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SURJECTIVE EXTENSION OF THE
REDUCTION OPERATOR

MOSES GLASNER AND MITSURU NAKAI

In this paper it is shown that there exists a Riemann surface R and a
nonnegative 2-form P on R such that the space of energy finite solutions
of d* du = uP on R is properly contained in the space of Dirichlet finite
solutions yet the subspaces of bounded functions in these two spaces
coincide.

Consider a nonnegative locally Holder continuous 2-form P on a
hyperbolic Riemann surface R. Let PX(R) denote the space of solutions
of d* du — uP on R satisfying a certain boundedness property X, e.g. D
(finite Dirichlet integral j R du Λ *du), E (finite energy integral jR du Λ
*du + u2P), B (finite supremum norm) or the combinations BD and BE.
The reduction operator Tx is defined to be the linear injection of the space
PX(R) into the space HX(R) such that for each u G PX(R) there is a
potentialpu on R with | u — Txu \^pu. The unique existence of Tx for the
cases X = B, D, E was established in [5] together with the representations

Txu(z) = u(z) + J^

where GR( , ξ) is the Green's function for T with pole at ξ.
One of the central questions concerning reduction operators is whether

(1) TBX is surjective implies that Tx is surjective,

X=D9E. Since PBX(R) is dense in PX(R) in the same fashion as
HBD(R) is dense in HD(R) (cf. [1], [4]), it is natural to conjecture that
the implication (1) holds. Surprisingly, in [12] and [7] it was shown that
(1) is false for X=D9E. Even the stronger conditions JRP< +oo,
JRXRGR(z, ξ)P(z)P(ζ) < +oo do not imply the suqectiveness of TE and
TD respectively as was shown in [8], [9], [10].

In this connection we raise the question whether the fact that (1) does
not hold for X — E by itself implies that (1) does not hold for X — D.
This is closely related to the following: Is it true that PBD(R) = PBE(R)
implies that PD(R) = PE(R)Ί We shall show here that the answer to the
latter question is no even under the stronger assumption that PBD(R) —
PBE(R) s HBD(R) which is a consequence of the suqectiveness of TBE.
Therefore the former question will also be settled in the negative.
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1. We freely use the machinery of the Royden ideal boundary theory
and the equation d^du — uP, as well as some of the techniques intro-
duced in [2]. Let W C R be an open set with dW consisting of analytic
curves. The extremization operator μζ, X — D, E, BD, BE, is the linear
injection of the relative class PX(W\ dW) into PX(R) characterized by the
property that for each u E PX(W; dW) there is a potential pu on R
with I u — μp

xu | < pu. An alternate characterization of μp

x is the condition
that u - μp

xu | Δ = 0 for each u E PX(W\ dW). We also consider the
reduction operator Txw\ PX(W) Π M(R) -> HD{W), which can be char-
acterized _by_ the condition u — Txwu\dW U bW = 0, where bW —
(WΠΔ)\dW. In particular, Txw\ PX(W\ dW) -> HD(W\ dW) is de-
termined by u — Txwu\ bW = 0.

In [2] we completely characterized the functions in HD(R) that are in
the image of μD. In view of the following result, which we will make
essential use of here, the corresponding problem for PX(R) is also settled.

THEOREM. Let u be in PX(R) and set h - Txu. Then u E
μp

x(PX(W; dW)) if and only if h E μD(HD(W; dW)), X=DorE.

The necessity is simple. Let s E PX(W; dW) such that μp

xs = u.
Define v = Txws. Since D I Δ ^ ^ I Δ ^ W I Δ ^ Λ I Δ , we conclude that
h — μDv. Conversely, assume that h — μDv, υ E HD{W\ dW). It suffices
to establish the sufficiency in case v > 0. We begin by showing that the
assertion holds for X—D. For each positive integer k, set ψ^ = (h Π k)
U k~λ and υk = Π^jpίψ^ — A:"1), the harmonic projection of ψ^ — k'λ on
W. The sequence {vk} is easily seen to have the following properties (cf.
[2]): vk E HBD(W\ dW)9 vk < vk+ι < v9 v = CDΛimυk, S u p p ( ^ | Δ) C
{p E Δ\v(p) >0},l im(t;^ |Δ) = υ \ Δ and

(3) Dw(υk)<Dw{υ).

