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DISINTEGRATION OF KMS-STATES
AND REDUCTION OF STANDARD VON NEUMANN
ALGEBRAS

NORBERT RIEDEL

It is shown that any von Neumann algebra 9L with a cyclic and
separating vector can be decomposed into factors in such a manner that
the type of 9N is preserved under this decomposition.

Introduction. Since the classical work of von Neumann [9] on reduc-
tion theory appeared in 1949, several attempts have been undertaken by
other authors to generalize the results of von Neumann to operator
algebras which are not necessarily countably generated. We want to
mention only a few more recent papers, namely those of Halpern [4, 5],
Stratila and Zsido [18, 19], and Teleman [29, 30]. In Halpern [4] as well as
in Stratild and Zsido [18], it was shown in a similar way that every von
Neumann algebra of type I and type II can be decomposed into factors of
type I and II, respectively. In Teleman [29, 30] Choquet theory was
applied in order to obtain a decomposition into factors of an arbitrary
von Neumann algebra.

In the present paper we shall use the theory of standard von Neu-
mann algebras, as well as Choquet theory, in order to show that any von
Neumann algebra 9 with a cyclic and separating vector can be decom-
posed into factors in such a manner that the factors which occur in the
decomposition preserve the type of 9IL. For a semifinite von Neumann
algebra we shall prove a stronger result, namely there exists a disintegra-
tion of the traces which are defined on the positive cone J" of IN.

It has already been shown by the work of Jurzak [6, 7] and Lance [8]
and Sutherland [21, 22] that even in the “separable” reduction theory the
Tomita-Takesaki theory can be used with considerable success to improve
the earlier results in this subject. The first author who introduced the
methods of Tomita-Takesaki theory into the reduction of general von
Neumann algebras seems to be Halpern in his recent paper [S]. Also quite
recently the present author has used the methods of Hilbert algebras in
[13, 14], as well as the methods of left Hilbert algebras, in [15, 16] in order
to develop a theory of direct integrals which does not depend on the
countability axioms which occur in the theory of von Neumann.
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Our method of decomposing von Neumann algebras into factors
which we want to present in the sequel is rather transparent. Let 91U be a
von Neumann algebra which acts on the Hilbert space 3 with a cyclic and
separating vector e. In particular 91 is standard. Let {g,},cg be the
corresponding modular automorphism group. We shall show that there
exists a C*-dynamical system (&,R, o) such that @ is a weakly dense
C*-subalgebra of 9N, and o, is the restriction of 6, on @ for each 1 € R.
Thus the vector state ¢ on @ which is associated with e is a KMS-state and
the GNS-representation of @ associated with ¢ can be identified with the
identical representation of &. The set K(&, o) of all KMS-states on @ is a
Choquet simplex, and a KMS-state ¢ € K(&, o) belongs to the set
0K(@, o) of extreme points in K(&, o) if and only if the corresponding
GNS-representation 7, of @ is factorial, i.e., the double commutant
7,(@)" of 7, (&) is a factor. Now we consider the central measure p of ¢,
which is known to be pseudo-concentrated on the set dK(&, o). Hence we
can define a probability measure on dK(&@, o) such that IC is the direct
integral of some Hilbert spaces J(,, ¢ € 0K(&, o), in the sense of Wils
[32]. Moreover, for the operators in 9N there exist (essentially) unique
decompositions into operators which are contained in the von Neumann
algebras ,(@)” such that the algebraic operations in 9N are preserved.
This yields the desired decomposition of 9N into factors.

The method we have just described suggests considering arbitrary
KMS-states on C*-algebras also. In fact, the whole procedure goes through
in the general situation. Therefore we shall develop our theory as far as
possible in the framework of general KMS-states on C*-algebras. As a
result we obtain, for instance, that for a KMS-state ¢ of type III the
corresponding central measure p is pseudo-concentrated on extremal
KMS-states of type II1.

The paper is divided into three sections. In §1 we study the direct
integrals of some fields of left Hilbert algebras. The idea behind this is to
give a unified treatment of the decompositions which occur in §2 where
we investigate the disintegration of general KMS-states. In §3 we apply
the theory of §§1 and 2 to semifinite and type III von Neumann algebras
with a cyclic and separating vector.

