We indicate where the proof differs from the above. Of course
Vt is replaced by A1 and / by /*. Statement (a) would read "Now
N D S(φo)(x) Π Xp* X Ax X XAn by Proposition 2.9." Note
S(φo)(x) Π ΛΓ0

0/* = S(φo)(jc)/*. Statement (b) would read "oc{{x} X A1)
D S(φ)(xQ9 A^)/* 3 (JC0, xx)" Statement (c) would read

"oc({x) XAι X - XAn) D oc(s(φ){x0, xx)J* X A2 X XΛ")."

2.13. COROLLARY. Suppose Γ w α/z index set and for i E Γ, φf: Xt -> Z
ftαs α RIM αw<i Jζ. is minimal Suppose z E Z α/z<i x f, ^ E Jζ

xz, Λ E * < / * = Φ Γ ! ( ^ ) ^ ^ = (*/) G Π / G Γ ^ , j - {yd E Π / e Γ A;
/ * fa taken as in 2.9. Then (x, .y) E βίΠφ,-) iff (x, , ^ ) E ^(φ^) for every i
inT.

Proof (=*) Clear.
(*=) Suppose u E /*. Let Π / e F l^ X Π ^ X , &nd Π / e /r ^ X Π ^ F J ζ

be neighborhoods of x and j^ respectively, where i 7 is a finite subset of Γ.
Let At = UiΠ χt>J* and B, = V, Π X^J*. Then N = ^(Π^t, X Π ^ ) D
UQiAJu X UQiBJu D HQ(Xi)u X HQiy^u 3 Π{x,w} X Π{x,w}; and
the corollary clearly follows.

REMARK. The above was known under various more specialized
conditions, see [1, 3].

2.14. COROLLARY. Suppose φ: X -» Z has a RIM, λ, let z E Z,
x 0 E Xo/* = φ~ ι (z)/*, Γ an index set, andxt E S(φ)(x 0 )/*, i E Γ. ΓΛew

π i/i T and x? in X0J* with x? -*xi9 xn

itn ->x0 for i E Γ,

and xotn -> x 0 .

Proof. Let w E /* with xow = x 0 . For any neighborhood Vt of x t in ̂ 0

let 4 , .= F; Π X 0 / * . T h e n

oc({x0} X IU,) 2 β(φ(x o)«) X

Ώ β(φ)(* 0 ) X ΠβίφJίjcJn 3 {x0} X Π{x0};

and the corollary clearly follows.

2.15. LEMMA. Suppose Z is a minimal flow and z0 E Z. Define
ψ: M -» Z by p -» z0/? β«J /e/ M o = Ψ ' ^ Z Q ) . Suppose ψ /5 RIC α/zJ
Λβ5 β RIM, λ. Γ/ίeπ ί/zer̂  exisί w E M o Π / 5wc/i ί/iαί /or p in cls(Mow)
and q in β(ψ)(p) there exist nets pn in Mow and tn in T such that pn-+ /?,
PnK ~*P> Φn -*P In particular for p in cls(Mow), Q(ψ)(p) = {q: there
exist nets pn in Mow and tn in T with pn->p, pntn^p, qtn^p)
= Π{cls(jβΓ(^) Π C1S(MOH0): β = VX V, Van open set in M). {Recall
that S(ψ) = β(ψ) ι/ψ in RIC, ̂  [9].)
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Proof. Let Sλ be the support of λZo and p E Sλ C Mo. Suppose u E /
with/?w = p and g E Mou, then μ defined by μz(A) = λz(qp~λA) is a RIM
and q E Sμ. So if 5 = cls( U {Sμ: μ is a RIM for ψ}), then S = MOJX for
some subset Jλ of / Π Mo. Now consider the left flow (Mou9 S) with the
action being multiplication on the left and Mou is a group given the
discrete topology. Then it contains a minimal set (Mou, cls(Mow)) for
some win/!.

Suppose F is an open subset of Mo and V Π Mow φ 0 . Then there
exists a finite set i 7 of / ?s in Afow such that U / e f F ( F Π Mow) D Mow.
Let B = Bv= dsjVΠ Mow) = cls(F Π Mow). Then Uf(EFF(B o w ) =
[ U / G F/B] o w D Mow o w = Af0 since ψ is RIC. So U / G F ( 5 Π /(5 o w ))
D S. So int(S Π / ( β o w ) ) ^ 0 for some/in F where the interior is with
respect to 5, and thus int(5 Π (B o w)) T^ 0 . Let /? E Mow and p* E
Π^ e ^cls int(5 Π (j?κo w )) .

Suppose q* E β(ψ)(/?*) and consider

Nv = oc({q*w] X int[S Π (Bv o w)])

then by Lemma 2.7

Λ̂ κ 3 {/>*} x cls(int[S Π ( 5 K o w ) ]) 3 (/?*, p*).

Let £/ E 91^*. Then there exist t — tvu in T and r = rvu in 5 Π (Bv o w)
such that q*wt E ί7 and r/ E tΛ Then there exist s = svu and m = mvu in
K Π Mow such that 9*5 is near q*w and m5 is near r; that is, f̂*5 E C/ί"1

and m^ E Ut~ι. Thus we have nets mvu in Mow and svutvu in Γ with
wKί/ -> p, mvusvutvu -* p* and q*svutvυ-+p* thus (9*, p) E β(ψ).

