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ON F-SPACES AND F'-SPACES

ALAN DOW

Two problems concerning F-spaces and F'-spaces are investigated.
The first problem is to characterize those F-spaces whose product with
every P-space is an F-space. A new necessary condition is obtained
which is in fact a characterization of those F-spaces whose product with
any P-space with only one non-isolated point is an F-space. As a
corollary an example of a locally compact F-space and a P-space whose
product is not an F-space is obtained. The second problem is to verify a
conjecture of Comfort, Hind man and Negrepontis. It is shown that each
weakly Lindelόf F'-space is an F-space. Also, each zero-dimensional
weakly Lindelόf F'-space is strongly zero-dimensional.

0. Introduction. All spaces considered are completely regular and
βX is the Cech-Stone compactification of X. A space X is: an F-space if
disjoint cozero subsets of X are contained in disjoint zero sets; a P-space if
each zero set is closed and open; an F'-space if disjoint cozero subsets
have disjoint closures; and basically disconnected (BD) if each cozero set
has clopen closure. In 1960, Curtis [Cu] showed that if a product of spaces
is an .F-space then it can be expressed as a product of a P-space with an
F-space. The interesting question is then to characterize those F-spaces Y
so that I X Yis an F-space for each P-space X. In [CHN], the analogous
question for F'-spaces and BD spaces is solved. In [N], Negrepontis
showed that Y be compact is sufficient and Hindman [H] weakened this
considerably. A space Y is weakly Lindelδf if each open cover of Y has a
countable subcollection whose union i sdense. Hindman's condition is a
weakening of weakly Lindelόf.

The only necessary condition on an F-space Y to arise is from the
characterization for F'-spaces. Clearly if a space is an F-space then it must
also be an F'-space. In [H] it is shown that this condition is not sufficient.
We obtain a new necessary condition on Y in order that I X 7 is an
F-space for each P-space X. This condition is actually a characterization
of those F-spaces whose product with each P-space with a unique non-iso-
lated point is an F-space. As a consequence of this we are able to
construct an example of a locally compact F-space Y and a P-space X
such that X X Y is not an F-space. In addition this provides an example
of a locally compact F'-space which is not an F-space, answering a
question related to the author by M. Henriksen.
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In the second section it is shown that a weakly Lindelόf F'-space is an

F-space and if it is zero dimensional then it is strongly zero dimensional.

This verifies a conjecture in [CHN]. We provide an example which shows

that no reasonable weakening of weakly Lindelόf can replace it in the first

result.

We list some well known facts about F-spaces and F'-spaces which we

shall use without mention. We refer the reader to the Gillman and Jerison

text [GJ] for undefined notions and terminology.

0.1 THEOREM. (\)IfXis an F-space then βXis an F-space.

(2) Each C*-embedded subspace of an F-space (F'-space) is an F-space

(F'-space).

(3) An open subset of an F'-space is an F'-space.

(4) A space is an Ff-space iff it is locally an F'-space.

(5) Each cozero subset of an F-space is C*-embedded.

(6) X is an F-space iff disjoint cozero subsets of X are completely

separated. D

1. On products of F-spaces. In this section a new necessary condi-

tion is found for an F-space Y to have the property that X X Y is an

F-space for each P-space X. It comes in the form of a characterization of

those F-spaces Y so that X X Y is an F-space for each P-space with at

most one non-isolated point. For convenience, let us ίet PI-spaces be the

class of P-spaces with a unique non-isolated point. For a PI-space, X, let

px be the unique non-isolated point and 91 x be the neighborhood filter of

px. A few preliminary results are needed.

1.1 DEFINITION. [CHN] a space Γis CLWL (countably locally weakly

Lindelόf) if for each point y G Y and countable collection of open covers
Glln of Y there is a neighborhood U of y so that each Gllrι has a countable

subcollection whose union is dense in U. D

We shall only need the following consequence of a space being
CLWL.

