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SURJECTIVE EXTENSION OF THE
REDUCTION OPERATOR

MOSES GLASNER AND MITSURU NAKAI

In this paper it is shown that there exists a Riemann surface R and a
nonnegative 2-form P on R such that the space of energy finite solutions
of d* du = uP on R is properly contained in the space of Dirichlet finite
solutions yet the subspaces of bounded functions in these two spaces
coincide.

Consider a nonnegative locally Holder continuous 2-form P on a
hyperbolic Riemann surface R. Let PX(R) denote the space of solutions
of d*du = uP on R satisfying a certain boundedness property X, e.g. D
(finite Dirichlet integral [z du /N *du), E (finite energy integral [, du N
*du + u*P), B (finite supremum norm) or the combinations BD and BE.
The reduction operator T is defined to be the linear injection of the space
PX(R) into the space HX(R) such that for each u € PX(R) there is a
potential p, on R with | ¥ — Tyu |< p,. The unique existence of T for the
cases X = B, D, E was established in [5] together with the representations

Tou(z) = u(z) + 37 [ Galz. U P(E).

where Gg( -, {) is the Green’s function for T with pole at {.
One of the central questions concerning reduction operators is whether

(1) T, is surjective implies that T’y is surjective,

X =D, E. Since PBX(R) is dense in PX(R) in the same fashion as
HBD(R) is dense in HD(R) (cf. [1], [4]), it is natural to conjecture that
the implication (1) holds. Surprisingly, in [12] and [7] it was shown that
(1) i1s false for X = D, E. Even the stronger conditions [ P < +oo,
Jrxr Gr(z, §)P(z)P(§) < +oo do not imply the surjectiveness of T, and
T, respectively as was shown in [8], [9], [10].

In this connection we raise the question whether the fact that (1) does
not hold for X = E by itself implies that (1) does not hold for X = D.
This is closely related to the following: Is it true that PBD(R) = PBE(R)
implies that PD(R) = PE(R)? We shall show here that the answer to the
latter question is no even under the stronger assumption that PBD(R) =
PBE(R) = HBD(R) which is a consequence of the surjectiveness of Ty.
Therefore the former question will also be settled in the negative.
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1. We freely use the machinery of the Royden ideal boundary theory
and the equation d*du = uP, as well as some of the techniques intro-
duced in [2]. Let W C R be an open set with W consisting of analytic
curves. The extremization operator p?, X = D, E, BD, BE, is the linear
injection of the relative class PX(W; dW) into PX(R) characterized by the
property that for each u € PX(W; 0W) there is a potential p, on R
with |u — p Xu |< p,- An alternate characterization of p% is the condition
that u — phu|A =0 for each u € PX(W; 0W). We also consider the
reduction operator Ty ,: PX(W) N M(R) — HD(W), which can be char-
acterized by the condition u — Ty ,u|dW U bW =0, where bW =
(W NAY\OW. In particular, Ty . PX(W;0W) > HD(W; W) is de-
termined by u — Ty ,,u| bW = 0.

In [2] we completely characterized the functions in HD( R) that are in
the image of p,. In view of the following result, which we will make
essential use of here, the corresponding problem for PX(R) is also settled.

THEOREM. Let u be in PX(R) and set h = Tyu. Then u €
% (PX(W; aW)) if and only if h € p,(HD(W; dW)), X = D or E.

The necessity is simple. Let s € PX(W; 0W) such that phs = u.
Define v = Ty 5. Since v|A=s|A=u|A=h|A, we conclude that
= ppv. Conversely, assume that A = po, v € HD(W; 0W). It suffices
to establish the sufficiency in case v = 0. We begin by showing that the
assertion holds for X = D. For each positive integer k, set Y, = (h N k)
U k7! and v, = llzg{¢, — k"), the harmonic projection of ¢, — k™' on
W. The sequence {v,} is easily seen to have the following properties (cf.
[2D): v, € HBD(W; W), v, < v, < v, v = CD-limv,, Supp(v,|A) C
{p €A|ov(p)>0},lim(v,|A) =v|Aand

3) DW(Uk)SDW(v)'

In view of v|A=h|A=u|A and u € PD(R) we have that
v|A\A, = 0. Thus Supp(v,|A) C bW N A, and consequently there is
a function s, € PBD(W; 0W) such that s, | A = v, | A. By the maximum
principle, s, <s5,,, =<v,,; <v on R and then by the Harnack prin-
ciple s = C-lim s, exists on W. Since v|R\W =0, we actually have
s = C-lim s, on R with s | R\ W = 0, in particular, s € P(W; dW).