So we have assumed (p*9 q*) E Q(ψ) and shown (^*, p) E <2(ψ).
Now suppose ( ^ , ί ) ε β ( ψ ) ; we can repeat the preceeding paragraph
with q in place of q* to obtain the lemma.

2.16. PROPOSITION. Suppose φ: X -* Z is a homomorphism of minimal
flows such that the set D(φ) of almost periodic points in R{φ) is dense. Let
x0 E X, φ(x0) = z0, and Xo = φ~\z0). Then there exists w E / with
zow = z0 swcλ ί/iα/ /or x, ^ in cl(Xow) with y in Q(φ)(x) and for p E
cls(Mw) with xop = x, there exist q in M and nets pn in Mw and tn in T
such that xoq = y andpn -* p, qtn -> p, pntn -> /?.

. Let X0GX0 = Φ~\z0). Define β: M -> Xby β(p) = xop. Let
ψ = ψ ° β: M -» Z, Mo = Ψ^^ZQ). Take a proximal extension Z* of Z, 0:
Z* ^Z such that ψ*: M* C M o z Z * -* Z* is RIC and has a RIM. Let
z£ E fl'Vo), M$ = ψ*"1(zj), and le twG/Πil ί 0 * as in Lemma 2.15. If
x E C1S(XOH0 and y E β(φ)(x), then by 2.1.4 of [6], ((x, z), (^? z)) E
g(φ*) for some z in Z*, and thus ((xw, z0), (jw, z0)) = ((JCW, zw),
(.yw, zw)) E Q(φ*). Since x, ^ E cls(X0? w), (x, z0), (j/, z0) E X* and so
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((*, z 0), (xw, z0)) G P, ((y z 0), (>>w, z0)) G P and ((*, z 0), (y9 z0)) G
β(Φ*) Let/? G cls( Mow) with (JC0, zo)/> = (x, z0). By 14.2 of [2b] we can
take q in β ( ψ ) ( ^ ) with (JC0, zo)q = (j>, z 0 ). The proposition clearly
follows from Lemma 2.15.

A stronger result can be obtained if we assume Z is a singleton. Fix x0

in X and define ψ: M -* X by p -* xop. Let u G /. Then Mw is a group.
Give it the discrete topology and consider the (left) flow (Mu, M) with
the action being multiplication on the left. Then it contains a minimal set
(MM, MW) for some w in / C M. Note (Mw,Mw) is also minimal. See 2.10
of [8] for related results.

2.17. THEOREM. Suppose X is a minimal flow and has an invariant
measure. Let w G / such that (Mw,Mw) is a minimal (left) flow as above.
Let x G X. Suppose x0Mw o w = χ9 (that is, X is incompressible). Then for
each x in Xw = x0Mw, p in ψ~\x) Π Mw and x' in Q(x), there exist nets
mn in Mw and tn in Twith mn -»/?, ^om«JlL xo/ 7 ~ x ' xtn ~* x*? xomntn ~~*
x* for any x* in X. In particular, for x in Xw,

Q(x) = {x'\ there exist nets xn in Xw and tn in T

with xn -» x, xntn -> x9 xrtn -» x)

= ΓΊ {cls(aT(x) Π Xw): <x= VX V,Van open set in X)

= (Ί {d$(aT(x) Π ~Xw): α = F X V, Van open set in X).

Proof. Suppose x G JCΠMW, /? G ψ"" ι(x) Π Mw_and F G %p. Then
F Π Mw ¥= 0 and is open in Mw. Then since (Mw, Mw) is minimal, there
exists a finite set F of f's in Mw such that U / e F / ( F Π Mw) D Mw. Let
ί = i β = K Π Mw.__Then U f ξ Ξ F x o fB o w = x 0 UfGFfB o w =
* o [ U / e f / B ] ° w D JCQMW O W = X SO int(xo/B © w) T^ 0 for s o m e / i n
F. Then int(j5 o w) φ 0. Therefore int(x0J? o w) φ 0 . Let x* G

els i n t ( x o 5 K o iv).

Suppose JC# G β(x*) and c o n s i d e r ^ = oc({x*w) X int(jc05o ° w)).
Then by 1.4 of [6],

Nv D {x*}X els int[x0J?o o w] B ( X * , X * ) .

Let U G 91^*. Then there exists t = ίKίt/ in Γ and j^ = >̂ F υ in -Y0J?K ° w

such that x*wt G ί/ and yt G ί/. Then there exists s — s v u in T and
m ~ mv,u m V ^ ^ ^ s u c h ^ a t x # t S I e ^ ~ * a n ^ Xoms ^ IΛ"1. Thus we

have nets mvu in Mw and ^K,t/V,ί/ i n T w ^ h mκ,ί/ "^Z7? xomκ,ί/ ~* xoP>
xomu,vsv,utv,u -> x*> x^sv,υιv,υ -* x * τ h u s (x#> x) = (x#> xoP) E Q-
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So we have assumed (JC*, JC#) E Q and shown (x#, x) G Q. Now
suppose (x, JC') E Q; then (x*, Λ;') E Q and we can repeat the preceding
paragraph with xr in place of x# to obtain the theorem (note the x* can
be replaced as the limit by any point in X since X is a minimal flow).
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