1.2 THEOREM. [CHN] Let / G C * ( I X 7 ) for a P-space X and a

CLWL space 7, then for each (x, y) G X X Y there are neighborhoods U of

x and Vofy so that f\ux^ is constant for eachy' E V. D

1.3 THEOREM. [CHN] An Ff-space Y is CLWL iff for each P-space X

(or each Pλ-space X), XX Y is an Ff-space. D
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Notice that if Y is an F-space with the property that X X Y is an
F-space for each PI-space X then, by 1.3, 7 must be CLWL. The
following definition will be convenient.

1.4 DEFINITION. Let X be a PI-space and Y any space. For an indexed
collection [Ct: i E X\{px}} of subsets of 7 the

*-limy{Cf.: i E X\{px}} = Π (cl y U (Cf : i E [/): C/U {^} E %x).

Call the space 7, X-paracornpact, if whenever X-limylC,: i E X\{/>x}} =
0 for cozero subsets, Ci9 of 7 there are zero sets Zz D Cf with

ΛΓ-limyfZ,.: ί GX\{px}} = 0 . D

Observe that a BD space is X-paracompact for any PI-space X For a
function / with domain XX Y and Λ: E X, let £ be the function on Y
defined by fx(y) — f(x9 y) for y E 7. We shall require the following
lemma.

1.5 LEMMA. Let X be a Pl-space and let {Sx: x E X\{px}} be subsets
of Y so that X-Ym\γ{Sx\ x E X\{px}} = 0. If h is a bounded real-valued
function on X X Y with hx E C*(Y) for x E X and for x E X\{px}9

{y E Y: hx(y) Φ hpχ(y)} C Sχ9 then h£ΞC*(XX Y).

Proof. It suffices to show continuity of h at a point (/J^, 7), for j ; E 7
arbitrary. Choose U E 91^ so that;; $ cl y U (S^: x E ί/\{j9^}} and let
F be a neighborhood of j ; so that V Π Sx - 0 for x E {/\{/? }̂. It
follows that /z is continuous on U X F since for x E 17, Λ \

1.6 THEOREM. // X is a Pl-space and Y is a CLWL, X-paracompact
F-space then XX Y is an F-space.

Proof. Let AQ and Aλ be disjoint cozero subsets of X X Y. We shall
show that Ao and Ax are completely separated in X X Y. Since {ĵ }̂ X Y
is an F-space we can choose disjoint zero sets of 7, Wo and Wl9 so that
Λi n {Px} x Y Q {Px) x wi f o r / = 0,1. We may also choose g0, g1 E
C * ( I X 7) so that the cozero set of gi is A\(X X Wt) for / = 0,1. For
x E X\{px) choose,C,, a cozero subset of Y so that

{x} X CX=[AO\(XX W0)UAι\(XX Wλ)] Π ({x} X Y).

We show that X-limγ{Cx: x E X\{px}} = 0 . Indeed, let j E 7 be
arbitrary. Since 7 is CLWL there are neighborhoods U of px and F of y
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so that g0 and gx are constant on U X {y'} for eachy' G Fby 1.2. Now
go((Px> y')) = &((/>*, / ) ) = 0 for all / E 7, so (1/ X V) Π U {{x} X
Cx:x E I \ { ^ } } = 0 . Hence VΠ U{CX: x E U\{px}} = 0 and;; is
not an Jf-limy{Cx: x E X\{/? X }} . By the X-paracompactness of 7 we
choose Zx D Cx so that X-limγ{Zx: x E X\{px}} = 0 .