In view of υ | Δ = λ | Δ = κ | Δ and u E PD(R) we have that
v I Δ \ Δ P = 0. Thus Supp(ϋ£ |Δ) C bW Π Δ P and consequently there is
a function sk E PBD{W\ dW) such that sk | Δ = vk | Δ. By the maximum
principle, s & ^ ^ + i — ϋ * + i — ϋ o n ^ a n ( i ^ e n ^Y ^ e Harnack prin-
ciple s = C-lim ^^ exists on Ŵ . Since v \ R \ W — 0, we actually have
s = C-lim ^ on R with 51 R \ W - 0, in particular, s £ P(W; dW).

We show that in fact s E PD(W\ dW). In view of the identity
Dw{u) = Dw{TDWu) + (u, u)p

w (cf. [5]), we have (w, M > ^ < +oo. Com-
paring boundary values shows that sk < u on ϊΓ. This together with (3)
gives the following bound on Dw{sk)\

Dw{sk) = D ^ ί ϋ J + (sk9 sk)
p

w < ^ ( t ? ) + (u, u)p

w < +oo.

By Fatou's lemma we obtain Dw{s) < +oo.
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In view of s < w, we have s | Δ < u | Δ. On the other hand,

s I Δ >: hm(sk I Δ) = lim(% | Δ) = v | Δ = w | Δ.

We conclude that μ£s = u, establishing the sufficiency in case X = 2). If
in addition u E PE(R), then 5 < w gives fws

2P < fwu
2P < +00, i.e.

5 G PE(W; dW), which completes the proof.

2. Let Γbe a hyperbolic Riemann surface such that HBD(R) consists
only of the constant functions. Examples of such surfaces are the Tόki
surface and the Tόki covering surfaces (cf. [11]). The harmonic boundary
of T consists of a single point which we denote by p*. Fix q0 G T and
consider the polar coordinate differentials (dr, dθ) on T defined by

Fix a such that Ua is homeomorphic to a closed disk, where Ua =
{p G T\ r{p) < £>'"}. Also fix β < α/2. For each λ > 0 define a rotation
free 2-form Pλ = φλ(r)rdr Λ d0, where φ λ is the nonnegative Holder
continuous function on [0,1) determined by the following conditions:

According to the main results of [6] we have

PλBD(T) = {0} if and only if λ E [ 3 / 2 , +00),

PλBE(T) = {0} if and only if λ e [ l , +00).

By our choice of T here it follows that dim PλX(T) = dim PλBX(T) < 1
for X= D, E. Furthermore, it can be seen from [6] that

(4) / σ Γ ( ί o , ) P λ < + o o , i f λ < 2 ,
JT

(5) (l,l)^<+oo,ifλ<|,

(6) ί ^ λ < +oo,ifλ< 1.
J

Set Wa = Γ\ Ua. Then PλX{Wa\ dWa) = Pλ5JSΓ(Wς; dWa) is isometric to
PλX(T) = PχBX(T), X= D,E. So for each λ G (0,1] we may choose
wλ G PλD{Wa\ dWa) with wλ(p*) = 1. Then wλ spans PλD(W^α; dWa). For
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λ £ (0,1), wλ £ PχE(Wa; dWJ whereas /^wfP, = +oo. Define

LEMMA. Φ is a continuous function on (0,1) tfm/liminfλτlΦ(λ) = +oo.

Fix λ 0 G (0,1). We first show that Φ is continuous from the right at
λ0. Let λ 0 < λ < v < 1. Since Pλ< Pp9 we see that wλ is a supersolution
with respect to d * du = wP, and thus w, < wλ < WXQ < 1. The function
w — limλiλo>vλ exists and w < wλ on Γ. The Harnack inequality applied
to (4) implies fτGτ(ζ,')P\ < +<*>> for any ξ G Wa and hence

=JϊJ Gwβ9z)φ(z)Pλ(z)9

for a suitable function <p on Wa. Since w^^x < Px on W ,̂ the Lebesgue
dominated convergence theorem gives limλ iχoτP λwλ = τPλow. Note that
for any λ, TDWwx is the same function v G HBD(Wa; dWa). Therefore,

V = Wλ + TPλo>Vλ >: IV + TPχoW

= lim (wλ + τPχwλ) = t>
λτλ0

on W .̂ This implies that wλ =HΌnlf α and consequently on T. By Dini's
theorem we arrive at WXQ = J?-Umλτλo wλ on Γ.

