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ON RANDOM SOLUTIONS
OF VOLTERRA-FREDHOLM INTEGRAL EQUATIONS

V. SREE HARI RAO1

This paper is concerned with the existence, uniqueness and
boundedness of random solutions of a random nonlinear mixed integral
equation of Volterra-Fredholm type. The main tools for the study are the
theory of admissibility of integral operators and the theory of random
contractors.

1. Introduction. The mathematical description of various processes
in physical, biological and engineering sciences gives rise to random or
stochastic operator equations. Many applied problems leading to operator
equations require the existence and continuity of the inverse operator. In
[1], Altman has introduced the notions of inverse differentiability and
contractors, which are very useful tools for solving deterministic operator
equations in Banach spaces. The subject of random integral operator
equations has been the object of numerous investigations in recent years
and we refer the reader to the works of Bharucha-Reid [2] and Tsokos and
Padgett [12]. Lee and Padgett [5], have developed the theory of random
contractors, extending the work of Altman [1] and employed it in the
study of random nonlinear Volterra integral equations.

In this paper, we obtain theorems on the existence, uniqueness,
boundedness and stability of solutions of the following nonlinear stochas-
tic integral equation of Volterra-Fredholm type

(1.1) x(t; ω) =f(t; ω) + Ca{t, s; ω)g(s, x(s; ω))ds

f b(t9s;ω)h(s9x(s;ω))ds9 t > 0,

o

where ω €Ξ Ω, the supporting set of the probability measure space
(Ω, A, P), x(t; ω) is the unknown random variable for each t E R+ =
[0, oo), f(t; ω) is the stochastic free term defined for t e R+ , a and b are
stochastic kernels and g and h are scalar functions defined on R+ Xi?,
with R = (-oo, oo). The tools used are admissibility theory of integral
operators (cf. [4]) and contractor theory.
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We note that the equation (1.1) is a generalization of the equations
discussed in [3, 5, 6, 7,11]. Our notation and terminology are fairly
standard and can be understood by referring to [5, 6] and [12]. However,
in order to make the paper more self contained, we state briefly the basic
definitions that are needed for the main results.

Let (Ω, A, P) be a complete probability measure space. C =
C(R+ , L2(Ω, A, P)) denotes the space of all continuous functions from
R+ into L2(Ω, A, P) = L2, with the compact open topology. Notice that
C is a Frechet space and contains the second order mean square continu-
ous stochastic processes. For a positive continuous function u on i?+ , we
define the space Cu9 to be the space of all continuous functions x(t; ω)
from R+ into L2 satisfying

X/1
2 \X/1

; ω)\ dP(ω)j < Ku(t), t > 0,

for some positive constant K. Note that Cu is a Banach space, with the
norm defined by

t>0

The space Cλ for u = 1, includes all the bounded continuous mean square
processes on R+ . We say that a pair (B, D) of Banach spaces in C, such
that the convergence in B or D implies the convergence in C, is said to be
admissible with respect to an integral operator T, if T(B) C D.

We shall adopt the following definition from [6].

DEFINITION 1.1. Let/(ί, x; ω) be a real valued function for ί £ ί + ,
x G R and ω E Ω such that /(*, x{t\ ω); ω) G B whenever x(t; ω) G D.
The function/is said to have a bounded integral contractor Γ with respect
to (B,D) if

(i) for each t E i?+ and x E Λ there exists a bounded linear operator
Γ from D to B such that || Γ(ί, JC)|| is continuous in (t, x) and || Γ(/, JC)|| <
β for some positive constant Q\ and

(ii) for each t E R+ and x, ^ E Z>, there exists α > 0 such that

\\f(t, x(t; «) + j(ί; «) +[7T(/, αc(ί; ω))^](/; ω); ω)

-/(/, x(ί; «); ω) -[Γ(ί, x(/; «))^](/; ω)||

^«W'; «)IID

The constant α is called the contractor constant.
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2. Existence, uniqueness and boundedness of random solutions. In
this section, we obtain results on the existence, uniqueness and bounded-
ness of random solutions of (1.1). By a random solution of a stochastic
integral equation such as equation (1.1), we shall mean that for each
t G i?+ , x(t; ω) satisfies the equation almost surely. We note that the
results of this section are extensions of [6] to (1.1) and are more general
than those of [10].