We shall define Λ E C * ( I X 7) to witness that Ao and Aλ are
completely separated by defining hx E C*(Γ) for x E X Let A^ E C*(7)
be such that hpχ(W0) = 0 and hpχ{Wλ) = 1. For x E X and ί = 0,1 let
^,(x) D 7 be such that At Π {jcf X 7 = {x} X Λf (x). Recall that, for
j c G l a n d / = 0,1, Ai(x)\Wi C Z^. The cozero set Y\ZX U Λ0(x) U
Ax(x) is C*-embedded in 7 so we may choose hx E C*(7) so that
hχ\γ\zx = ' W w ^(,40(x)) = 0, and M A ( * ) ) = l hx is well defined
since, if y E yl^x^Z^ then y E Ŵ , so Λ^j) = ι. By Lemma 1.5, Λ E
C*( X X Y) and Λ is as required. * D

If X is a PI-space then let X be the quotient space of XX {0,1}
obtained by identifying ( j^O) and (pχy 1) to the single point p$. Note
that X is a PI-space. In general, X is not homeomoφhic to X. The only
examples that I know where X is not homeomorphic to X are constructed
from countably complete ultrafilters on discrete spaces of measurable
cardinaltiy. We introduce the above idea because we cannot prove the
converse of 1.6 but we can come very close.

1.7 THEOREM. // X is a Pl-space and Y is not X-paracomapct then
XX Y is not an F-space.

Proof. Since 7 is not X-paracompact, choose Cx,x E X\{px}> cozero
subsets of 7 so that X4imγ{Cx: x E X\{px}} = 0 but if Cx C Zχ9

x E X, Zx a zero set then X-limγ{Zx: x E X\{px}} φ 0. Define Ao =
U{(x,0) X Cx: xGX\{px}} and.4, = U{(x,l) X Cx. x GX\{px}}.
We show that Ao and Aλ are disjoint cozero subsets of X X 7. For each
x <ΞX\{px], choose gx E C*(7) so that 1 >gx(y) > 0 f o r j E 7andC x

is the cozero set of gx. Define h E C*(XX 7) so that for x E X\{px},
h(χ,o) = gx>

 h(x,\) = -gx a n d ^ ( J ^ ) = 0 for j E 7. Now, since Cx is the
cozero set of both h{x0) and A(Λ: {) for x E X\{/?x}, one easily sees that h
satisfies the conditions of 1.5 and so h E C*(X X 7). Observe that Ao is
the preimage of the positive reals under h and Ax is the preimage of the
negative reals. Hence Ao and Ax are disjoint cozero subsets of X X 7.

Suppose that Bo and Bλ are disjoint zero subsets of X X 7 containing
Ao and Ax respectively. For each x E X\{/?^} choose a zero set Zx of 7
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so that, for i = 0,1, {(*, /)} X C , C {(*, /)} X Z λ C {(*, /)} X 7 Π j?,..
Now, by our assumption on {Cx: x G X\{pχ}}> there is a >> .G X-hmγ{Zx:
x E X\{px}}. However (pχ9 y) G BQΠ Bu for if U is a neighborhood
of p£ and F is a neighborhood of y then F Π U {Zx: (x, 0) G C/} φ 0
and F Π U {Zx: (JC, l ) 6 ί / } ^ 0 . Hence U X F Π 5 0 φ 0 and ί/ X V
ΠB]φ0. D

1.8 COROLLARY. For a space 7 , 1 X 7 w an Fspace for each PX-space
XiffY is a CLWL Fspace which is X-paracompact for each P\ -space X. D

The condition in 1.7 has proven very useful for constructing counter
examples to conjectures concerining F-spaces. A very similar construction
(which was originally identical) is used in [D] to show that Fine and
Gillman's well known result, that open subspaces of F-spaces of weight c
are F-spaces, is equivalent to CH. Another example is an answer to a
question related by M. Henriksen; there is a locally compact F'-space
which is not an F-space. With the same example, more can be shown. In
[CHN], it is asked if the condition that an F-space, 7, be CLWL is
sufficient to ensure that XX Y is an F-space for each P-space X. Hind-
man [H], showed that this is not the case but our example shows that not
even local compactness is sufficient.

