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RIESZ SETS AND A THEOREM OF BOCHNER

H. ALAN MACLEAN

Conditions are developed from which one may infer that a measura-
ble subset S of an LCA group G is a Riesz set, or in general, a small p
set. Subsets of inverse images of small p sets under continuous homo-
morphisms which are small q sets for some q are investigated. These
considerations yield extensions to LCA groups of Bochner's version of
the F. and M. Riesz theorem.

The aim of this article is to develop criteria which, under appropriate
circumstances, imply that a subset of an LCA group is a Riesz set, or in
general, a small p set. The conditions developed lead one rather naturally
to consider the behavior of inverse images of Riesz sets under continuous
homomorphisms, specifically to consider if or when the inverse image of a
Riesz set, or a subset thereof, is again a Riesz set. Special emphasis is
given to this aspect of the problem, and, in those cases where a solution is
obtained, to certain applications which arise as a consequence.

The notion of a Riesz set has its origins in the F. and M. Riesz
theorem, which provides the prototype for all Riesz sets, namely, the
nonnegative integers Z + . This renowned theorem states that if the Fourier
transform μ of a measure on [0,2π) vanishes off Z + , then μ is absolutely
continuous with respect to Lebesgue measure ([9], [10, 8.2.1]). By analogy,
if G is an LCA group and S is a measurable subset of G, then one calls S a
Riesz set if each measure μ E M(G) whose transform μ vanishes off S is
absolutely continuous with respect to Haar measure on G. Any measura-
ble subset of G having finite Haar measure in G is a Riesz set, this being a
consequence of the Inversion theorem ([5, 31.33]). Bochner's well-known
generalization of the F. and M. Riesz theorem to Zn provides a multitude
of nontrivial Riesz sets in Zn ([1, Theorem 5], [10, 8.2.5]). Loosely
speaking, for n = 2 this theorem states that the set of points in any
"angle" in Z X Z of less than π radians is a Riesz set. In particular, the
Cartesian product Z + X Z + of the Riesz set Z + is again a Riesz set. As we
shall see later, versions of Bochner's theorem continue to hold in the
general group setting ("Bochner's theorem" in the sequel will refer to the
theorem mentioned above, as opposed to the one having to do with
positive-definite functions).
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In [3] Glicksberg shows for metrizable G that if h: G -» R (the real
line) is a nonconstant continuous homomorphism and iϊ S Ch~\R+) is a.
closed subset of G such that h~ι(x — R+) Π S has finite Haar measure in
G for all x E R, then S is a Riesz set in G. The proof is based on
disintegration of measures and, as is pointed out, this technique yields
variations of Bochner's theorem. It is also shown in [3] that if S is a closed
subset of G such that S Π (y — S) has finite Haar measure for all y E G,
then μ* μ is absolutely continuous whenever μ vanishes off S. This last
result provides motivation for the definition of a small p set (see [2]),
which will be given shortly. Again the proof utilizes disintegration of
measures (for simplified proofs of the latter result which do not use
disintegration see [4] and [7]). Recently, Yamaguchi [12] has established a
version of Bochner's theorem valid for LCA groups. Specifically, he has
shown that if S{ is a Riesz set in Gλ and S2 is a small p set in G2, then
5Ί X S2 is a small p set in Gλ X G2. The motivation for what follows
stems from the articles [3] and [12]; in particular, an essential ingredient
derives from the refinements of the disintegration technique of [3] found
in [12]. We begin by setting notation and making appropriate definitions.
We then state and prove our main theorems (Theorems 2 and 3), and
derive a variety of consequences and applications.

Let G be a locally compact abelian (LCA) group. We denote Haar
measure on Gby mG (or simply dx, if no confusion is possible) and the
dual group of G by G. If H is a closed subgroup of G we denote the
annihilator of H by H±= {y E G: γ(x) = 1, x E H}. We identify the
duals of G/H and H, as usual, with H1- and G/H1^, respectively. C0(G) is
the space of continuous complex functions on G which vanish at infinity,
and C^G) the subspace of C0(G) consisting of functions with compact
suppport. M(G) is the Banach algebra of bounded complex regular Borel
measures on G. When considering individual measures μ E M(G) we
shall, when necessary, regard μ as being defined on the σ-algebra of all
μ-measurable subsets of G. We identify the ideal Ma(G) of absolutely
continuous measures in M(G) with L\G) via their Radon-Nikodym
derivatives.