For the definitions and notations associated with von Neumann
algebras, we refer to the books of Stritild and Zsidé and Takesaki. For the
definitions and notations associated with C*-algebras, we refer to Peder-
sen’s book. Observe that the definition of crossed product which we use in
the sequel is different from Pedersen [10]. We shall quote from Pedersen’s
book without emphasizing explicitly the necessary notational alterations.
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The author is very grateful to Laszl6 Zsido for useful discussions on
this work. The idea for the proof of Proposition 3.3 is due to him.

1. Integrable fields of left Hilbert algebras. Let ({2, 2, v) be a finite
measure space. Let {¥,},.q be a field of left Hilbert algebras. For every
£ € Q we denote by ‘}Cg the completion of %,. For some subset A C
II;cq %, we consider the following conditions:

(1.1) A is an involutive subalgebra of Il .o %, where the operations
in I, .o A, are defined pointwise; moreover, {x(§) / x € A}” = A, holds
for every £ € Q.

(1.2) For any x € A the function § > ||x(§)|| is square integrable.

By (1.2) we can associate with A an integrable field of Hilbert spaces
({I¢}eeq> A) in the sense of Wils [32], 2.3. Let = J® I, dv(£) be the
corresponding direct integral. For each x € A we denote by X or
[® x(¢) dv(§) the canonical image of x in JC. The set A = {X / x € A} is
seen to be an algebra with involution. In case A satisfies axioms (1.1) and
(1.2), we consider the following additional conditions:

(1.3) U is a left Hilbert algebra which is dense in JC, and for every
x € A the inequality ||7(x(£))|| <||7(X)|| holds for every £ € Q. (7 de-
notes the left regular representation of the corresponding left Hilbert
algebra.)

(1.4) The canonical conjugation J associated with 9 is decomposable
and £+ J; is a decomposition of J (ie. J% = [ ®J,x(&) dv(£) holds for
each x € A), J; being the canonical conjugation associated with %, for
any § € Q.

(1.5) There is a sequence {x,},cn in A such that the set {Tx(¢) /T
€ 2(¥A,), n € N} is total in I(, for any £ € @ and the set {J%,/ T €
L(A), n € N} is total in IC.

1.1 DEFINITION. ({¥,},cq, A) is called an integrable field of left
Hilbert algebras if A satisfies (1.1)—(1.5).

For the remainder of this section we assume ({U,},cq, A) is a fixed
integrable field of left Hilbert algebras. Moreover, we assume {x,},cn t0
be a sequence satisfying (1.5).

1.2 DEFINITION. An operator field § -~ T(£) is called a natural decom-
position of some ¥ € £(A) if &> T(§) is a decomposition of J and
T(§) € £(¥,) holds a.e. We shall write J = [®T(£)dv(§) in this case.
(We shall use this notation also if 7(¢§) is defined a.e. only.)
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1.3 PROPOSITION. () If T = [® T\(£) dv(§) = [® T,(&) dv(£) holds for
some operator J € £(N), then we have T\(§) = To(£) a.e.

(b) If T, = [® T\(£§) dv(£), T, = [® T(£) dv(£) for two operators T,
G, € R(U), then we have AT, + uF, = [® AT (&) + puT(&) dv(§), A, p €
C, and 5.9, = [© T(£)Ty(£) dv($).

Proof. (a) Since the operator fields £ > T(£), £ —» T,(§) are decom-
positions of the operator 9 we have that a.e.

Tl(g)xn(g) = ]}(g)xn(g) for every n € N‘

Since the operators T;(£), T5(§) belong to £(,) a.e. we obtain from this
that a.e.

T,(¢)Tx,(£) = T,(£)Tx,(£) forevery T € £(%,),n €N.
Finally, by (1.5) this implies
T\(§) = T,(¢) ae.

(b) The second assertion is an immediate consequence of the defini-
tion of natural decompositions.

1.4 THEOREM. For every &§ € £(N) there exists a natural decomposition
£ T(&) of 9 such that

g+ = ["T(&)*dv(§) and |TEN=IT| ace.

Proof. If we have § = #(X) for some x € A then we obtain, for any
y €A,

7(

Since ¥ is dense in JC the operator field £ > 7(x(§)) is a decomposition of
a(X%). By definition this decomposition is also a natural one and, by
(1.3), l|m(x(§&))l| =||m(X)|| holds a.e. Clearly we also have =(x)* =
[ @ m(x(£))* du(£).