1.9 EXAMPLE. There is a locally compact F-space Y and a P-space X
such that I X Γis not an F-space. The simple idea behind the construc-
tion of this example is to construct an F-space Y which is not X-para-
compact for some PI-space X. To do so we merely 'remove' the X-limits
of a collection of cozero sets while leaving some X-limits of zero set
containing them. The simplest example of a PI-space is X= ωx U {p}
where neighborhoods of p are cocountable and points of ω, are isolated.
To construct an 'appropriate' F-space Y we start with S = ω, X co*,
where again ω, has the discrete topology. Let C C ω * be any cozero set
whose closure is not a zero set. For a G ωl9 let Ca = {a} X C. Let K be
the X-limits of {Ca: a G co,} in βS; i.e. K= n γ G ω c l ^ U γ < α C α . Let us
show that Y = βS\K is not X-paracompact. Indeed, if Zβ, a G ω,, is a
zero set of Y containing Cα then we may choose yα E {α} X ω* D Zα\Q
for α G ω,. In S, the sets {yα: α G ω j and U α e ω C α are completely
separated. It follows that there is an X-limit of {Zα: α G ωx] (even of
{{yα}: α E ωx}) in βS which is not in K. Since Xis homeomorphic to X
and Y is not X-paracompact, X X Y is not an F-space by 1.7. However S
is an F-space and therefore Y is a locally compact F-space.
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1.10 EXAMPLE. There is a locally compact F'-space U which is not an

F-space and which is an open subset of a compact F-space. Let X, S, K

and Y be as in 1.9. As mentioned in the Introduction the product of a

P-space with a compact F-space is an F-space [N]. Therefore X X βS and

T= β(XX βS) are F-spaces. Let U = T\({p} X K)\ U is obviously

locally compact as it is an open subset of T and so is an F'-space.

However, we shall show that X X Y is C*-embedded in U from which it

follows that U is not an F-space. It suffices to show that X X Y is

C*-embedded i n I X 7 U { w } f o r an arbitrary wGί/(6H of [GJ]). Let C

be a clopen neighborhood of u E U\(XX Y) such that C Π ({p} X βS)

= 0 (since u & {p} X βS). Therefore there is an a E ωλ such that

C C clτ(a X βS). Now, Y is C*-embedded in βS so a X Γ is C*-em-

bedded in a X βS and therefore in Γ. It follows that X X Y is C*-em-

bedded i n l X Γ U C D

2. Weakly Lindelόf F'-spaces. A Lindelόf space is normal so, evi-

dently, a Lindelόf F'-space is an F-space. A space is ccc if each cellular

family of open subsets is countable. It is easy to show that a ccc F'-space

is also an .F-space. A natural generalization of both the properties Lindelόf

and ccc is weakly Lindelόf. It is very natural to conjecture that a weakly

Lindelόf F'-space is an F-space [CHN]. We verify this conjecture. Let us

first consider the special case of a zero dimensional space.

2.1 THEOREM. Each zero dimensional weakly Lindelof F'-space X is a

strongly zero dimensional F-space. (A space X is strongly zero dimensional if

βX is zero dimensional.)

Proof. It suffices to show that disjoint cozero subsets Co, Cλ of X are

separated by clopen subsets of X. Since X is an F'-space, C0Γ\C{ = 0 .

