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SOME TOPOLOGIES ON THE SET
OF DISCRETE STATIONARY CHANNELS

JouN C. KIEFFER

Some topologies are defined on the set S of all discrete stationary
channels with given finite input and output alphabets, which are weaker
than the topology of Neuhoff and Shields arising from the d concept of
channel distance. The closure of various subsets of & with respect to
certain of these topologies on & are determined. For example, a topology
on S is introduced with respect to which the set of weakly continuous
channels (the most general class of channels for which coding theorems
of information theory have been obtained) is the closure in S of the set
of channels with input finite memory and anticipation. As a by-product,
results are obtained on simulating channels by block codes and on
constructing sliding-block codes from block codes using sets called
coding sets.

I. Introduction.

NOTATION. A4, B will denote finite sets to be fixed for the rest of the
paper; @, ® will denote the sets of all subsets of 4, B, respectively.
(A*, @) denotes the measurable space consisting of 4, the set of all
doubly-infinite sequences x = (x,)>_,, from 4, and @, the usual prod-

i=-o00

uct o-field of subsets of 4°. We define (B®, $>) similarly.

Let Z be the set of all integers. If x € A%, and i € Z, x; denotes the
ith coordinate of x. If m, n € Z and m < n, x/, denotes the (n — m + 1)-
tuple (¥, - - sVpepmsr) D A" ™ suchthaty, = x, ., ,1<i<m+n-—
1. Similarly if x € A*, where k is a positive integer, and 1 <i <k, x,
denotes the ith coordinate of x, and if 1 =m =<n <k, x) denotes
(Yis+ - sVpeme1) = (X5 .., X,). One defines similar notations for x € B*
orBX k=1.

{X;: i € Z} denotes the family of projections from A® — A; that is,
X(x)=x,, i € Z, x € A°. Similarly, {(Y;: i € Z} denotes the family of
projections from B® - B. { X,: i € Z} are the maps from A* X B® — 4
and {Y;: i € Z) the maps from A® X B* — B such that X,(x, y) = X(x),
Y(x,y)=Y(y), xEA®, yEB®, i€ Z. lf m,n€ Z and m=<n, X
denotes the map (X,,...,X,) from A% — A*~"*!, Similarly, we define
Y, X", Y, except we denote X7, Y7, X7, Y7 respectively by X", Y", X",
Y".
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R denotes the real line. If S is a finite set, | S | denotes the cardinality
of S. If (2,9) is a measurable space and W € §, W* denotes the
complement of W; thatis, W= {w € Q: w € W}. The map I,,: & - R
is the indicator function of W — the function equal to 1 on W and 0 on
we.

A function f: A® — R is finite-dimensional (f.d.) if f is a function of
X,',', for some m <n, m,n € Z. Similarly, we define a f.d. function f:
B* - R. A function f: A* X B® — Ris f.d. if f is a function of (X}, Y")
for some m <n, m, n € Z. A subset E of A®, B®, or A* X B* is said to
be f.d. if I, is f.d.

T,: A® - A and Ty: B® —» B* denote the two-sided shift transfor-
mations. (That is, T,x = X, where X; = x,,,, i € Z; similarly for T.) We
will sometimes denote 7, or T by 7, when the context makes clear what
the domain is.

Sources. 9N denotes the family of all probability measures on &%
stationary with respect to 7,. We call the elements of 9N stationary
sources. I’ denotes the family of all probability measures on @ X %>,
On 9M, I’ we place the weak topology [19]; for example, the weak
topology on 9M is the unique metrizable topology such that if {p,}>., C M
and p € 9N, then p, — p in the weak topology if and only if p,(E) - u(E)
for every f.d. E C A*. 9N, I’ are compact topological spaces.

A sequence x € A® is periodic if TVx = x for some positive integer N.
If x is periodic, let N be the smallest positive integer N such that
TNx = x. N is called the period of x. We let S, denote the set of all the
periodic sequences in A°. We say p € I is periodic if p(S,) = 1. We say
a periodic p € 9N has order N if p places probability one on the set of all
periodic sequences of period =< N. We let 9, denote the subset of M
consisting of the periodic sources. We say u € I is aperiodic if p(S,) = 0.
M, will denote the subset of IN consisting of aperiodic sources. We let
& C 9N denote the family of all ergodic sources; that is, p € & if and only
if p is ergodic relative to T,.

Channels. We say » is a channel if for some pair of measurable spaces
(2,,9), (2,,%,), vis a family » = {»,: x € Q,} of probability measures
on %, such that for each E € 9,, the map x —» »,(E) from £, - [0, 1] is
9,-measurable. We call &, the input space of the channel », and £, the
output space. We will be dealing with discrete finite-alphabet channels; that
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is, channels whose input and output spaces are spaces of doubly-infinite
sequences drawn from finite sets.

If M is a positive integer, a channel » with input space (4*, @) and
output space (B®, B%) is said to be M-stationary if v,u (T3'E) = v,(E),
x € A°, E € B”. We call a l-stationary channel simply a stationary
channel. Let & denote the set of all stationary channels with input space
(A*, @) and output space (B*, B*). Following [3], a channel » € § is
said to have input finite memory and anticipation if for some positive
integer M, the following holds: For each k = 1,2,..., and E C B**! the
map x - »(Y* € E) is a f.d. function from A4° — [0, 1], depending on x
only through x*;*,. We let &, denote the subset of § consisting of all
such channels.

By a stationary code, we mean a measurable map y: 4* — B* such
that - T, = Tp-¢. Given a stationary code ¥: 4~ — B®, let »¥ denote the
channel in & such that »¥(E) = I.(Y(x)), E € B*, x € 4. We let §,
denote the subset of S such that S, = {»¥: { a stationary code}.

The elements of &, are called deterministic channels. We let 5, denote
54N &, A stationary code y: A” — B® is called a shdmg-block code
(2], [20]) if for some positive integer k, there exists ¢’: A2**! - B such
that Y(x), = ¢(x}25), x € A%, i € Z. It is easy to see that 5, = {v*: Y a
sliding-block code}.

Given a channel » with input space (A%, °) and output space
(B*, ®*), and a probability measure p on @, we let pr denote the
probability measure on @° X B* such that pr(E X F) = [gv(F) dp(x),
E € @, F € %*. We define » €S to be weakly continuous if the map
p — pr from M - M’ is continuous. We let S, denote the subset of &
consisting of the weakly continuous channels. S, is the most general class
of channels for which coding theorems of information theory have been
obtained [7] [9] [10] [11]. In §III of this paper, we provide a characteriza-
tion of such channels.