The Fourier (-Stieltjes) transform of μ E M(G) is defined on G by

β(y) = (y(χ)dμ{χ).

If / E L ι(|μ|), then we often write μ(f) = jGfdμ so that, for example,
v(y) = μ(y). M0(G) consists of those μ E M(G) for which μ vanishes at
infinity.
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Let G and Gx be LCA groups and let p: G -> Gλ be a continuous
homomorphism of G into G^ We denote the kernel of p by kerp and let φ
denote the natural quotient map φ: G -* (j/ίkerp)^. The symbol φ will
always stand for this particular mapping unless specifically indicated
otherwise. We denote the adjoint of p by p. Thus, p: Gx -» G is the
continuous homomorphism defined by ρ(χ) = χ © p. For μ E M(G) we
denote the image of μ with respect to p by p(μ). The measure ρ(μ)
belongs to M(Gλ) and satisfies

J f(y)dp(μ)(y)=ffop(x)dμ(x)
JGλ

 JG

for all bounded Borel functions/: Gι -» C so that, in particular, ρ(μ)(χ)
= μ(χ o p) - μ(p(χ)) for all χ E G,.

Suppose now that Gx is metrizable, and let μ E M + (G). Then we may
"disintegrate" μ with respect to p ([6, Chapter IX, in particular p. 154]).
That is to say, there exists a map λ: Gx -» M + (G); >> -»λ^, a so-called
"disintegration" of μ, with the following properties.

(a) λ^ is concentrated on ρ'\y) and ||λ_y|| < 1 p(μ)-almost every-
where;

(b) the map;; -> λ^(g) is ρ(ju)-measurable for each g E CooίG), and

(c) fg(x)f* P(x) dμ(x) =( f(y)λy(g) dp{μ){y)
JG JGλ

for all g E Coo(G) and/ E QoίG,).
The following observations will be useful later. First, (b) and (c)

continue to hold for all bounded Borel functions g: G -* C and/: G, -> C
(cf. [6, Proposition 6, p. 147]). Further, if (a) holds except for y E A9

where p(μ)(A) — 0, then we may redefine λ^ to be 0 for each y E A, so
that (a) now holds everywhere, without affecting the validity of (b) and
(c). Note, in particular, that we then have λ̂ , = 0 for all y E Gλ\p(G),
since λ^ = 0 already fory E G\A U ρ(G) by (a). In short, we may (and
will) assume that (a) holds everywhere on Gx with λ^ = 0 for all y E
Gx\p(G), and that (b) and (c) hold for all bounded Borel g: G -* C and/:
Gx ->C.

DEFINITION 1. Let G be an LCA group and p a positive integer. For
μ E M(G) set μp = μ * μ * * μ (p times). A measurable subset S C G
is called a smallp set in G provided μp Eί L\G) whenever μ E M(G) and
μ = 0 on the complement of S. A Riesz set is by definition a small 1 set.
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Here "measurable" means measurable with respect to Haar measure
on G. The following lemma is undoubtedly well-known, although we have
no reference and so include a proof.

LEMMA 1. Let Gx and G2 be LCA groups and let β: Gx -» G2 be a 1-1
continuous homomorphism of Gx into G2. If B C Gx and mG(B) = 0, then
mG2(β(B)) = 0.

Proof. Let H = U™ Kn, Kn compact, be an open σ-compact subgroup
of Gx which contains B. If mGl{β(H)) = 0, then mGi(β(B)) = 0 also.
Thus, we may suppose mGi(β(H)) ψ 0. Then mG^β(Kn)) > 0 for some n
so β(Kn) — β(Kn) contains a neighborhood of 0 in G2 ([5, 20.17]), whence
β(H) is open in G2. Since 7ί is σ-compact, the restriction of β to H is then
an open mapping onto β(H), hence a topological isomorphism. Now H is
open, so Haar measure mΉ on H is the restriction of mGi to if. Conse-
quently, mH{B) — 0, and since β: H -> β(/f) is a topological isomor-
phism, it follows that mβ^H)(β{B)) — 0. But β(//) is open in G2 so that
once again m^(//) is simply the restriction of mG to β(H). Therefore,
mG2(β(B)) = 0.