We show that in fact s € PD(W; 0W). In view of the identity
Dy (u) = Dy (T, yu) + (u, u)?y, (cf. [5]), we have (u, u)}, < +o0. Com-
paring boundary values shows that s, < u on W. This together with (3)
gives the following bound on D, (s, ):

Dy, (i) = Dy (v,) + (54 sk>I;VS Dy, (v) + (u, u>I;V< too.

By Fatou’s lemma we obtain D, (s) < +oo.
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In view of s < u, we have s | A < u| A. On the other hand,
s|A =lim(s, |A) = lim(v, |A) =0 |A = u|A.

We conclude that pfs = u, establishing the sufficiency in case X = D. If
in addition u € PE(R), then s <u gives [, s°P < [, u’P < +o0, i.e.
s € PE(W; 0W), which completes the proof.

2. Let T be a hyperbolic Riemann surface such that HBD(R) consists
only of the constant functions. Examples of such surfaces are the Toki
surface and the Toki covering surfaces (cf. [11]). The harmonic boundary
of T consists of a single point which we denote by p*. Fix ¢, € T and
consider the polar coordinate differentials (dr, d@) on T defined by

P = (2, 40) 48(2) = -+d6i 2. o)

Fix « such that U, is homeomorphic to a closed disk, where U, =
{p ET|r(p) <e}. Also fix B < a/2. For each A > 0 define a rotation
free 2-form P, = @,(r)rdr N\ d, where ¢, is the nonnegative Holder
continuous function on [0, 1) determined by the following conditions:

(1—1)7, ifef<r<l,
oi(t) = linear, ife?P<t<eb,
0, ifo0<r<e?,
According to the main results of [6] we have
P,BD(T) = {0} if and only if A €[3 /2, +w),
P,BE(T) = {0} if and only if A €[1, +o0).

By our choice of T here it follows that dim P, X(T) = dim P,BX(T) <1
for X = D, E. Furthermore, it can be seen from [6] that

4) [ Gr(g0, )Py < +o0,if A <2,
T
(5) (L1} < +oo, ifA <3,
(6) fP,\< +o0,if A < 1.
T

Set W, = T\ U,. Then P, X(W,; W,) = P,BX(W,; dW,) is isometric to
P, X(T)= PyBX(T), X=D, E. So for each A € (0, 1] we may choose
wy, € P\D(W,; aW,) with w,( p*) = 1. Then w, spans P\D(W_; 0W,). For
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A € (0,1), w, € P\E(W,; 3W,) whereas [, wiP, = +o0. Define
®(A) = EfA(wy)-

LEMMA. ® is a continuous function on (0, 1) and liminf, ,,®(A) = +oo.

Fix A, € (0, 1). We first show that ® is continuous from the right at
Ao Let Ay =A <» < 1. Since P, < P,, we see that w, is a supersolution
with respect to d * du = uP, and thus w, =<w, <w, < 1. The function
W = lim, , w, exists and w < w, on T. The Harnack inequality applied
to (4) implies [;G({,-)P; < +oo, for any { € W, and hence
Jw,Gw($: )Py < +oo. Set

mhe($) = 2—17;wa%(§, 2)o(2)P(2),

for a suitable function ¢ on W,. Since w) P, < P, on W,, the Lebesgue
dominated convergence theorem gives lim, , 77w, = "%. Note that
for any A, T, , w,, is the same function v € HBD(W,; 9W,). Therefore,

v=w, + 1how, =W+ 7Pow
0 )

= }i&})(wx + P, ) =0

on W,. This implies that w, = W on W, and consequently on 7. By Dini’s
theorem we arrive at w, = B-lim,,, w, on T.