The following hypotheses will be used in the subsequent discussion.
Let B and D be Banach subspaces of C.

(H2) The pair (B, D) is admissible with respect to the operator T:
C-+C, defined by

(Tx)(t; ω) = Ca(t, s; ω)x(s; ω)ds + ί b(t, s; ω)x(s) ω)ds, t > 0.

(H3) x{t\ ω) -> g(t; x(t; ω)) are continuous mappings from C into C,
such that x(t; ω) G D implies g(t9 x(t\ ω)) and h(t, x(t; ω)) G B.

(H4) For each λ > 0, there exists a δ, > 0 such that

\\g(t9 x(t; «)) - g(/, y(t; ω))\\B < λ\\x(t; ω) - y(t; ω)\\D

whenever \\x(t; ω)\\D, \\y(t; ω ) | | Z ) < δ 1 .
(H5) For each η > 0, there exists a δ2 > 0 such that

/, x(t; ω)) - h(t, y(t; ω))\\B < η\\x(t; ω) - y(t; ω)\\D

whenever | U ( / ; ω ) ! ! ^ , \\y{t\ ω)\\D< δ 2 .

THEOREM 2.1. Let (H,), (H 2 ) and (H 3 ) hold. Also suppose that the
functions g and h have bounded integral contractors Tx and Γ2 with contractor
constants a and β respectively. Then there exists a random solution to (1.1)
providedK(a + β) < 1 where K— \\T\\. Furthermore, the random solution
is unique, if the integral equation

y(t; ω) + f a(t, s; ω)Γ,(s, x(s; ω))y(s; ω)ds

f b(t, s; ω)Γ2(^, x(s; ω))y(s; ω)ds = z(t; ω)

o

where x(t; ω), z(t\ ω) G D, has a solution in D.
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THEOREM 2.2. Let (H,) and (H2) hold, in which B - D — Cu and u and
G are positive continuous functions on i?+ , such that

Γ\\b(t,s;ω)\\u(s)ds<MG(t),
Jt

for t G R+ , where M is a positive constant. In addition, assume that for
each t E R+ and x, y G Cu, there exist bounded linear operators Tx(t, x) =
Γ\ and T2(t, x) = Γ2 such that

\\g(t,x(t;ω) +y(t;ω)

+ fa(t, s ω)(Txy)(s; ω)ds) - g(t9 x(t; «)) - (Γ^)(/; ω ) ! ^

< a\\y(f, co)|U2

and similarly

\\h(t,x(t;ω)+y(t;ω)

+ Γb(t, s; ω)(T2y)(s; co)ds) - h(t, x(t; ω)) - (T2y)(t; ω)|| ̂

i, there exists a random solution x(t; ω) of(\Λ) such that E \ x(t; ω) \2

< X2G2(t), t > 0? where λ>0 is a constant, provided K(a + β) < 1.

The proofs of Theorems 2.1 and 2.2 may be easily constructed,
following those of Theorems 3.1, 3.2 and 3.3 of [6]. We omit the details.

THEOREM 2.3. Suppose that the conditions (H1)-(H5) hold. Then, if
there exists a number ε0 > 0 such that for 0 < ε < ε0,

||/(/; ω ) | | o + K\\g(t,0)\\B + K\\h(t,0)\\B < 6e,

for some fixed δ G (0,1) and K— \\T\\, then there exists a unique random
solution x(t; ω) o/(l.l) in D and further \\x(t\ ω)|| ^ ε.

Theorem 2.3 extends Theorem 2.2 [10, p. 314] by dropping the
condition g(t,O) =h(t,O) = 0 and its proof is a direct application of
Banach's contraction mapping principle. Also it may be viewed as a
stochastic stability result of solutions of (1.1). For, given ε > 0, there
exists δ(ε) > 0 such that ||jc(ί; ω)!!^ < ε for all t > 0, with probability
one, whenever 11 f(t; ω)|| D is sufficiently small with probability one.
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THEOREM 2.4. Assume the following:

(ii) (CX,CX) is admissible with respect to the nonlinear random operator

defined by

(Nx)(t; co) = ί a(t, s; ω)g(s, x(s; ω))ds

>.oo

+ I b(ty s; ω)h(s, x(s; ω))ds.