Channel Topologies. In [14] Neuhoff and Shields introduced the d
concept of channel distance, which is a pseudometric on &, and de-
termined the closure with respect to the resulting topology on & of a
simple class of channels called primitive channels; subsequently, in [15]
[16] they determined the closure of some interesting subclasses of the class
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of primitive channels. In the same spirit, we define here some topologies
on & weaker than theirs and then devote the rest of the paper to
investigating the closure of &/, §,, &, under these topologies.

Let %) be a subset of 9. We define J,(%D) to be the topology on &
whose basis consists of the sets of form E(S, F,v,, ¢) = {vr €S:
SUpreg er| MPV(E) — pro( E) |< ¢}, for all e >0, », € S, finite collections
§ of f.d. sets from @ X B>, and finite subsets F of . If {»,}>., C § and
v € 5, then », — » in the J (D) topology if and only if u», > p» for every
p € 9D, or equivalently, if and only if uy,(E) - pr(E) for every p €
and f.d. set E from @ X %>. Consequently, we call the topology J (D)
the topology of pointwise convergence on ).

We define 9 (D) to be the topology on & whose basis consists of sets
of form E(S, vy, &) = {v € &: sUPgeg,ca|MP(E) — py(E) <e}, for all
e >0, », € S, and finite collections § of f.d. sets from @ X B*. It is easy
to see that », — » in the 9 (D) topology if and only if for each f.d. set E in
@* X B°, uv,(E) - pr(E) uniformly in p € 9. Accordingly we call
5.(D) the topology of uniform convergence on °D.

If 5’ C S and 9 is a topology on S, let C[&’ |9 ] denote the closure of
&’ relative to the topology 9. Let C,[S”| 9 | denote the sequential closure of
&’ relative to 9; that is, » € C[&”| I ] if and only if there is a sequence
{»,)%, from &’ such that », — » in the J-topology. In general C,[&' |9 ] C
C[8"| T ], with equality if & is first countable. The uniform topologies
9 (D) are first countable and so, C[S'|I(D)] = C[&"|T(D)]. The
topologies J (D) may not be first countable if 9 is not countable, and so
it is possible one may have C[&"| J,(D)] # C[5 | T,(D)] for such topolo-

gies.

Coding Sets. If N is a positive integer, E C A® is called a coding set of
order N if E is f.d. and does not contain any periodic sequence of
period < N. E C A* is called a coding set if E is a coding set of order N
for some N. Coding sets will play a role in constructing sliding-block
codes, as we will see in §V.

Let ) C 9. We say 9D is concentrated on coding sets if there is a
sequence of coding sets { Fy}¥-, such that for each N, F), is of order N,
and for each p € D, limy_  pn(Fy) = L.
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We say 9 is uniformly concentrated on coding sets if for each ¢ > 0 and
positive integer N, there exists a coding set of order N such that u(Fy,) >
1 — ¢ for all p € 9.

It is important to know when ) is concentrated on coding sets or
uniformly concentrated on coding sets in view of results to be obtained
later in the paper (see §II, P3 and P4).

II. Statement of main results. The main results to be obtained in
this paper are the following

Closure Properties of &, 5,4, o,

PL. €[S, T,(I)] = 5.

P2. C[S,| ()] = §..

P3. C[5,/] T(DM)] D &, if D C I is uniformly concentrated on cod-
ing sets.

P4.C[S,,]|F,(D)] D &, if D C M is concentrated on coding sets.

P5. C[S,,| T(IM,)] = 6.

P6. C[S,] T(IM,)] = S.

Properties P1, P5, P6 show that &,, 5,, &,, are dense in & if one
chooses the right topology on S.

Property P2 gives a characterization of weakly continuous channels.
Properties P3, P4 allow one to approximate weakly continuous channels
by channels from &,,.

Property P1 is proved at the end of this section. Property P2 is proved
in §III. Properties 3 and 4 follow from Theorem 2 of §V. Property P5
follows from Properties P1 and P3, as indicated at the end of §VI.
Property P6 follows from Property P5 with the help of Lemma A3 of the
Appendix.

Proof of P1. Let v € 5, ¢ > 0, a positive integer j, and a finite subset
{By,...,m,} of O be specified. P1 follows provided we can find # € &
such that

(2.1)  sup sup |p[X/ =a, Y/ =b] —py[X/ =a, Y/ =b]|<e.
a€EA/ beEB/ 1=i=n

Choose k >j so large that 2j/k <e/2. Choose 8§ >0 so small that
nd|A|*|B|*<e/2. Let p=n"'(p, + -+ +p,). Since f.d. functions are
dense in L'(p), there is a channel »’ with input space A* and output space
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B* such that for each b € B* the map x — »/(b) from A* - [0,1] is f.d.
and

(2.2) f |»(b) — »(¥* = b) | du(x) <8, b€ B~
Aw
By Lemma A2 of the Appendix, there exists # € 5, such that for all
a€ A/, beE B
(2.3) |polX =a, ¥ =b] —pp[X/=a, Y/ = 1]

(&) — (Y = b)} dpi(x)|,

<2j/k+ X e

a’€A* b EB*

i=1,...,n.

By (2.2), we have for a’ € 4%, b’ € B, and all i,
o (400 = 0P = ) (2
(X=a')

<nf
Aw

Hence the right-hand side of inequality (2.3) is upper bounded by 2 j/k +
|4 |¥| B|*n8 < &. (2.1) now follows.

III. A Characterization of weakly continuous channels. In this sec-
tion we prove P2 which gives the following characterization of weakly
continuous channels: A channel » € § is weakly continuous if and only if
there is a sequence {»,} C &, such that », - » in the J,(91) topology. We
accomplish parts of the proof by means of the two lemmas which follow.

(b)) — v (Y* = b')|dp(x) < nd.

LEMMA 1. Let W C A® be f.d. Let f: A* —[0,1] be a measurable
function such that the map p. > [, f dp from O — [0, 1] is continuous. Then,
given ¢ > 0, there is a f.d. function g: A* — R such that

(3.1) Ifngu —fwfdul< e, pEON.