We continue with A; =< A <» < 1. Note that the function w, — w, is
P, energy finite. Indeed, w, — w, is clearly Dirichlet finite and the
inequality 0 <w, —w, <w, gives [r(wy — W,)?P, < [;wiP, < +oo.
Since w, — w, vanishes at p* we may choose a sequence {f,} C M(T)
such that wy, —w, = BE"lim f,. Moreover, the sequence { f,} may be
chosen with f, | U, = 0 since w, — w, has this property. Thus

EP(wy —w,,wy) =HmER(f,,w,) =0
n

and consequently
0= DT(WI' - w)\) = Ef)‘(wv - w}\)
= Ep(w,) — EP(wy) = @(») — ¢(M).

This shows that lim, , ®(A) exists which in turn implies that {w,} is
D-Cauchy. By Kawamura’s lemma we arrive at wy, = BD-lim, ,, w,, and
in particular, lim, 5, Dy(wy) = Dy(w, ). By (6), [P, < +oo and we
apply the Lebesgue dominated convergence theorem to obtain
lim, 5, f;wiP\ = [rwi Py, This completes the proof of lim, 5, ®(A) =
D(A)).
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We now consider A, € (0, 1] and show that wy = BD-lim,,,, w,. Let
0 <» <A =), and note that w, =w, <w, < 1. Thus lim,, w, exists
and by an argument analogous to the one above we see that actually
Wy, = B-lim,;, w,. Since w, — w, vanishes at p* we can find a sequence
{f,} ©TMyT) such that w, — wy, = BD-lim f,. We choose { f,} with the
additional properties f, = 0, f, | U, = 0. Thus

DT(WV - W wx/) = hmDVVa(f;i’wV)

= —lim [, f,d*dw, =<0,

which implies that
0 SDT(W}\ - wv) SI)T(M)A) - DT(WI/)'

Thus Dy (w,) increases as A increases and is bounded above by D, (w, ).
Therefore {w,} 1s D-Cauchy and by Kawamura’s lemma w, =
BD-limM;\O Wi

In case A, € (0, 1), as before we see that lim, 5, [;wiP\ = [Tw,%OPM.
We arrive at lim,,,, ®(A) = ®(A,) and the continuity of @ at A, is
established. In case A, =1 we apply Fatou’s lemma to conclude that
+o0 = [;wiP, < liminf,,, [{wiP, < liminf,  ®(X).

3. Recall that the definition of P, involved a parameter 8. We now
adopt the notations P{#, w{# to indicate the dependence of P,, w, on f.
Set a = Dy,(v), where v is the function in HBD(W,; 9W,) determined by

o(p*) = 1.

LEMMA. Let b, ¢ be given such that a < b < c. It is possible to choose
B €(0,a/2), A €(0,1) such that

(7) DWa(Wiﬂ)) <b,
(8) EF(wP) = c.

Note that for 8 < B’ we have P{®) < P{#7 and that lim, ,P{# = 0.
Thus in view of (4), (5) we have

limg, (1, 1)} =0, nmm/wpf% =0.
We therefore may choose 8 such that

b—a
2

(LD <
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and

9) /, Pif<

b—a
-
For any A € (0, 1] we have T}, , w{¥) = v and hence

Dy, (w{P) = D, (v) + (WP, wP) 1"

a+b
2 b

which shows that (7) holds for this 8 and any A € (0, 1]. By this and (9)
we obtain

<a+(1,1)5"<

EJA(wf)) = Dy (wfd) + [ (WA PR <ST=+ 275 =0,

In view of Lemma 2 we can choose A € (3, 1) so that (8) also holds.
4. We use the notation v, to indicate the dependence of the function
v € HBD(W,; 0W,) with v( p*) = 1 on a. We claim that

(10) Dy, (0,) =22

In fact, v, | W,=1— a”'G;(-,q,) | W, and hence (10) follows from the
formula D, (G1(-, q,)) = 2ma™ (cf. [6]). Define @, = 4" '7, n = 1,2,....
Then by (10) we have