(iii) There exist positive numbers AQ and BQ such that
ft /•<»

sup I \\a(t, s; ω)\\ds <A0 < oo and sup / \\b(t, s; ω)\\ds < Bo < oo.

(iv) On the set Sγ = {x(ί; ω) G Cλ\ \\x{t\ ω ) | | C i < γ}, g aw/ Λ 5αto^

Lipschitz conditions in L2-norm with constants λ and μ, respectively.

Then there exists a unique random solution x*(t\ ω) of (1.1) in Cλ

such that £ | x*(t\ ω) | 2 < γ 2 for all r > 0, provided ( λ ^ 0 + μB0) < 1 and

It is easy to see that Theorem 2.4 is a combination of the results on

random Volterra equations [11] and on random Fredholm equations [8].

However in these papers the hypothesis (ii) is replaced by (H 2 ) in which

the operator is linear. We may also apply Theorem 3.4 of [5], by noticing

that the identity random operator I(ω) is a bounded random contractor

for the operator U: Sy -> Cλ given by (U(ω)x)(t; ω) — x(t; ω) — f(t; ω)

— (N(ω)x)(t; co). Also, the hypothesis on the Volterra kernel in Theorem

2.4 is weaker than the corresponding condition (i) of Theorem 3.4 [6].

3. Boundedness results and examples. In this section, assuming

existence, some additional theorems and examples on the boundedness of

solutions under different conditions than those in §2, are presented. These

theorems extend some of the results of [3] and [7].

We consider the following equation

(3.1) χ(t; ω) =f(t; ω) + fa{t, s; ω)g(x(s; ω))ds

+ / b(t,s; ω)h(x(s; ω))dsy t > 0,

and list the following conditions:

(H 6 )/(/ ; ω) is bounded on i? + XΩ.
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(H7) sup,>o/o I a(t> s; ω)\ds<A0< ao with probability one, and
with probability one, sup,>0 /0°° | b(t, s; ω)\ds < Bo< oo.

(H8) g, h E β(-oo, oo), where 6 denotes the class of continuous
functions from R -> R.

(H9) With probability one, a(t; co) < 0 for 0 < / < oo and a\t\ ω) > 0
on 0 < / < oo.

(H10) /0°° |/'(ί; co) I Λ < oo, with probability one.
In (H9) and (H10) " r " denotes the derivative with respect to t, for

each ω.
(H π ) g E β(-oo, oo), G(x) — JQ g(u)du -> oo as | JC | —> oo, and

I g(Λ ) |< ΛΓ[1 + G(x)l I JC I < oo, for some constant K > 0.

THEOREM 3.1. Lei (H6), (H7) and (H8) ΛoW. Further suppose that with
probability one

s{χ)(3.2) ( sup Γ |fl(ί, 5", ω)|ώ lim sup < 1, α«J with probability one

sup / |Z>(i, s; ω)\ds lim sup
^ t>0 J0 I |jcl->oo

h(x)
< 1.

et ery random solution of (3.1) w bounded on 0 < / < oo, w//Λ proba-
bility one.

Proof. Let x(/; co) be a random solution of (3.1) for t >: 0. In view of
the condition (3.2), we can choose Kl9 K2 sufficiently large, and p1? p2 > 0
with pj + p2 < 1 and such that, with probability one

( 3 . 3 ) ( s u p Γ\a(t, s ; ω ) \ d s ) \ g ( x ( t ; ω ) ) \ < P ί \ x ( t ; ω)\,

for I x{t\ ω) | > ϋΓj and with probability one,

( sup Γ \b(t, s; ω)\ds)\h(x(t;ω))\ < p2\x(t; ω)|,

for\x(t;ω)\>K2.

LεtK=max{Kl9K2).
Define

/, = [u: \x(u; ω)\> K) and I2 = {w: |JC(W; ω)| < K}9 ω E Ω.