Cover X with clopen subsets which meet at most one of Co and Cλ. Since

X is weakly Lindelόf we may choose a countable subcollection, 6B, whose

union is dense in X. Let [An: n E ω} be all those elements of & which do

not intersect Cλ and let {Bn: n E ω} — &\{An: n E ω}. For each « G w ,

let A'n = An\ Uk<n Bk and B'n = Bn\ U k ^ n Ak. Clearly, for any n9 k E ω,

A' Π B'= 0 and U ^ A' U B' is dense in X. Therefore U =

ύίx UnGωA'n is disjoint from V= clxUnGωBll because X is an F'-space

and both are clopen. Also U Π Cx— 0 and Co Π V — 0 , again because

X is an F'-space. Therefore Co and Cλ are separated by clopen sets. D

2.2 THEOREM. Each weakly Lindelόf F'-space is an F-space.
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Proof. Let Co and Cλ be disjoint cozero subsets of a weakly Lindelόf
F'-space X. We inductively constuct cozero sets A{i/2n) and B(i/2n) for
n e ω a n d 0 < / < 2 Λ . L e t 4 ( 0 ) = Q,Λ(1) = X, B(0) = XmdB(l) = C,.
Suppose that n E ω and for 0 < / < 2" we have contructed cozero subsets
A(i/2n) and B{i/2n) so that (i) for 0 < / < 2W, ^(//2rt) Uϋ(i/2") is
dense in X, and (ii) for 0 < / < 2", A(i/2n) Π B((i + \)/2n) = 0 . Let
m = « + 1 and let / be an even integer with 0 < i < 2m. We construct
A((i + l)/2m) and B((i + 1)/2W). By inductive assumption, A{i/2m) Π
5((ι + 2)/2m) = 0 and therefore have disjoint closures since X is an
F'-space. So we can cover X with cozero sets which intersect at most one
oΐA(i/2m) and B((i + 2)/2w). Since Xis weakly Lindelόf we may choose
a countable subcollection % whose union is dense in X. Let A((i + \)/2m)
be the union of those elements of % which do not intersect B((i + 2)/2m)
and let B((i + l)/2m) be the union of those elements of % which do not
intersect B((i + 2)/2m) and hence do not intersect A{i/2m). Since U % is
dense, so is A((i + l)/2m) U B((i + l)/2m) and the induction hypotheses
are satisfied. Let us note that (i) and (ii) ensure that for n E ω and
0 < i < 2", A(i/2n) C intΛ((t + l)/2«). Indeed, ^(//2 W ) Π

+ 0 / 2 " ) = 0 so ^(1/2") C X\B((i + l )/2 n ) and
+ 1)/2W) C ^ ( ( / + 1)/2W) since A((i + 1)/2Π) U

/ + 1)/2W) = X Define the real-valued function /on X by f(x) =
inf{//2": x E A{i/2n)}. To check the continuity of / at x E X, let ε > 0
be arbitrary. Choose n E ω large enough so that there is an /, 0 < / < 2"
with /(*) - ε < (i - l)/2* </(x) < f/211 < (i + 1)/2W </(x) + ε.

) <i/2\x E A((2i + \)/2n+!). If / - 2MetΛ((/ + l)/2") = X
and if i = 0 let yί((/ - \)/2n) = 0. Then

ί/= intyl((/

is an open neighborhood of x since ^4((2/ + l ) / 2 " + 1 ) C
int A((i+ l)/2n) and JC ί i4((ι - l)/2 r t) because /(x) > (/ - 1)/2W.
Clearly, for y E t/, /(%) — ε ^/(j>) ^f(x) + ε hence / is continuous.
Since Co = yl(0),/(C0) = 0 a n d / ί ^ ) = 1 because A{i/2n) D C] = 0 for
each i/2n < 1. Therefore Co and Cλ are completely separated showing that
X is an F-space. D

It is not difficult to show that a weakly Lindelόf subspace of an
F-space is an F-space and is C*-embedded. The key to this fact is that a
cozero subset of a weakly Lindelόf space is weakly Lindelόf and the
following result which is an easy consequence of a result in [CHN].
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2.3 THEOREM. Suppose X is an F-space, A, B are weakly Lindelόf

subspaces of X with AΠB = AΠB=0; then A and B are completely

separated in X. •

A more general property than weakly Lindelόf has been found which

can take its place in 2.3. A space X has the P-cover property if there are

no closed P-sets of βX contained in βX\ X[DF]. ( P C l i s a P-set if each

Gδ containing P is a neighborhood of P.)

2.4 THEOREM [DF] Suppose A, B are sets with the P-cover property

contained in an F-space X with A ΠB = A Π B = 0 , then A and B are

completely separated in X. D

One can show that if an F-space X has a subspace A which is itself an

F-space with the P-cover property then A is C*-embedded in X [DF].