Proof. We place the discrete topology on 4 and the product topology
on A%, making A* a compact topological space. Let C(A4*) be the Banach
space of all continuous functions from 4* — R, under the supremum
norm. By the Stone-Weierstrass Theorem [1, Theorem A7.5], the f.d.
functions are dense in C(A*). Thus we need only obtain a g € C(A4®)
such that (3.1) holds.
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Let £ be the space of all finite signed measures on @, with the weak
topology. If p € £, let u,;, € £ be the measure such that

ny(E)=p(ENW), E€E@”.

Let £, = {py: p €LY, M, = {py: p € IM}. £, with the topology it
inherits as a subspace of £, is a locally convex space, and 9, is a
compact convex subset. Hence any continuous affine functional on 9L, is
the uniform limit on 9, of continuous linear functionals on £, [13, The-
orem T.6, p. 221]. Thus there is a continuous linear functional G: £,, - R
such that

(3.2) ’G(,u) —fwfdp’< e,  pEM,.

Let G*: £ — R be the linear functional such that

(3.3) G*(p) = Gluy), pEEL.

G* is continuous since it is the composition of the continuous map
p = py,, from £ - £, with G. Now by the Riesz Representation Theorem
[1, Thm. 4.3.13], £ can be identified with the dual space of C(A®) under
the weak-star topology. By [1,Thm. 3.5.17], since G* is a weak-star
continuous functional, there must be g € C(A*) such that

(34) G*(p) =f gdp, pEEL.
AW
If p € 9, then pyy, € M, and so by (3.2)—(3.4)

(3.5) =lwag dp — fwfdywl <e.

Gpw) ’ffdﬂw
w
Replacing p in (3.5) by ., gives
(3.6) lf gd#w_ffd(l‘w)wl<£, p € .
A w

But [gdu, = [ygdp and [, fd(py)w = [wfdu, so (3.1) follows from
(3.6).

LEMMA 2. Let W C A® be f.d. Let § > 0. Let f,,.. . .f, be f.d. functions
from A® — R such that

(@) -8/n=< [, fidp<p(W)+8/ni=1,...,n,p€M.

(0) w(W) — 8 = [, (Sl f) dp < p(W) + 8, p € 9.
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Then there are f.d. functions g,,. . .,g,: A — R such that
@) | fwfidp— [pgdu|<68,pEM,i=1,...,n.
(b") 2I_, 8, = 1 throughout A>.

(¢') g, = 0 throughout A*, i = 1,...,n.

Proof. From (a), (b) and Lemma A1 of the Appendix we see that for k
sufficiently large,

k—1
(3.7) KX [(f = DI} TV <28/n,  i=1,...,n.
j=0
k—1
(3.3) kY (f1,) T'=-28/n, i=1,...,n.
j=0
k—1 n
(3.9) 28kt Y [(1 — Ef,)lw]-Tfsz‘d.
j=0 i=1

Let W= {x € W: T'x € W for infinitely many i > 0}. By Poincare’s
Recurrence Theorem [4],

(3.10) w(W)=u(w), peom.
Define ¢: W — (1,2,...} to be the map such that
o(x)=inf(i>0:T'x E W}, x€EW.
Thus, ¢ is the time of first return to W. Define T: W — W as follows:
Tx = T*™x, x EW.

As is well-known [5], T is measure-preserving; that is

(3.11) fo-Tdu = fodu,

for every measurable f: W — [0, 0), and every u € 9. Also, by Kac’s
Recurrence Theorem [4],

(3.12) fW¢dys 1, pedl.

For any f: A* — R it s easily seen that

k=1 d(x)+ - + (T 'x)

2 f(Tx) = > (fI)(T'x), xeW.

i=0 1=0
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Applying this to (3.7)-(3.9), it is clear that we may fix a postive integer k
so that for every x € W,

k—1 k—1
(3.13) I [f—1(Tx)<28/n 3 o(T'x), i=1,...,n.
j=0 Jj=0
k—1 k—1
(3.14) S f(Tix) = 28/n 3 ¢(T'x), i=1,...,n.
Jj=0 j=0
' k=1 k—1 n . k=1
(3.15) =28 Y o(T'x) < [1 - Ef,](fo) =28 Y ¢(T'x).
j=0 j=0 i=1 j=0

Let f: W~ R be the function such that f(x) = k™'Sk_j¢(T'x),
x € W. For each i = 1,...,n, let h;; W — R be the function such that
h(x) = k™'SZ) f(T/x), x € W. Then (3.13)—(3.15) reduce to

(3.16) h,<1+28f/n, i=1,...,n.
(3.17) h,=-28f/n, i=1,...,n.
(3.18) 1-28f< Y h,<1+28f.

i=1

Foreachi = 1,...,n, let h*: W — R be the function such that

. hi+28n7f

oo (h, 20071
Then,
(3.19) h* =0foreachi and Y h*=1.

i'=1

Now by (3.18),

1= 3 (h, +28n7'f) < 1 + 481,
i=1
and so for each i
h,
i % -1
(3.20) 1+48f£h" <h;,+28n7'f.

Now by (3.16), (3.17),
(3.21) |h;|< 1+ 48f foreachi.
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Hence by (3.12), (3.21) we have for all i and all p € 9N,

h; hi|f
f,;,h"d" fW1 T aspor 48f T+ a5/ = 48[ fdp = 43.
From this and (3.20), we get

48+ | h,dp<| h¥dp<| h,dp+ 26.
fW, p fW, p fw’ p
But (;h;dp = [;f, duby (3.11) and so

(3.22) IfWh,*f dp —fwf,. dp|<48 foralli,p.

Now the {h}} may not be f.d., so we modify them appropriately. If
1 <r=<s,define

E, = {x € W: T'x € W for at least r indices
iin the range 1 <i <s}.
We may fix positive integers ¢ and r so large that for all s = r,
(3.23) h* is constanton W N E, N {X*, = a},
aEeAT i=1,...,n
From (3.10), we have
p(WNE:S)l0ass > 0, p€IN.
Since W N Ef, is f.d., the map p — w(W N Ef) from O - [0, 1] is con-
tinuous. Hence, by Dini’s Theorem [1, p. 181], we may fix s so large that
p(WNES)<8, peM.

Now by (3.19), (3.23) we may select f.d. g,,...,8,: A — R such that (b’),
(c) hold and

g =hf onWnNE,,, i=1,...,n.

1 rs

Then for all i, u,
I/-gi dp —f-h;* du.s 2u(W N E) <28.
w w
This, coupled with (3.22), gives (a).