Now let § € £(A) be given arbitrarily. By (1.5) the von Neumann
algebra £(%) is o-finite. By Kaplansky’s density theorem & belongs to the
strong closure of the set {& € () /|ISII =T |I} N {#(X)/x € A}.
Now it follows from the corollary in Dixmier [2], p. 31, that there exists a
sequence {a,},cn in A such that ||7(d,)| <||¥ || and {7(d,)},en cOn-
verges strongly to . In particular

)5 =55 = [“x(§)(&) dv(8§) = [“m(x(£)y(&) dn(8).

>

lim |7(a,)%, — 9%,/|=0 foreverym € N.
n— o0
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Let {,,}..en be a sequence in A such that
TZ, = Vo> m € N.
For every m € N there exists a sequence {a{™}, . in A such that

{aP},cn is a subsequence of {a,},ens

{al"" "} en

nlirixo [7(al™(£))x,,(£) = yu(£)]|=0 ae, mEN.

is a subsequence of {a{™},.n, M EN;

Hence there is a measurable subset M C Q with »(2\ M) = 0 such that
(1.6) lim |7 (ai(£))x,.(£) — ym(i)” =0, ¢EM,meN.
From (1.3) we obtain

(1.7) |7(ai (&) <|r(a™)|, ¢(€Q,neN.

Let L be the linear subspace of II,q I, generated by all vector fields of
the form £ > w’(.lgx(g))x,,i(.f), where x € A, m € N. It follows from (1.4)
that L is a subspace of A. By (1.5) the set L, = {x(§)//x €L} is a
dense subspace of J(,. From (1.6) we infer that for every £ € M there is a
linear operator 7;(£) on L, such that
lim 7(a"(§))y = To(£)y,  y € L.

As ||m(@)|| < ||F || holds for each n € N, we obtain from (1.7) that T;(£)
is bounded and (|T(£)[ <||J | Since L is dense in J(, there exists a
(unique) bounded operator 7(£) on 965 which extends T;(£). Again we
have ||T(£)|| <||9 ||. Furthermore, the sequence {7(a'"(£))},en COnverges
strongly to T(§). Hence T(§) is contained in £( U ¢)- We set T(§) = 0 for
¢ € Q\ M. By our construction of the operator field £+ T(£), for any
x € L the vector field £ > T(£)x(¢) is contained in A. Moreover, from
(1.4) and (1.6) we obtain that Ix = [® T(£)x(§) dv(§) bolds for each
x € L. By (1.5) the set {#'(J%)X,,/x €A, m €N} is total in I(.
Therefore £ > T(§) is a (natural) decomposition of 9. As we have already
shown, || T(£)|| <||F || holds a.e.

If 9 is self-adjoint then it follows from Kaplansky’s density theorem
that the sequence {a,},on above can be chosen so that #(a,) is self-ad-
joint for any n € N. Therefore, by our construction, 7(£) is the strong
limit of a sequence of self-adjoint operators a.e. Hence T(£) is self-adjoint
a.e. From this we conclude that 9= [®T(£)dv(¢) implies T* =
[® T(&)* dv(¢) for every T € £() (cf. 1.3(b)).
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As a consequence of Theorem 1.4 and Proposition 1.3, one can show
the following by using arguments similar to those used in Riedel [15], §2.

1.5 PROPOSITION. Let § be a self-adjoint (not necessarily bounded)
operator which is affiliated with C(N). Then for any £ € Q there is a
self-adjoint operator G, affiliated with R(%.) such that f(§) =
/® f(G,) dv(£) holds for every bounded Borel measurable function on R. The
field ¢ — G, is essentially unique. If § is regular or positive then G, is regular
or positive a.e., respectively.

As another consequence of 1.4 we note the following:

1.6 PROPOSITION. (a) If () is properly infinite then 2( ) is properly
infinite a.e. (cf. Dixmier [2], p. 206, Theorem 5).

(b) Suppose 7(1,) is a trace on (A" (E(U,) ™, & € Q) such that 7(7)
is faithful (a.e.), and for any T = [® T(£) dv(§) € L(A)t, we have 7(T )
= [1(T(8)) dv(&). If £(A) is of type 11 then £(U,) is of type 11 a.e. (cf.
Riedel [13], Proposition 3.6).

2. Decomposition of the von Neumann algebras associated with
KMS-states on C*-algebras. Let (€,R,0) be a C*-dynamical system
and assume the C*-algebra @ contains a unit. Let us denote by K(&, o)
the set of all KMS-states on @ (for the natural temperature 8 = 1). The
convex set K(&, o) is known to be a Choquet simplex with respect to the
weak- * -topology (cf. Emch, Knops and Verboven [3], and Takesaki and
Winnink [28]).