We continue with λ o < λ < ^ < 1. Note that the function wλ — wv is
P λ energy finite. Indeed, wλ — wv is clearly Dirichlet finite and the
inequality 0 < wλ - wv < wλ gives fτ(wλ - wv)

2Pλ < Sτwlp\ < + 0 0

Since wλ — wv vanishes at p* we may choose a sequence {/„} C M0(T)
such that vvλ — wv — BEPχ-]imfn. Moreover, the sequence {/„} may be
chosen with/n \Ua = 0 since wλ — wv has this property. Thus

EPχ(wλ - wv,wλ) = limtf£(/n, wλ) = 0
n

and consequently

0 < D r ( ^ - wλ) < £ ^ ( M ; - wλ)

This shows that l im λ i λ o Φ(λ) exists which in turn implies that {wλ} is
D-Cauchy. By Kawamura's lemma we arrive at wλ = BD-\imλιλo wλ, and
in particular, l im λ 4 λ o D Γ (w λ ) = DΓ(wλ o). By (6), JτPr< +00 and we
apply the Lebesgue dominated convergence theorem to obtain
ϋraλiλo/rWλ-Pλ = fτWχfλ0- This completes the proof of Um λ i λ o Φ(λ) =
Φ(λo)
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We now consider λ 0 E (0,1] and show that wλ = 2?D-limλτλo wλ. Let
0 < v < λ < λ 0 and note that wλo < wλ < wv < 1. Thus l i m λ t λ o wλ exists
and by an argument analogous to the one above we see that actually
wλo = j5-limλτλo wλ. Since wv — wλ vanishes at p* we can find a sequence
{fn} C M0(T) such that wv~ wλ = BD-lim fn. We choose {/„} with the
additional properties fn >Q,fn\Ua = 0. Thus

DT(K - wλ, w j = MmDw(fn9wv)
n

= -\imjwfnd*dwv<0,
n

which implies that

0 < D r ( w λ - wv) < D Γ ( w λ ) - i ) r ( w j .

Thus Z)Γ(>vλ) increases as λ increases and is bounded above by Dτ(wλ).
Therefore {wλ} is D-Cauchy and by Kawamura's lemma vvλ =
^D-lim λ τ λ o wλ.

In case λ 0 E (0,1), as before we see that l im λ τ λ o /^w£P λ = STWI/\0-

We arrive at l i m λ τ λ o Φ ( λ ) = Φ(λ 0 ) and the continuity of Φ at λ 0 is
established. In case λ 0 = 1 we apply Fatou's lemma to conclude that
+oo = JτwfPx < liminfλ τ l SτKp\ ^ liminfλ τ l Φ(λ).

3. Recall that the definition of Pλ involved a parameter β. We now
adopt the notations P{β\ w{β) to indicate the dependence of P λ ? wλ on ̂ 8.
Set a — Dw{υ), where v is the function in HBD(Wa; dWa) determined by
υ(p*)=l.a

LEMMA. Let b, c be given such that a < b < c. It is possible to choose
β E (0, a/2), λ E (0,1) such that

(7) DtvMβ))<b>

(8) El£{"ίβ)) = c

Note that for β < β' we have Pj^β) < P{βΊ and that limβi0P{β) = 0.
Thus in view of (4), (5) we have

lim^oO, \)T = 0, lim^of P[β\ = 0.
Jwa

We therefore may choose β such that
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and

(9)

For any λ E (0,1] we have TDWw^β) — υ and hence

which shows that (7) holds for this β and any λ E (0,1]. By this and (9)
we obtain

ί ίi4/

J \W
= b.

In view of Lemma 2 we can choose λ E (£, 1) so that (8) also holds.
4. We use the notation va to indicate the dependence of the function

v E HBD(Wa; dWa) with v(p*) = 1 on α. We claim that

0°) ^>J = v
In fact, ϋβ I W; = 1 - α~ ιGΓ( ,^0) | Wa and hence (10) follows from the
formula DW(GT( ,qo)) = 2πa~ι (cf. [6]). Define an = 4 Λ + V, /ι = 1,2,....
Then by (10) we have

According to Lemma 3 we may choose λn, βn such that

and

(13) e ^

for n = 1,2,.... Consider ^ 2 α n = {/? E Γ | r(/?) > έ?~2α"} and t; 2 ^ E
HBD(W2an; 3fF 2 α ) such that v2a£p%) = 1. It can easily be seen that

(14) ^ 1 8 ^ = ^ .