Proof of P2. Suppose » is in the J,(9N) closure of &,. Since J (M) is
first countable, this implies the existence of a sequence {»,} C &, such that
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v, > v in the J,(9N) topology. Fix a f.d. set E C A® X B®. Let ®:
M — R be the map ®(p) = pr(E), p € . It will follow that » € §_ if ®
is continuous. For each n, let ®,: 9 — R be the map such that @,(p) =
pr,(E), p € 9. Then ®, —» ® uniformly on IN. Since each P, is continu-
ous, ® must be continuous.

Conversely, suppose » € §,. Fix ¢ > 0 and a positive integer j. We will
have » in the J,(9) closure of &, if we can find # € &, such that

(3.24) sup  sup |wp[ X/ =a, Y/ =b] — [ X/ =a, ¥V’ =b]|<e.
a€A’,beB’ BEM

Fix k > j so large that 2 j/k < /2. Choose § >0 so that 78 |A || B|* <

e/2.
By Lemma 1 pick for each a € 4* £.d. functions { f*: b € B*} such
that for all b, p

025 [ #)de(x) = [ n(P=b) dux)| <o/

To ease the notation, denote the set {X’ k = a} by [a]. Then from (3.25) we
obtain for a € A%, b € BX, p € M.,

-3/|BIF = f[ 12 du=plal + 8/ BI,

plal —8=<[ (3 f2)du=pla +8.

la]} pe B

Thus, by Lemma 2, we may select for each a € A* f.d. functions {g’:
b € B*} such that

(3.26) I/ gg’dp.—f fa”d,ul<68, for all b, ;
[a] [a]
(3.27) g2 =0, forallb;
(3.28) 2 8=
beB*

Let »” be the channel with input space 4° and output space B such that

(3.29) v/(b) =gb(x), x€[a],beE B~
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By Lemma A2 of the Appendix, there exists # € 5, such that for all
pEM,aE€ A4’/,bE B/,

(3.30) |wr[X/ =a, Y/ =b] —pi[X/' =a, ¥ =b]|

{(r(b) — 2 (Y* = b)} dp(x)|.

(X*=a)

<2j/k + 3

a’ €A%, b’ € B

Now by (3.29), (3.26), (3.25)
[ ) = (7= b)) dp(x)
(X*=a’)

Hence the right-hand side of (3.30) is upper bounded by 2;/k +
78| A |¥| B|* < e. This gives (3.24).

IV. Simulating a channel by block codes. A block code is a map ¢:
A" — B" for some N. In this section we show that block codes can be
used to simulate certain channels. We now make precise what we mean by
this.

<76, foralla’,b, .

In the rest of the paper, if u, v are two elements drawn from the same
set, we define 8(u, v) tobe 0 if u v and 1 if u = v.

Let K, M be positive integers and » a channel with input space
A*M*2K+1 and output space B2X*!1 If N> 2K+ 2M, ¢ >0, and (x, y)
€ A" X BV, we say (x, y) is e-typical of v if

N—K—M N—K—M
S (xEM a)s(yE=b) (b)) X S(x[TEM. a)
J=K+M+1 J=K+M+1

<(N—2K—2M)e, foralla € A?XK+2M*1 p & B2K+1,

We say v can be simulated by block codes if for each € > 0, there exists a
positive integer N, such that for every N = N, there is a block code ¢:
AN — B"V satisfying the requirement that (x, ¢(x)) is e-typical of »,
x € AV,

Before giving the main result of this section on the simulation of
channels, we need to present some more notation.

If S is a finite set and = = {7 (i, j): (i, j) € S X S} is a stochastic
matrix, a(7) denotes the number max, , c¢2cs|m; — 7 ;|. If Xis a
random variable defined on the probability space (2, ¥, A), E, X denotes
the expected value of X. If Y is another random variable on this space,
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COV,( X, Y) denotes the covariance of the pair ( X, Y). Suppose now A is
a probability measure on B> such that A\(E) >0 for every f.d. set
Ec€ @ . If mn € Z and m < n, define }\(f’m,..., f’n) to be the function
from B® - [0,1] such that A(Y,,,....Y,)(») = A(¥,, = Y (»).....Y, =
Y (y)), y € B®; define the function A(Y,,,|Y,,...,Y,)tobe the ratio

AR AR Y. AR A}

THEOREM 1. Let K, M be positive integers and v a channel with input
space A** M+ and output space B*X. Suppose there exists v’ € S such
that v)(YX = b) = v,x:m (b), x € A°, b € B***'. Then v can be simulated
by block codes.

Proof. It is not hard to see that it suffices to prove the theorem under
the assumption that » (E) > 0 for all x € 4* and all f.d. sets E € %H™.
Fix € > 0. Choose § > 0 so that § < ¢ and 2| B |*K+!| 4 PK+2MH152 < ],
Let # € & be the channel such that

b (V) = w(YIHE), jez,xed™;
s
ﬁx(Yrs) = V;(YrrHK) I1 V;(Yzl Yii:zll()’
i=r+2K+1
r,se€”Z,s—r>2K,x € A®.

For each i € Z, x € A°, let M*' be the stochastic matrix M*' =
{M*'(b,, b,): b,,b, € B***1} such that

x,if Vi+2K Yi+2K+1\ — /(v i+2K
M (Y, > Vi )—VX(YHZKHIYH! )

For each x € 4, {Y*2K}2 {5 a Markov chain under #, such that the
conditional distribution of ¥'}2X*! given ¥/*2X is given by M*, i € Z.
The set of matrices S = {M™": x € A, i € Z} is finite and any finite
product of elements from § is regular. Thus, by a result of Wolfowitz [21]
there is a positive integer J such that if n =J and #,,...,7, € S then
a(m ---m) < 8% Choose N, so large that N, > 2K + 2M and
2J/(N,— 2K —2M) <8* Fix N=N,. We want to show there is a
block code ¢: AN — BV “e-typical” of ». Fix £ € A". Our task is to define
¢(X) so that (X, ¢(X)) is e-typical of ». Fix x € A* so that x;' = X. By
definition of #, the choice of J, and Lemma A4 of the Appendix,

(4.1) E[Ljspon) = varpey(b), i€ 2Z,b€B* .
(4.2) covﬁx[l{yjka:,,}, I{Y;,jfzb}] < 84,

i,jEeZ,|i—j|=J,be B>
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For each a € A* *2M*! Jet R,={(K+ M+ 1<j<N-—K— M:
%/T8M = a). Letting N, = N — 2K — 2 M, we have, using Chebyshev’s
Inequality and (4.1), (4.2),

5 [(%, YV) is not 8-typical of »]

= 2 A

a€A2M+2K+l,bEB2K+I

= 2 6_2Nl_2 2 COVﬁX[I{fi_“,g‘zb}’ I{}Z/j,{‘:b}]
a,b

i,JER,

2 Igg—py — v,(b) | R, |

i€R,

= 6N,]

< D 62N 2N,J + N38%| < 2| A PKr2M+1 | pIpRtis2 < 1.
a,b

In the preceding, the covariance terms were first summed over i, j with
|i —j|<J, yielding the upper bound 2N,J by Lemma A4; the remaining
terms have upper bound N2§* by (4.2).