Let ¢ be an arbitrary element in K(&, o) and let (J(,, 7,) be the
Gelfand-Naimark-Segal representation of @ associated with ¢. As @ has a
unit there is a canonical cycle vector e, (fle, || = 1) such that

o(T) = <7r¢(T)e¢, e¢> foreach T € @.

From ¢ being a KMS-state it follows that e, is separating for 7,(A4)"” (cf.
Takesaki [25]). Moreover, the set A , = (Te, / T € 7,(&)"} is an achieved
left Hilbert algebra with £(A,) = 7, (@)". Let A, be the modular opera-
tor associated with % ,. Then we have (cf. Takesaki [24], Theorem 13.2)

(2.1) 7,(0(T)) = Nym,(T)AYY, Te@,teR.

A state ¢ € K(&, ¢) is an extreme point if and only if the representation
7, is factorial, i.e. m,(&)” is a factor. We shall denote the set of extreme
points in K(&, o) by 0K(&, o).
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Now we assume K(&, o) is non-empty and we fix an element y €
K(®, o). Let p be the (unique) maximal measure (in the sense of Bishop
and de Leeuw) with barycenter ¢ (cf. Alfsen [1]). Let K (&, o) be the set
of all elements ¢ in K(&, o) such that the ideal {x € & / ¢(x*x) = 0}
contains the kernel of the representation . K¢(@, o) is a closed face of
the Choquet simplex K(®, o). Hence p / K,(@.0) 15 the maximal measure of
Y on K (@, 0), and the set 0K (&, o) of all extreme points in K (&, o) is
equal to K (&, 6) N dK(&, o). In particular, u is pseudo-concentrated on
0K (@, 0). WesetQ = 0K (&, 0) and M, = 7,(&€)" for any ¢ € K(&, o).

Let =, be the o-algebra of all subsets of £ of the form M N §, where
M is a Baire measurable subset of K(&, o). Since p is pseudo-concentrated
on { we can define a probability measure v, on 2, by

v(M N Q) = p(M),

where M is a Baire measurable subset of K(&, o). Let (2, 2, ») be the
completion of the measure space ({2, 2, »,). As the measure u coincides
with the central measure of Y on K(&, o) (cf. Emch, Knops and Verboven
[3]), we obtain from Sakai [17], 3.1.3, that there is a unique =* -isomor-
phism & from the center of M, onto L=(K2, v) such that

(2.2) (C?T\P(T)elp,e‘p)
= [&(C)(9)o(T)dr(g), CEM,NM,TEQ.

Let A, be the set of all vector fields on K(&, o) of the form ¢ — 7,(T)e,,
T €@, and let A ={x,,/x € Ay}. For every T € @ the function ¢ —
7, (T )e,ll (= $(T*T)'/?) is bounded and measurable with respect to the
measurable space ({2, 2). Hence, as in §1 we can associate with A an
integrable field of Hilbert spaces ({JC,},cq. A). From (2.2) we infer that
there exists a unique isomorphism from JC, onto [®I(, dv(¢) which
maps m,(T')e, onto [ 7,(T)e, dv(¢) for any T € &. Thus we may write

(2.3) %, = [, dr(s).

Let A = {x /x € A}. The following proposition shows that the theory of
§1 is applicable to our present situation.

2.1 PrOPOSITION. ({U,},cq, A) is an integrable field of left Hilbert
algebras. A is a left Hilbert subalgebra of %, satisfying A" = A .
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Proof. We have to show that the set A satisfies conditions (1.1)—(1.5).
Clearly, A satisfies (1.1) and (1.2). Theorem 3.1 in Riedel [15] states that
the theory of topological direct integrals of left Hilbert algebras can be
applied to the present situation. If ¢ - x(¢) is a continuous vector field
on K(&,o0), then it follows from Riedel [12], 1.1(3), that x can be
approximated uniformly on K(&, o) by linear combinations of vector
fields of the form ¢ — f(¢)7,(a)e,, where a € & and f is an arbitrary
continuous function on K(&, o). Hence the vector field 2 3 ¢ > x(¢)
canﬁbe approximated uniformly by elements of A. Therefore x 49 belongs
to A A(cf. Wils [32], 2.3). It follows that ¢ — J,x(¢) belongs to A for each
x € A. Moreover, by Riedel [15], 1.7,

(J¢w¢(a)e¢, w¢(b)e¢) :/ (J¢w¢(a)e¢, 7r¢(b)e¢) du(o)

- /sz (J¢7r¢(a)e¢, W¢(b)e¢) dv($)

holds for each a, b € @. This shows that ¢ — J, 1s a decomposition of J,
i.e. (1.4) is satisfied.