1

(11) Dy, (v.,) =52
According to Lemma 3 we may choose A ,, 8, such that

1
(12) 8, = DW,,”( wifn)) <z
and

1

= EPu(wB)) = —

(13) =Eh (w ) o
for n=1,2,.... Consider W,, ={p € T|r(p)>e>*} and v,, €

HBD(W,, ; aWz‘, ) such that DZa( p¥) = 1. It can easily be seen that

1
(14) 0y, | OV, = 5

We prepare infinitely many copies 7, of T, n = 1,2,... and view W,
as being a subsurface of 7,,. Let V' = C\ U,<,,<w{| 2= 3n ]< 1} We weld

W,. to V by identifying GWZQ with {|z —3n|= 1}, n=1,2,... and let

[« 39
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R be the resulting Riemann surface. We now view W, , W,, as sub-
surfaces of R and denote them simply by W,,U,. We regard v, , v,, as
being defined on W, U, and denote them by v,, u,,. Let A be the harmonic
boundary of R. Since dim HBD(W,; oW,) =1, W, N A consists of a
single point p¥. Set A, = {p}, p3,...}. The fact that u,|0W, =3, n =
1,2,..., ie (14), 1mphes A, = A (cf. [3]). Let W = U, _,, W, and define
uoanyv|W =1,2,... and v| R\ W = 0. Then by (11) we see
that v € HBD(W; aW) Since v|A =1, we must have v|A =1 and
consequently W \dW is a neighborhood of A in R*.
Define a 2-form P on R by

P|W,,=P§\f"),n= 1,2,...and P|R\ W = 0.

We view w{f as a function on W, and use the simplified notation w, for
it. In this notation (12) and (13) are written as

1

(15) 3, = W(w)<4
(16 = £}, () = 2.
n=12,.... For X=D, E define measures m™ on A by setting

mPX(A\A,) = 0 and
m™P(pk) =38,, m"(p}) =¢,,

n = 1,2,.... We denote the bounded continuous functions on A by B(A).

LEMMA. For X =D or E
(i) PBX(W; 0W) | A = B(4),
(i) PX(W; 0W) |A = L*(A, mPX).

Since (i) is an easy consequence of (ii) we proceed directly to the
proof of (ii). We consider only the case X = E as X = D is analogous. Let
s € PE(W; 3W). Then +oo > Ej(s) = P Ej(s). Recall that
PE(W, GW)lsspannedbyw Thuss]W—aw w1tha =s(p¥). We
see by (16) that Ej;(s) = aje, and hence {a,} € L*(A, m”E) Conversely,
if {a,} €LXA, m™E), then by (16) the function s = IPa,w, is in
PE(W, dW) with s|A = a,,, m"*-a.e.
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5. We arrive at our main result.

THEOREM. The 2-form P and the Riemann surface R have the property
that

PBE(R) = PBD(R) and PE(R) # PD(R).

Since W\3W is a neighborhood of A, we see that p zp 18 surjective (cf.
[8]). By Theorem 1 we see that %, and p%; are surjective as well. From
Lemma 4(i) we deduce that PBD(W; dW) = PBE(W; dW). Thus the
mapping pk, o (u5z)"': PBE(R) — PBD(R) is a bijection and the first
part of the assertion follows.

Let f be defined on A, by f( p*) = 2"/?,n = 1,2,.... By (15) and (16)
we see that f € L*(A, m*P) but f & L*(A, mPE). According to Lemma
4(ii) there is a function s € PD(W; W) such that 5| A = f, m"P-a.e. Set
u=pbs € PD(R) and h = Tyu. By Theorem 1 we have h €
pp( HD(W; dW)). If u were in PE(R), then in view of h = Tyu Theorem 1
would imply that u € pf(PE(W; dW)). But since u|A & L*(A, m™E),
Lemma 4(ii) rules out the possibility of u being in pZ(PE(W; dW)) and
the assertion u & PE(R) follows.

It is clear that there is a neighborhood V* of A with [, . g P < o0
but we have not been able to determine whether [, P < +oo. Thus the
relation between [ P < +oo and PE(R) = PD(R) remains open.
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