Hence, we may find some yj € BY such that (%, y) is 8-typical and
therefore e-typical of ». Define ¢(X) = .

V. Building finite codes using coding sets. In this section we in-
vestigate the possibility of building a sliding-block code ¢ so that »¥ is
“close t0” a given weakly continuous channel. We describe briefly how
this is done before going into details. A finite sequence of disjoint sets
(F,, F,,...,F,} from @ is called a Rohlin-Kakutani tower if T'F, = F,,
1 =i =< n. Roughly speaking, to approximate a given channel » we first
simulate the channel with a block code. We then choose an appropriate
coding set and use it to build a sufficiently long Rohlin-Kakutani tower.
The block code is then “embedded” in the tower (as for example in [20])
to obtain the desired sliding-block code . The extent to which »¥ mimics
v depends only on how good a coding set can be found. Later on, in the
next section, we provide a complete answer to the question of when a
good coding set can be found.

By means of the following lemma, we show how a coding set can be
used to construct a Rohlin-Kakutani tower.

LEMMA 3. Let N be a positive integer. Let F C A® be a coding set of
order N. There exists a f.d. set E C A such that

(a) E, TE,..., TV E are disjoint.

(b) For some positive integer L, F C U ,.L=0T"E .
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Proof. Find i € Z, a positive integer k, and F’ C A* such that
F={X/fFe F}. NowF = {b,,...,b}, say. Each b,, 1 <i <r, has the
following property:

(5.1) There is no x € A® such that x* = b, and T/(x)} = b,

for some j in the range 1 <j < N.
For, if (5.1) fails, it is not hard to see that F must contain a periodic
sequence of period < N. Define
E= U {Xk=0,, XHk#b;1<s<m—1,-N<j<N}.
m=1
From (5.1) we deduce (a). Suppose for some s € Z and M > (0 we have
T’x ¢ E, for all j in the range s <j < s + M. It follows that T’x & F for
all j in the range s + (r — 1)N <j <s + M — (r — 1)N. Then, replacing
E by some shift T7"E of itself if necessary, we get (b).

Here is the main result of this section.

THEOREM 2. Let v € §,. Let a positive integer K and ¢ > 0 be given.
Then there exists a positive integer J such that:

For each coding set F of order J there exists a sliding-block : A® — B*
for which

(5.2) 3 ¥ X5 = a, Y& = b] — wo[ X5 = a, YK = b]|
aEAZK‘“,beBZKH

<e+2u(F), peEM.

Proof. In view of P2, we may assume » € ;. Thus we can find a
positive integer M and a channel 5 with input space 4>%*2*! and output
space B2X*! such that

VX(Y—KK = b) = ﬁxf;yM(b)’ be B2K+l, X €A™,
Choose § > 0 so small that
(5.3) 3 lA [2K+2M+1 IB |2K+18 <e.

In view of Theorem 1, we may pick N > 2K + 2M and a block code ¢:
A" - B" such that

(5.4) (x, ¢(x)) is 8-typical of ,  x € AV,
We assume N is large enough so that

(5.5) AIN-'(2K + 2M) < 8.
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Let J be a multiple of N so large that
(5.6) 2N/J <.

Let F be any coding set of order J. By Lemma 3, pick a f.d. set E and
L > J such that

(5.7) E,TE,...,T’E are disjoint,

L
(5.8) Fc UTE.
i=0

Let y: A® — B* be a sliding-block code satisfying the following property:
If x EA®,i € Z, and T'x € E, then Y(x)' 3NV "1 = ¢(x/TsN+N1
for all s in the range 0 <s=<r — 1, where r = r(x, i) is the largest
positive integer for which both (a)—(b) which follow hold.
(@) T°x &€ Eforallsintherangei <s=<i+rN — 1.
(b)yrN—1=<0L.
(Note that r is at least 1 by (5.7).) Roughly speaking, we code onward
from each coordinate i where T'x € E (that is, where E is “windowed”)
using the block code ¢, stopping when the next coordinate where E is
windowed is reached or when no more than L coordinates of x have been
coded, whichever comes first.

Since both sides of inequality (5.2) are continuous functions of
p € 9 and & is dense in I [18], we need only show (5.2) for p € &. Fix
p € &b. We may assume p( F) > 0. (Otherwise (5.2) trivially holds.) Then,
from (5.8), w(E) > 0. Fix x € A* a regular point of p. (This means

im,_, , 2"} f(T'x) = [4=fdp, for every f.d. function f: A* — R.) Sup-
posei,j € Z,i <j, are given so that T'x € E, T’x € E, and T*x & E for
all s in the range i < s <. Then, we have for alla € 4*K*2M+1 p & B2K+!

(5.9) ji 8(xstK+M ) (\[/(X)H—K ) 5 (b) 2 8( s+K+M )

<(j—i)d +2N'2K+2M)(j —i) +2N

j—1
+ gIFc Tx)B( SHKEM )8 (x[z(x)frﬁ, )
j—1
Elrc(TX)5( STKEM, a).

s=i
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The first three terms on the right-hand side of inequality (5.9) arise from
summing over indices s which are no bigger than i + rN + N — 1; sum-
ming over the remaining indices, if any, we get the last two terms on the
right-hand side of (5.9), since such an index s is at a distance from i
greater than L and so 7°x & F by (5.8).