Since e, is a unit in A, for every ¢ € K(@,0) and e, = [® e, dv(o)
holds, condition (1.5) is satisfied.

By Stratila and Zsido [20], 10.5, U is a left Hilbert subalgebra of A,
with %” = A . In particular, A is dense in J(,. Therefore it remains to
show that ||7(x(¢))|| < ||7(X)|| holds for every x € A, ¢ € Q. Let T € Q.
Then we have #(7,(T)e,) = 7,(T) for every ¢ € K(&, o). By the defini-
tion of {2, for each ¢ € Q the operator 7,(T) is the image of the operator
7,(T) with respect to some * -homomorphism from 7,(€) onto 7,(&).
Since every s -homomorphism of C*-algebras is norm decreasing we
obtain

(7T e )| = 7T =7 T = (7 (T) e

w(/ea%(T)ed,)

This shows that condition (1.3) is also satisfied.

Next we want to show that there is also a disintegration of the crossed
product of the von Neumann algebra £() = "JI% by the corresponding
modular action, and this disintegration is closely related to the disintegra-
tion of £(A). For any ¢ € K(&, o) and ¢t € R we define an automor-
phism o of the C*-algebra @, = 7,(&) as follows:

of(%(T)) = m,(0,(T)), TERQR.
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(@,,R, 6?) is a C*-dynamical system. For any ¢ € K(&, o) let {,°},cg be
the modular automorphism group associated with %,. By (2.1) we have
X(T)=0oT)for TE€ &, ¢ € K(&,0),t €ER. Forany ¢ € K(&, 0) we
associate to the crossed product M, ®;<R a left Hilbert algebra B, as in
Riedel [16], §2, so £(B,) = 9N, ®z+R holds. We set £, = L*(R, I,). For
any ¢ € K(&,0),t ER, weset A, , = A,. Let R be the smallest linear
subspace of I, ;) ek oyor E(H(4,y) Which satisfies the following two
conditions:

(24) For any T€ @ and f € C(R) the operator field (¢, )+
f(t)7,(T) belongs to R .

(2.5) If the operator fields (¢, t) > T\(¢p, t) and (¢, t) > T(¢, t)
belong to R then the same is true for the operator fields (¢, t) >
Jo2(T(9, s + )Ty, —s) ds and (, 1) > o?(Ty(, —1))*

It follows from the proof of Riedel [16], 3.5(a), that for any operator
field (¢,¢) » T(¢,t) in R and ¢ € @ the mapping ¢+ T(¢, t) is a
continuous function with compact support from R into @,. In particular,
the integrals which occur in (2.5) are well defined. Let I, be the set of all
vector fields ¢ —» x(¢) in [[,cxq.0) L, such that x(¢)(2) = T(9, t)e,,
t ER, for some TER, and let T = {x o/ x € Ij)}. It follows from
Riedel [16], 3.5(a), that for every vector field x in I" the function ¢ - || x(¢)||
is bounded and measurable with respect to the measurable space ({2, 2).
Let ({£,}4cq T') be the integrable field of Hilbert spaces associated with
I as in §1. From (2.3), as well as from Riedel [16], 3.3., we infer that there
is a unique isomorphism from B¢ onto [® qu dv(¢$) which maps x(¢) onto
[®x ,o(®) dv(¢) for every x € T,. Therefore we may write

(2.6) e, = [ R, dn(s).

Let 8 = {x /x € I'}. We can now prove an analogue of 2.1 for crossed
products.

2.2 PROPOSITION. ({B,},cq, ') is an integrable field of left Hilbert
algebras. B is a left Hilbert subalgebra of B, with B” = B.

Proof. By the construction of ¢ and T, conditions (1.1) and (1.2) are
satisfied. It follows from Riedel [16], 3.5(a), that (1.4) is valid (see also the
proof of 2.1). From Riedel [16], 3.5(b), we obtain that (1.5) is satisfied.