We prepare infinitely many copies Tn of T, n — 1,2,... and view WK2α/j

as being a subsurface of Tn. Let F = C \ Vλ^n<Jί\z — 3w | < 1}. We weld
J*2« t 0 ^ b y identifying 3W2α with {| z - 3n | = 1}, Λ = 1,2,... and let
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R be the resulting Riemann surface. We now view Wa, Wla as sub-
surfaces of R and denote them simply by Wn,Un. We regard va , v2a as
being defined on Wn,Un and denote them by vn, un. Let Δ be the harmonic
boundary of R. Since dim HBD(Wn; dWn) = 1, Wn Π Δ consists of a
single point />*. Set Δx = {̂/>f, /£,.. .}. The fact that un \dWn = ±9 n =
1,2,..., Le. (14), implies Ax = Δ (cf. [3]). Let W = U^n<O0Wn and define
ϋ o n i ? b y ϋ | Wς = vn9n = 1,2,... andϋ|i?\WΓ= 0. Then by (11) we see
that t? G HBD(W;dW). Since t> | Δ1 = 1, we must have v | Δ = 1 and
consequently W\3WKis a neighborhood of Δ in R*.

Define a 2-form P on i? by

P\Wn = PJfn»\n= 1,2,... a n d P | i ? \ ί Γ = 0 .

We view W(^Λ) as a function on Ŵ  and use the simplified notation wn for
it. In this notation (12) and (13) are written as

(15) δn = Z V > J < ^ ,

(16) «. = ̂ > , ) = ^ ,

n — 1,2, For X—D,E define measures m M on Δ by setting

n — 1,2, We denote the bounded continuous functions on Δ by 2?(Δ).

LEMMA. For X— D or E

(i) PBX(W; dW) I Δ - B(Δ\
(ii) PX(W; dW) | Δ = L2(Δ, mpx).

Since (i) is an easy consequence of (ii) we proceed directly to the
proof of (ii). We consider only the case X = E as X = D is analogous. Let
s G PE(W; dW). Then +00 > Eζ,(s) = Σ? Efys). Recall that
PE(Wn; dWn) is spanned by wn. Thus 51 Wn = αMww with αΛ = ^(/?*). We
see by (16) that E^s) = α2επ and hence {αn} G L2(Δ, mPE). Conversely,
if {an} EL2(Δ,mPE), then by (16) the function s = 2fanwn is in
PE(W\ dW) with s \ Δ = an, m

p^-a.e.
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5. We arrive at our main result.

THEOREM. The 2-form P and the Riemann surface R have the property
that

PBE(R) = PBD(R) andPE(R) Φ PD(R).

Since W\dWis a neighborhood of Δ, we see that μBD is surjective (cf,
[8]). By Theorem 1 we see that μp

BD and μp

BE are surjective as well. From
Lemma 4(i) we deduce that PBD(W; dW) = PBE(W; dW). Thus the
mapping μp

BD ° (μp

BEYλ: PBE(R) -* PBD(R) is a bijection and the first
part of the assertion follows.

Let/be defined on Δx by f(p*) = 2M/2, n = 1,2,.... By (15) and (16)
we see that fEL2(Δ, mPD) but f& L2(Δ, mPE). According to Lemma
4(ϋ) there is a function s G PD(W; dW) such that s | Δ = /, rapz>-a.e. Set
u = μp

Ds E. PD(R) and h = Γ̂ w. By Theorem 1 we have h G
μD(HD(W\ dW)). If w were in PE(R% then in view of A = TEu Theorem 1
would imply that u G μp(PE(W; dW)). But since w|Δ $ L2(Δ, mPE),
Lemma 4(ii) rules out the possibility of u being in μp

E{PE{W\ dW)) and
the assertion u £ PE{R) follows.

It is clear that there is a neighborhood F* of Δ with Jv*nR P < +oo
but we have not been able to determine whether JRP < +oc. Thus the
relation between JRP < +oc and PE(R) = PD(R) remains open.
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