Now j — i = J by (5.7) and so by (5.6),
(5.10) AN<J8<(j—i)s.
Since u( E) > 0, we have T'x € E for infinitely many i > 0, say i; < i, <
-+ - . We obtain from (5.5), (5.9), (5.10) that forr = 2, 3,...,

(i — i) 2 8(xt kM, a)8(v(x)i 1k, )

z,—l

=2,(0)(i, = i) 8(xiTEEN, a)

s=i

<35+ — 1) S LB(x . )3(v(): K. )

S=i)

1,—1

+5,(b)i, — i) B Ie(T*x)8(x K70, a).

s=i,

Letting r — oo in the preceding we obtain, since x is a regular point,
Ipw"’[XK‘LM =a, Y& = b] — 5,(b)u[ XXM, = a]l
(5.11) <38 + p[ Fe N {x: x5, = a, 9(x) 5 = b)]
+o,(b)u[Fe n (XEEM, = a}].
Substituting pr[ XXM, = a, Y5 = b] for #,(b)u[ XXiM, = a] in (5.11),

and summing over a, b, we obtain by (5.3) that

3 lur?[ XKEM, = a, YE = b]
aEAZM’LZKH, beBZK+I
—pr[ XKEM, = a, YK = b]|< e+ 2p(F°).
(5.2) follows from this.
We remark that P3, P4 easily follows from Theorem 2.

V1. Families of sources concentrated on coding sets. In this section
we characterize when a family %) C 91U is concentrated on coding sets
(Theorem 4) or uniformly concentrated on coding sets (Theorem 3).
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LEMMA 4. ) C O is concentrated on coding sets if and only if there
exists a sequence of f.d. sets { F,}%—, such that

(a) limN—moIJ‘(FN) = Oa u € %p'

(b) limy_ , p(Fy) = 1, p € 9D.

Proof. Let %) be concentrated on the coding sets { F} where F, has
order N. Let p € 9, be of order N'. Let N = N'. Then F, does not
contain any periodic sequence of period = N’ and so u(Fy) = 0. Thus
lim,_ ,p(F,) =0 for all p € 9M, which have finite order. If p € M,
and &€ > 0, we show limsup,_  u(F,) <e Let E,, = {x € A*: x is peri-
odic with period < m}. Then u(F,,) - 1 as m — oo. Fix m so large that
p(E,) =1 — e Let p be the measure such that p'(E) =
wWENE,)/E,), E€@”. Then p' €9, and is of order m, so
lim,  p'(E) = 0. But u(F,) =<p'(F,) + ¢ and so limsup,_ , u(F,) <e.
Thus (a) holds — (b) automatically holds.

Conversely, let { F,} be a sequence of f.d. sets such that (a)—(b) hold.
Let x € A be periodic with period N. Let p be the periodic measure
which places probability N ! on each of x, Tx,...,T" 'x. Since u(F,) - 0,
we must have p( F,) = 0 for » sufficiently large. Hence F, cannot contain
x, for n sufficiently large. Since x was an arbitrary periodic sequence of
period N, and N was arbitrary, there is a subsequence {F, }7-, of {F,}
such that for each k, F, is a coding act of order k. By definition, 9 is
concentrated on the coding sets {F, }.

DEFINITION. Recall that S, C 4® is the set of periodic points. For
each & > 0, define M, = {n € M.: u(S,) < 8}.

Note the following: if u € 9N, then there exists p, € M, u, € M,
such that p = (1 — a)py + ap;, where a = p(S;). If u(S,) = 0 or 1, this
is trivial. If 0 < p(S,) < 1, define p, p, so that

_ [.L(E N Sp) -
;LO(E)—~———M(SP) , E € @~.
_w(ENSy) .
w(E) = ,u(Spc) , E € &~.

LEMMA 5. Let K be a closed subset of 9. Let § > 0. Assume K C O,
For any positive integer N, there exists a coding set F of order N such that
W(F)=1-—48, pe XK.
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Proof. Fix N. Let E = {X"'s= X2V!,}. Since E contains no periodic
sequence of period < N,

(6.1) p(E)=0, p€IM,of order =N.
If p € M and p( E) = 0, then p. is periodic of order < N! Hence
(62) ""(E) > O’ ® € %a'

Let E = {x € E: T'x € E for infinitely many i > 0}. Let¢: £ - {1,2,...}
be the time of first return to E. That is,

o(x) =inf{i >0: T'x €E}, x€E.

By Kac’s Recurrence Theorem [4]

(6.3) .[Etpdu:l, pE&,u(E)>0.

Now by ergodic decomposition theory [17], given p € II there exists a
family {p,: @ € 4} C & such that

(a) For each F € @, the map w - p(F) from A* - [0, 1]
is @*-measurable.

(b) B(F) = [gopo( F) dp(w), F € @=.
Let p € 9, Since u(S,) = 0, if {p,,} is the decomposition of p satisfying
(2)—(b), we must have p(S,) = 0 for p-almost all w € 4. Hence we may
assume that the “ergodic components” {p } of p € 9N, are all in IM,.
Thus we must have

(6.4) fE«pdp,:l, p €I,

since this already holds for all p € & NI, by (6.2), (6.3). Now if
p € 9N, by the remarks preceding this lemma we may decompose p in the
form p = (1 — a)p, + ap,;, where p, € M, p, € M, and a = p(S;).
Hence by (6.4) we have for all p € 9 that [z dp =afsddu, =a =
p(S,). Since p(S;) = 1 — & for p € K, this gives

(6.5)  lm min[ f

n—oo 2

qbd;t,l—ﬁ]:l—-& peE K.
En{¢=n}

Now p(E) = u(E) for all u € 9 buy Poincaré’s Recurrence Theorem [4].
Thus, for n = 1,2,..., letting £, by the f.d. function

n i—1
fo=1Ig 2 i[ H IT"E‘]IT"E’
. =1

i=1
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we have

fA”fn dp. z-/;?n{qun}d) du, "e .

This implies that in (6.5), the pointwise limit of an increasing sequence of
continuous functions on the compact set K is being taken. Thus, by Dini’s
Theorem [1, p. 181], the convergence in (6.5) is uniform on . Therefore
we may fix »n so that

(6.6) ff,, dp>1-38/2, pe%X.
Now by (6.3),

(6.7) Osff,,dus/¢dp.sl, pE .
By (6.1)

(6.8) f f,dp=0, pEON,of order <N.

Choose 8>0 so that 28 <min(N~',8/2). Using Lemma Al of the
Appendix and (6.6)—(6.8) we obtain a f.d. g such that
©-B<g=1+p
@) fgdp>1—-38/2,pEXK
() fgdp =0, p € M, of order < N.
Letg =(g+ B)/(1 + 2B). Then
Ho=sg=<1
@ fgdp=(1+2B)'1—-38/2)=1-2B—-38/2=1—-28,peX
(h) fgdp=B(1 +2B8)" <B, p €M, of order < N.
Set F = I3, /,;. By Chebyshev’s Inequality and (h),

(6.9) u(F)S2fg‘dp<2,B, p € I, of order < N.