Since &, is dense in 7, (@)” with respect to the s*-topology, the set
{m(T)e,/T € @} is a left Hilbert subalgebra equivalent to A ,. Since B
contains the set {¢t — f(¢t)7,(T)e,/f € C(R), T € &}, it follows that B is
dense in B, with respect to the #-norm (cf. Riedel [16], 2.1). As B is an
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involutive subalgebra of B, it follows that B is a left Hilbert algebra with
B” =By (cf. Stratild and Szid6 [20], 10.5). In particular, B is dense in
B,. Hence it remains to prove that ||7(x(¢))|| <||7(%)|| holds for x € T,
¢ € Q. For any ¢ € K(&, o) let §, be the regular representation of the
crossed product @, ®, R which is induced by (1 g, JC,) (cf. Pedersen 10]).
Then §, is faithful (cf. Pedersen [10], 7.7.5, 7.7.7). Moreover, we have
T(¢,t) € @, for (¢,1) EK(Q,0) X R, and T(¢, ) EQ, O,R for T €
AR . We shall need the following identity (cf. Riedel [16], §2):

27)  8,(T(e,-)) =a(T(s,)e,) for TER,¢ € K(Q,0).

For every ¢ € Q there is a unique homomorphism p, from €, onto @,
such that p, o m, = m,. Pedersen [10], 7.6.4, states that for each ¢ € Q
there is a (non-degenerated) representation, say L{, of L'(R,J(,) on
L*(R, 3C,) such that

LW(T) = f N (1) m,e 0 p,(T(1)) dt for T € L'(R, @,)

(where N®(1)x(s) = x(s —t) for x € C(R, I(,)), (7mo(T)x)(t) =
o®(T)x(¢t) for T € &@,, x € C(R, I(,)). By the definition of the regular
representation, the algebra L{”(L'(R, &,)) is contained in 8,(@, ®,+R).
Since p, is onto, L{”(L'(R, @,)) is dense in 8,(&, ®,+R). By Pedersen
[10], 7.6.6, the mapping L{" can be (uniquely) extended to a * -homomor-
phism of @, ®,+R onto §,(&, ®,+R). Since §, is faithful we can define a
* -homomorphism L from §,(&, ®,+R) onto §,(&, ®,+R) such that

L(8,(T(y, ) = LY(T(Y, ) = 8,(p(T(¥, -)))

for each T € ®.. However, by the definition of p,, and since p, ° oV =
o o p, holds, we must have

p(T(¥,1)) = T(¢,1), tER,

for each T € &} and ¢ € Q. From this, as well as from (2.7), we conclude
that

lm(x(eN<llm(x(¥))]| forx € Ty, ¢ € Q.

By (2.6) we have m(x(y)) = m(x,g) for every x € I,. Thus we have
shown that condition (1.3) is also satisfied.

We note the following result on the disintegration of relatively in-
variant traces (cf. Takesaki [26]). Its proof runs parallel with the proof of
Riedel [16], Proposition 3.9.
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2.3 PROPOSITION. For every ¢ € K(&, o) there exists a faithful rela-
tively invariant trace 7, on 2(%B )" such that for any T = [® T(¢) dv(¢) €
R(B,)", the function ¢ > 7,(T(¢)) is measurable on Q and 7(T) =

[ 7,(T(9)) dv(¢) holds.
As a first application of our theory we prove the following;:

2.4 COROLLARY. If O, is a continuous von Neumann algebra then I,
is continuous a.e.

Proof. From van Daele [31], Part II, 4.1 and 4.2, we obtain that if Z is
a semifinite central projection in 9, then

L(By)ge, =(M,), ® L*(R).
Similarly, if 91, is semifinite for some ¢ €  then
£(B,) =M, ® L*(R).

As (%8, is semifinite for every ¢ € K(&, o), we obtain from this, as well
as from van Daele [31], Part II. 4.7, that 9711,,&( @1L¢) is continuous if and
only if £(%8,) (£(B s)» ¢ €8) is of type II. Therefore our assertion
follows immediately from 1.6(b) and 2.3.

3. Reduction of von Neumann algebras with cyclic and separating
vectors. Let 91 be a von Neumann algebra which acts on the Hilbert
space I with a cyclic and separating vector e. We shall associate with 91 a
C*-dynamical system in such a manner that the theory of §2 yields a
decomposition of M into factors. Let ¢ be the vector state on I
associated with e and let {g,},cx be the corresponding modular automor-
phism group. Let @ be the set of all elements 7 in 9N such that the
function ¢+ 6,(T) from R into 9N is continuous, where I is equipped
with the norm topology. & is a C*-algebra which is invariant under the
modular automorphism o,, # € R. Let y be the vector state on & associated
with e, and for any ¢ € R let g, be the restriction of the automorphism g,
to @. Then we have the following.