From (H6), there exists M > 0 such that |/(/; ω) | < Af on 0 < / < oo,
co E Ω. Since g and Λ are continuous, there exist Ll9 L2 > 0 such that
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\g(x(u;ω))\<Lx and | h(x(u; ω)) | < L2 for \x(u;ω)\<K, that is for
u G /2. Now from (3.1) and (3.3), we have

x(ί; <o) =/(* ; ω) + f a(t,s; ω)g(x(s; ω))ds

+ f a(t9s; ω)g(x(s; ω))ds + ί b(t9s\ ω)h(x(s; ω))ds

+ t b(t9s; ω)h(x(s; ω))ds.

That is,

\x{t;ω)\<M+ (pϊ/sup f'\a(t9 s; ω)\ds) ί \a(t9s; ω)\\x(s; ω)\ds

+ L , ί | έ ϊ (/ , < s ;ω) |ώ+ (p 2 /sup f \b(t,s; ω)\ds]

XJ \b(t, 5; ω)| \x(s; ω)\ds + L2ί \b(t, s; ω)\dsy

<M + px sup \x(s; ω)\ + LιA0 + ρ2 sup \x(s; ω)\ + L2B0.
j6/,,ί<ί J6/,,J</

Since this is valid for every / > 0, we have, with probability one

sup \x(t;ω)\<M + LιAQ + L2Bo+(ρι + ρ2) sup \x(s; ω)\,

for every Γ > 0 and since 0 < ρλ + p2 < 1, we see that

SUp
' • • " " - l - ( P l + p2) *

Since this bound is independent of t, we see that

sup
o<ί<oo

; ω ) | <
! ~ (Pi + Pi)

with probability one and this completes the proof of the theorem.

(3.4)

COROLLARY 3.2. Assume (H6), (H7) and (H8) and that

h(x)
lim sup = lim sup = 0.

solution 0/(3.1) is bounded on R+ .
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Since the hypothesis (3.4) implies (3.2), the proof follows from Theo-

rem 3.1.

The next result is also a boundedness result and is specialized to the

random integral equation of Volterra type, given by

(3.5) x(t; ω) = /(/; ω) + fa{t - s; ω)g(x(s; ω))ds, t > 0.

THEOREM 3.3. Assume (H9), (H1 0) and ( H u ) . Then every solution of

(3.5) satisfies sup 0< / < 0 01 x(t; ω) | < oo, with probability one.

The deterministic analogue of (3.5) has been considered by Londen

[7]. Following the proof of Theorem 2 [7] and using the Lemma 6.1 [2, p.

192], the proof of Theorem 3.3 may be completed.

Now consider the equation (3.1), in which b(t, s; ω) = 0 for 0 < s,

t < oo and ω E Ω and a(t, s; ω) = a(t — s; ω). Then Theorems 3.1 and

3.3 provide sufficient conditions for the boundedness of all solutions of

(3.5). It is interesting to note that the two sets of conditions are in general

different, which can be seen from the following examples.

EXAMPLE 3.4. Consider the following equation

(3.6) x(t; ω) = /(/; ω) + Ca{t9 s; ω)g(x(s; ω))ds,

t > 0 and ω G Ω C i?+ , where

f(t;ω) = e-t/3-ω, t > 0, ω E Ω, a(t, s; ω) = e^-s+2ω/3\

2
0 < 5 < / < o o , ω<ΞΏ and g(x) =-^xι/3 ΐorx<ΞR.

Now by Theorem 3.1 all solutions of (3.6) are bounded on 7?+ .

Indeed, the random function x(t; ω) = e~(/+ω), 0 < t < oo and ω E Ω is a

bounded solution of (3.6). It may be noted that Theorem 3.3 cannot be

applied to (3.6) as all its hypotheses are not satisfied.

EXAMPLE 3.5. All the solutions of the nonlinear random equation

(3.7) χ(t; ω) = /(/; ω) + fa(t - s; ω)g(x(s; ω))ds

t > 0, and ω E Ω C i?+ , where /(/; ω) = 1/(1 + ω), a(t; ω) = -1 , for

/ E jR+ and ω E Ω, and g(x) = x2 on i?, are bounded by Theorem 3.3. In
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particular x(t; ω) — 1/(1 + t + ω), 0 < t < oo, and ω E Ω is a bounded
solution of (3.7). It is easy to see that the conditions (H7) and (3.2) of
Theorem 3.1 are not satisfied.

The author is grateful to the referee for many valuable suggestions.
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