Let x be a periodic sequence of period j = N. Let p be the periodic source
which assigns probability j~! to each of x, Tx,..., T/ 'x. Now u(F) is
either 0 or is at least j~'. But j~' = N~! > 28, so the latter possibility is
ruled out by (6.9). Hence F cannot contain any periodic sequence of
period < N, which means F is a coding set of order N. Using Chebyshev’s
Inequality and (f), (g),

1—p.(F)=u[1—g21/2]S2f(l—-g)dp548, pEX.

Hence, u(F) =1 — 448, p € K.
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THEOREM 3. Let &) C 9. Then 9D is uniformly concentrated on coding
sets if and only if D C O, where ) denotes the closure of D in the weak
topology on M.

Proof. By Lemma 5, if 9 C O, then 9 is uniformly concentrated on
coding sets. Conversely, let us suppose 9 is uniformly concentrated on
coding sets. Pick coding sets {Fy}¥-,, where F, is of order N, and
p(Fy)=1—=N'pe®d N=1,2,.... Let

[e o]
6= N {(rEM: p(Fy)=1—-N"}.
N=1
Then %) C § and § is a closed subset of IM. All that remains to be shown
is that § C9,. Let p € §. Let ¢ > 0. Decompose p in the form p =
(1 — a)py + ap,, where p, €M, p, € M, and a = p(S;). As shown
in the proof of Lemma 4, po( Fy) — 0 since p, € IM,,. Hence

= NH—I,EO p(Fy)=(1- a)Nh;{r:o po(Fy) + o Nli_ff:o p(Ey) = a.
Consequently p(S;) =1 and so p € I,

THEOREM 4. Let ) C . Then ) is concentrated on coding sets if and
only if for any € >0 there exists a o-compact subset %, of ON such that

9 CF, CME.

8

Proof Suppose for any ¢ > 0, there is a o-compact set 9, such that
) C g, C ;. For each j = 1,2,..., write F.. = U K, where each
K is compact and K’ C f}C,(f)l, i=1,2,.... Applying Lemma 5, for
each K/ we may find a coding set F{/ of order i such that

(6.10) WED)Z1-47,  peXD,

Let F, = Uj.:,E(j), i=1,2,.... Then each F, is a coding set of order i
and

(6.11) w(F) zu(FD), j=i.

We show 9 is concentrated on the coding sets {F;}. Let p € %, and
suppose {n(F)} does not converge to 1. Pick integers {7 };2, such that
€ K/, j=1,2.... Pick B <1 and integers {m,} | such that
(a)M(F )<.BJ— 1,2,.
(b)y m; >max(1,z ), Jj = 1 2
Then for each j, p € ‘JC“) and u(F ) = p(E) by (6.11). By (6.10),
,u.(F(f)) =1 — 47" Thus, llquwp.(F ) =1, which contradicts (a).
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Conversely, suppose D is concentrated on coding sets. By Lemma 4,
pick f.d. sets {F,} such that p(F,) -0 for p € M, and p(F,) - 1 for
p € °D. Lete > 0. Let

o0 00
G=U N {reM:u(E)=1-1d.
k=1 n=k
Then ¥, is o-compact and 9 C ¥,. To complete the proof we need to show
that &, C 9;. Let p € 9,. Write p = (1 — a)p, + ap,, where p, € M,
B € M,, and a = p(S;). Since (1 — a)po(F,) +a=p(F,) =1 —eforn
sufficiently large, and p( F,) — 0, we get « = 1 — &. Thus p(S,) =€ and
so p € 9N by definition of IN:,.

Examples. (A) Any finite subset of 91, is closed and thus is uniformly
concentrated on coding sets by Theorem 3.

(B) If € > 0 the set % of all product measures (““memoryless sources”)
p in O such that min, ., u(X, = @) = ¢ is uniformly concentrated on
coding sets by Theorem 3.

(C) If € > 0, the set %) of all Markov measures p in 91U whose matrix
of transition probabilities 7" = {#;: i, j € A} satisfies min, ;c , 7/, = ¢,
is uniformly concentrated on coding sets by Theorem 3.

(D) The set 9 of all measures in 9N, relative to which 7 is a mixing
transformation is concentrated on coding sets. For, if p € ),

limsupp[ X" = X27,] < Jim  lim pl X+ = Xtk

no oo —00 n— o0

= lim Y {p[X*= a]}2 < lim maxp[X*=4d] = 0.
k— o0 acAk k-0 geq*
Hence, setting F, = { X" = X2/} |}, F, is a coding set of order n and
w(E,) » 1 forp € 9.
(E) The set D of all p € & with positive entropy is concentrated on
coding sets. To see this, set
n!'—2
F,= U {00 = X}
i=0
Then F, is a coding set of order n. There is a subset G, of A”"?° such that
F,={X"" € G,), and (n!)*log|GS|-0 as n - co. Hence, by the
Shannon-McMillan Theorem [6], if p € D, u( ES) — 0.
(F) 9, is not concentrated on coding sets. To see this, we first
observe that O, is a §; subset of 9N; that is, M, is a countable
intersection of open subsets of M. (For,

M= N N (s u(x)<n))

x€S, n=1
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If 9N, were concentrated on coding sets, by Theorem 4 there would exist
a o-compact subset ¥ of 9N such that M, C Fand F N M, = J. We can
write = U2 K, where each K, is compact. Since O, is a §; subset of
the compact metrizable space 91, the relative topology on 9N, is metriz-
able with a complete metric {1, Thm. A9.9]. Thus 9N, is a Baire space
[1, Thm. A9.2], and so the 9N -closure of some K, N I, must contain a
non-empty 9N _-open set. Therefore there is an open subset O of I such
that 0 N M, C XK, for a certain i. Now I, is dense in I [18]. Thus we
may pick p € O N I, Since M, is also dense in M [18], we may pick
{p,} CON,such that u, - p. Then p, € O N M, eventually. This would
force p € K,, since K, is closed. But K, N M, = &, so this is a con-
tradiction.

To conclude this section we point out how PS5 can be shown to follow
from P1 and P3. Given ¢ >0, ¥ €9, g,...,p, €M, and f.d. sets
E,,...,E, C A® X B*, we need to find »’ € 5, such that

(6.12) |uv'(E) —pr(E)|<e, i=1,...,nj=1,.. k.
First, by P1 find # € Sf such that
(6.13) lp,,ﬁ(Ej) ~piv(Ej)|<e/2, i=1,...,n;j=1,...,k.