(3.1) @ is weakly dense in O and @ contains the fixed-point algebra
M of M with respect to the automorphisms ,, 1 € R (cf. Pedersen [1],
7.5.1). Moreover, (&, R, o) is a C*-dynamical system and  is a KMS-state
on &.

This shows us that the theory of §2 can be applied to our present
situation. Henceforth we shall retain the notation we have introduced in
§2. So we may identify 9 and IN,,.
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3.1 THEOREM. Suppose 7 is a faithful trace on O . Then for every
¢ € Q there exists a trace 1, on "JKI which is faithful a.e. such that for any

T=["T(s) dr(s) €M wehave ()= [1,(T(6)) dr(s).

Proof. By Pedersen and Takesaki [11], 51.2, there exists a regular
positive self-adjoint operator & affiliated with O° such that §7' is the
Radon-Nikodym derivate of 7 with respect to Y, ie. 7= Y87 (cf.
Pedersen and Takesaki [11], p. 62). More precisely, the following is true.
For any n € N we define a function f, on R by

£) = {t(l +1/n)" ifrERT,
" 0 elsewhere.

For every n € N the operator f,(87') is bounded. We define a positive
functional 7(") on 9N by

T(T) =4 (£,(67)

For any § € 9" the sequence {7(")(
and we have

J), Jeon.
9)},en is monotonely increasing

lim 7(F ) = ().

h— 00

For every 1 € R we set A, = §". Since 7 is a trace we infer from Pedersen
and Takesaki [11], 4.6, that the one parameter group {Q,},cg implements
the modular automorphism group {o,},cg> 1.€.

WITU*=06,(T) forT €M, eR.

In particular, @, belongs to the fixed-point algebra IN° for every ¢ € R.
By (3.1) @, belongs to @. Therefore we obtain

(3.2) U, = [“m () dr(e). 1ER:
(3.3) o2(T) = m,(U,)Tm,(U,)*, TeM,, tER.

It follows from 1.5 that for every ¢ € { there exists a regular positive
self-adjoint operator G, affiliated with 91, such that

U, =/$Gga’v(¢), t €R.

By (3.2) we obtain from this that for each t € R,
V=7, (U,) ae.
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Hence by (3.3) there exists a measurable subset M C Q with »(Q\ M) =0
such that

3¥(T) = GITG;", GEM,, ¢ €M, tEQ,

Q being the set of rational numbers. Since the functions 7 > 6,*(T) and
t> G/TG," are strongly continuous for every T € I, we conclude
from this that

o(T) = G/TG,", TeM,, ¢ EM,tER.

This means that the one parameter group {G,'},cg implements the modu-
lar automorphism group {6,°},cg. Next, for any ¢ € M, n € N, we define
a positive functional 7" on 9N, by

(T) = ¢(£,(G;")T), Tenm,.

For any T € 9, the sequence {7,")(T)},cy is monotone increasing and
by the proof of Pedersen and Takesaki [11], 7.4, there exists a faithful
trace 7, on 9, such that

lim 7,")(T) = 7,(T), T e, .
For convenience we set 7, = 0 if ¢ € Q\ M. By 1.5 we have
52}
(87 = [T 1(65") dv(e).

Therefore we obtain for every 5 = [® T(¢) dv(¢),

"AT) = [4(T(9)) dv($), nEN.

Moreover, the function ¢ — 7,(7(¢)) is measurable, and from Lebesgue’s
monotone convergence theorem we conclude

n(3) = lim 7(F) = lim [+()(7(9)) dr(9)

h— o0

= [ lim 1{(7(9)) dv(s) = [1,(T(6)) d(9).

3.2 CorOLLARY. If I is of type 11, or type 11, then DN, is of type 11,
or type 11,, respectively, a.e.

Proof. 1f M is of type II, then it follows from 1.6 and 3.1 that I, is
of type Il _ a.e.
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If O is of type II, then the trace 7 in 3.1 can be chosen to be finite.
As 1(1g) = [, (Lx ) dV(qS) < oo holds, 7, is a finite trace a.e. Since 7, is
faithful a.e. M, must be finite a.e. Therefore we obtain from 1.6 that o,
is of type II, a. e

If 9N is a finite von Neumann algebra then it is more convenient to
choose a Hilbert space J( and the cyclic and separating vector e in such a
manner that y is a trace. In this case all left Hilbert algebras which occur
are in fact Hilbert algebras and we can apply the theory in Riedel [13] or
[14).