Now, 2.2 would follow from 2.3 if each .F-space can be embedded in an

F-space, the following example shows that this is not the case. I believe

that this is the first example given of an F'-space which cannot be

embedded in an F-space. One might suspect that the result 2.4 suggests

that weakly Lindelόf could be weakened 'towards' P-cover property in

2.1. For instance, call a space X WL2 if there is a weakly Lindelof cozero

set C C X such that any cozero subset of X disjoint from C is also weakly

Lindelόf. The P-cover property is a much weaker property than WL2. A

space X is almost compact if given disjoint zero sets at least one is

compact. Another natural generalization of weakly Lindelόf is almost

weakly Lindelόf, AWL. A space X is AWL if given disjoint cozero subsets

of X at least one is weakly Lindelόf. The following very interesting

example seems convincing that no reasonable weakening of weakly Lin-

delof can take place in 2.2.

2.5 EXAMPLE. There is an almost compact, AWL, WL2 F'-space which

is not an F-space (which obviously cannot be embedded in an F-space).

Let X be the P-space whose underlying set is ω2 + 1 and possessing the

Gδ-topology obtained from the order topology. Van Douwen [vD] has

shown that each P-space can be embedded in an extremally disconnected

space (a space in which open sets have open closures). In particular, X can

be C*-embedded in F(2ω 2) as a nowhere dense set, where F(2ω 2) is the

compact ccc extremally disconnected space which can be mapped onto 2"2

by a perfect irreducible map (see [D] or [DvM] for a proof and [W] for a

survey on E(X)). The space X2 is a P-space and we assert that



ON /'-SPACES AND F'-SPACES 283

βX2\{(ω2y ω2)} is almost compact (this is proved the same way as 8L in

[GJ]). Let Eo and Ex be two copies of E(2"2) containing respectively Xo

and Xl9 copies of X. Let S be the quotient space of Eo U Eλ U Xo X Xx

obtained by identifying Xo C Eo with Xo X {ω2} and Xx C £Ί with {ω2}

X AΓp Since Jf0 and Xx are C*-embedded in Eo and ^ respectively, we

may think of βS as £ 0 U £, U β(X0 X X,) with the obvious identifica-

tions. Our example, advertised above, is the space Y — βS\{(ω2, co2)}

where (ω 2 , ω2) is a point in each of Eθ9 Eλ and β(XQX Xx). One should

think of Y Π S as a plank, ^ X I , , with the corner, (ω 2 , ω2), deleted and

copies of E(2ω2)\{ω2], Eo and El9 glued to the ' top' edge and 'right' edge

respectively. To see that Y is almost compact, i.e. Y is C*-embedded in

βS, simply observe that £'0\{(<o2, ω2)} is C*-embedded in Eo, similarly

for Ex, and β(X0 X X,)\{(ω2, ω2)} is C*-embedded in β(X0 X Xx). Now,

if C is a cozero subset of βS with (ω 2 , co2) £ C then C Π 7 is Lindelόf.

Therefore Y is AWL. It is well known that £(2" 2 ) is ccc so we may

choose Co and Cl9 Lίndelόf dense cozero subsets of £ 0 \{(ω 2 , ω2)}, and

Ex\{(ω29 ω2)} respectively. Let C = Co U C,, which is a Lindelόf cozero

subset of Y. Suppose that U is a cozero subset of Y which is disjoint from

C. Clearly, J7 is then a subset of ^(Λ^ X Xx) which is disjoint from

Xo X {<o2} U {<o2} X Xx. It follows that £/is Lindelof and hence that 7 is

WL2. Now we show that Y is an F'-space. Each of the subspaces of βS,

Eo U β(X0X Xx) and Ex U β(X0X Xx) are obtained by identifying a

compact subset, βXi9 of an F-space, £ / 9 with a compact P-set βX0 X {ω2}

or {ω2} X jβJSΓ, of β(X0 X Jf,). From this fact it follows that both the

above subspaces of βS are F-spaces (see [DF]). So Y is an F'-space since

each point of Y — βS\{(ω2, ω2)} has a neighborhood contained in one of

the above F-spaces. Finally, Y is not an F-space because βS is not an

F'-space. Indeed, the point (ω 2 ,ω 2 ) is in the closures of the disjoint

cozero subsets Co and Cx. •
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