Then, as observed in Example (A), {g,,...,p,} is uniformly concentrated
on coding sets; thus, by P3 there must exists »’ € 5, / such that

(6.14) |pv'(E;) — nd(E;)|<e/2, foralli, j.
From (6.13), (6.14), we obtain (6.12).

APPENDIX
The following is Lemma A3 of [8], in which paper a proof is given.

LEMMA Al. Let f: A* — R be a f.d. function. Suppose [ fdp =0 for
all p € . Then, given € > 0, there exists a positive integer N such that for
alln =N,

n—1
n' Y f-T'= —¢ throughout A®.
i=0

LEMMA A2. Let v € S. Let k be a positive integer. Let v’ be a channel
with input space A® and output space B*, such that for each b € B*, the
map x - v{(b) from A® > [0, 1] is f.d. Then there exists # € o such that
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the following holds for everypy € M, 1 <j<k,a€ A/, b € B/:

(A1) |wlX' =a, Y =b] - pi[ X’ =a, v’ = b]|

<2j/k+ Y [v (Y% =b) — v/(b)] dp(x)|.

a’ €EA* b’ € BX

{(X*=a)

Proof. Let # be the k-stationary channel with input space A* and
output space B such that

| X (Tt =0)| = T o),

i=-~00 1=-00

for all x € A* and {b,}°.__ C B*. Then, for p € O, a € A*, b € B*,

i=-00

|wi[ X5 =a,Y*=b] —w[X=a,Y*=b]|

Z’j;)?k 7(Y*=b)du(x) —f~k v (Y*=b)dp(x)

=a} {X*=a}

f{ o ) = TF = )] ()]

It follows from this that if f: A* X B* - [-1,1], then

(A2)  |Ef(X*, Y¥) = E f(XF, ¥5)|
< k}j . }[V;(b) — v (Y* = b)] du(x)|.

Let # € S be the channel such that

k—1
P(E)=k™" > 5. (T'E), x€E A, EERH>.
i=0

It is easily checked that # € Sf. Now forall p €M, 1 <j<k,a € 4/,
b E B/,

(A3) |wi[X =a, v/ =b] —w[Xx =a, Y =1p]

k—1
-1
kK2 L irimayiz=n)

1=0

k—1
— -1
= Euﬁ[k 2 1{&'¢f.=ﬂ/ﬁ(2b)} —E,

i=0

SI Ep,f/'f(Xk’ Yk) - Ep,vf(Xk’ Yk) I +2J/ka
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where f: A¥ X B* - [-1, 1] is the function such that

k—j
f(XY*)=(k—j+ 1)'1 2 Iixivi=a,viry=8)-
i=0

Coupling (A.3) with (A.2), we get (A.1).

For our next lemma we need to present some notation. Let k be a
positive integer. Let P be the set of all @°-measurable ordered partitions
P = {P®,...,P™} of A consisting of k sets. Let P* be the subset of P
consisting of those partitions whose elements are f.d. sets. If p € 91 and
P,, P, € 9, then the p-distance between P, and P,, written | P, — P, |us 18
defined to be Z_,u( P/APY).

Recall that & is the set of all ergodic sources in 9. Consider the
measurable space (&, ¥(&)), where ¥(&) is the smallest o-field of subsets
of & such that for each E € @, the map p - p(E) from & — [0, 1] is
measurable.

The following is a consequence of Theorem 1 of [12].

LEMMA A3. Let ) € F(&). Let X be a set. A family {®,: p € D} of
maps from P* — X is given such that

(a) q)“(Pl):(I)”(PZ) lflPl —PZI}L:O’PI’PZ Eé\Pksl"EGD'
Let E be a subset of X such that

() {n ED: ®(P) € E} € F(6), P € F~.

© @, (E)NP*+ 3, peN.
Then

N ®(E)# 2.

nED

Using the preceding lemma along with P5, we now are able to show
that P6 follows. Suppose we are given » € 5,¢ > 0, and f.d. sets E|,...,E,,
C A X B*. To establish P6, we need to find a stationary code y:
A% — B* such that

(A4) 12;12’" useuG)I])L”|uV‘*(Ej) ~wr(E)|<e.

Let | B|= k and B = {b,,...,b,}. Let C be the set of all stationary codes
Y: A® — B*®. There is a one-to-one map 7 of P* onto C defined as follows:
It P={PD, .. PH®} € P define 7(P) = ¢ to be the stationary code y:
A* - B® such that {x € 4°: Y(x), = b;} = PY,j =1,...,k. In Lemma
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A3, take D = M, X = R, and for each p € M, let ®,: P* - R be the
map such that
®,(P) = sup |wr"®(E,) — wr(E;)|, PeP~
I=j=m
Let E = {x € R: x < ¢/2}. Assumptions (a)-(b) of Lemma A3 are easily
seen to hold. Assumption (c) is a consequence of P5 since 7 maps ¥* onto

the set of all finite stationary codes. Applying Lemma A3, we obtain
P € ¥* such that ®,(P) € E, p € M. Letting ¢ = 7(P), this means

sup |w¥(E,) —wr(E)|<e/2, neEOR,
<j=m

This implies (A.4).

LEMMA A4. Let S be a finite set. Let m = {m;;: i, j € S} be a stochastic
matrix. Let (2,9, P) be a probability space. Let X,Y: Q — S be measura-
ble functions such that P[ X =i, Y =j]|=P[X=i]lm, i,jES. Let f:
S — [0, 1]. Then

| COV(£(X), /(Y)) |< min(a(r), 1).

j’

Proof. Letp, = P[X =i],i € S; letp, = E(X), p, = E(Y). Then
COV(f(Xx), f(Y)) = 2 (f(’) - Pﬂ)(f(j) - ﬂz)Pi‘”ij-

i,JES
Since

() — i |1 F(J) — my| =1, i,jE€S,
it is clear that | COV( f(X), f(Y))|< 1. Fix{ € S. Then

2 () = p)(f()) — p2)pimy;

i,JES
= (Z(f(i) - ul)p,-)(Z(f(j) - uz)m) =0.
Thus
| COV(£(X), f(Y))]
=|COV(f(X), (1) = 2(A() = w)(F()) = p2)pim

= EPiI'”ij - '”x}l < a(7).
i,j
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