If 9 is of type I, then we do not know whether the factors I, are
of type I or not in general. However, if we carry out some slight
modifications then this case can also be settled. For convenience we only
consider the case that 91 is homogeneous of type I, forn € N U {c0}. By
Sakai [17], 2.3.3, we may assume 9 is the tensor product of an abelian
von Neumann algebra C and a type I, factor ®, i.e. M = C ® H. We may
assume the state i is a tensor product of a faithful normal state ¢, on C
and a faithful normal state xpz on %. Let K denote the C*-subalgebra of B
generated by the compact operators and by the unit of % (so that K = %
if n < o0), and let 4, be the C*-tensor product of C and K.

3.3 PROPOSITION. &, is a type 1 C*-subalgebra of @. &, is o-weakly
dense in 9N and invariant under the automorphisms o,, t € R.

Proof. Since @, is the C*-tensor product of a type I C*-algebra and
an abelian C*-algebra, it is also of type I. As % is semifinite there exists a
strongly continuous one parameter group {Q,},cg of unitaries in B which
implements the modular automorphism group associated with ¢,. Then
the modular automorphism group {o,},c associated with ¢ is imple-
mented by {1 ® A },cx- Since K is invariant under the inner automor-
phisms induced by AU, we obtain that &, is invariant under the automor-
phisms g,, # € R. It is clear that &, is o-weakly dense in 9. In order to
verify that @, is contained in @ we have to show that the function
t+ 3(J) is norm continuous for every J € &,. Since the function
1+ 1 ® 9, is strongly continuous, the function 7+ (1 ® U,)T(1 ® U, )*
must be norm continuous for every operator § =1 ® %, where & is a
one-dimensional projection in K. Hence this function is also continuous
for every operator § = 1 ® 2, where 2 is an operator in K of finite rank.
As the set of operators of finite rank is uniformly dense in K, we obtain
from this that r > (1 ® U,)J(1 ® U,)* is norm continuous for every
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F€1® XK. Hence t - (1 ® U)T(1 ® Y, )* is norm continuous for every
e Q,.

3.4 COROLLARY. If we replace the C*-algebra @ by @, then we obtain a
disintegration of O into type 1 factors in the sense of §2.

We now want to compare our results with those in Halpern [4] and
Stratila and Zsido [18], respectively. In contrast to our approach, in these
papers the decomposition of a semifinite von Neumann algebra 9U into
factors has been obtained on the spectrum W of the center of I with
respect to a Radon measure. All the von Neumann algebras ‘.’)‘Lg, Eew,
which occur in these decompositions are generated by homomorphic
images of 9. We shall now show that this implies that an analogue of
Theorem 3.1 cannot be proved in the setting of these papers. In order to
obtain a contradiction, we assume that an analogue of Theorem 3.1 holds.
Furthermore, we assume 9 is o-finite. It is quite easy to see that I, is
o-finite too a.e. In addition, we assume 9U is properly infinite and the
center of 9 has no atoms. Since every 90, is generated by some homomor-
phic image of 9, it follows from Takesaki [23], Theorem 7, that 9L, is the
image of some normal homomorphism of 9 a.e. As 9L, is a factor a.e. we
obtain from this that there exist nontrivial minimal projections in the
center of 9. Thus we have reached a contradiction.

Our observations give rise to the following question. It is possible to
choose the standard representation of 9L and the C*-algebra @ in such a
manner that dK(&, o) is compact?

Finally, let us consider the case of type III von Neumann algebras.
For this we return to the general situation considered in §2. We shall use
the notation introduced at the beginning of §2. Then the following can be
shown.

3.5 THEOREM. If O, is of type 111, then I is of type 111 a.e.

As the proof of this theorem runs parallel with the proof of Theorem
1.1 in §4 of Riedel [15], we give a short indication only.

Based on results of Halpern [5], Takesaki’s duality theory for type III
von Neumann algebras (cf. Takesaki [25]) and Proposition 2.3, a von
Neumann algebra % can be constructed which is countably generated over
its center, and a field {%,},cq of countably generated von Neumann
algebras satisfying

B = / @%¢ dv(¢) (in the sense of Dixmier [2])
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can be found such that the following holds: If 9 is of type III then %R is
of type III, and if B, is of type III then N, is of type III. Thus the proof
can be reduced to an application of the results in Lance [8].
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