THEOREM 1. Let G be a metrizable LCA group and let S and E be
measurable subsets of G with S C E. Suppose Gx is an LCA group and p:
G -» Gx is a continuous homomorphism such that ρ(G) is metrizable. If

(i) p~ι(y + S) is a small q set in Gx for a dense set D ofy E G, and
(ii) φ(E) is a smallp set in G/(kcrp)± ,

then S is a small pq set in G.

We may, of course, take S — E above. However, it is convenient to
have the theorem stated in terms of S and E for use later in connection
with inverse images of small/? sets, where we will take E = h~\T).

Proof. Let μ be a measure in M(G) such that μ vanishes off S and set
v = p(| μq I). We begin by showing that

(1) , E L ' ( G , ) -

Let γ E D and suppose χ £ p~\y + S). Then χ ° p - y & S so

p(yμHx) = β (x ° P ~ r) = °

By (i) the set p~\y + S) is small q in Gx and thus ρ(yμq) = ρ(yμ)q E
L^Gj). It follows that if Q = Σx Cj yj is a trigonometric polynomial with
γy E Z) (1 <7 < n\ then p(βμ^) E L^Gj). Since D is dense in G, the set
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is dense in L\\μq\) (see [5, 31.4]), and we therefore choose a sequence
( β π ) in TD such that Qnμ

q^\μq\. Then since \\p(Qnμ
q) ~ p(\μq\)\\^

\\Qnμ
q - \μq\\l it follows that v = p(\μq\) E L\GX).

Now, let H = ker p and choose any open σ-compact subgroup Ho of
G which contains supp | μ | . Let p0 be the restriction of p to H0 and set
p' = ρo(| μq I). Note that *>' is concentrated on the σ-compact set ρ(H0).

The function p0: 770->p(/70) is a continuous homomorphism and
ρ(H0) Q p(G) is metrizable by hypothesis. We may therefore "disin-
tegrate" \μq\ with respect to p0. Doing so we obtain measures (λ^: y E
ρ(H0)} C M + (7ϊ 0 ) such that (a)-(c) hold with p, μ, G, and Gλ replaced
by p0,1 μq | , if0, and p(/f0). As noted in the remarks following (a)-(c), we
may assume (b) and (c) hold for all bounded Borel g: Ho -* C and /:
ρ(H0) -> C, and λ'v is concentrated on pp\y) — ρ~\y) Π i^0 with ||λy| < 1
for all j Eρ(H0). Furthermore, λf

y — 0ify Eρ(Ho)\ρ(Ho).
The extension ω of *>' to G! (co(J5)) = ^'(5 Π ρ(H0)) is simply the

measure J> = ρ(\μq\). In particular, ^ is concentrated on ρ(H0). Fory E Gλ

define λ; E M + ( G ) by

ίλ^ extended to G if y E ρ(H0),

0 if y E Gx\p{H0).

Next let μ« = f0 \ μq\, where f0 is Borel with |/01= 1, and set λy = /oλ" E
M(G). Then, in view of the preceding paragraph, the following three
properties hold for the family {λy: y E G}} Q M(G):

, v λ is concentrated on ρ~\y) Π i ί 0 and ||λ || < 1 for all

, v J ^ λ ^ ί g ) is ^-measurable for each bounded Borel
^ ^ function g: G -+ C, and

(4) /g(*)/ P(x) dμ'(x) = /

for all bounded Borel g: G -> C and/: Gx -> C.
For each >> E ρ(/ί0) let ^ 0 be a fixed element in the set ρ~\y) Π 770,

and for each ^ E G{\p(H0) set j>0 = 0. Define measures σ̂  E M(G) by
setting

(5) ^ = λ ^ * - Λ (y^Gi)>

where δ_ ô is the point mass at -y0. Then by (2)

(6) supp σyQHDH0

for all;; E Gλ.
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Now, in view of (6) we may regard each σy as being a measure in
M(H). Doing so we then claim that

f there exists a subset K C G, with v{Kc) — 0 such that

δy = 0 off φ(E) C G///-1 for allj E K.

To establish (7) we begin by observing that one may choose closed sets
Kn C supp v (n > 1) such that for each π,

(8) * ( * < ) < 1/w,

(9) ^ n Π F ) > 0 for each open V Q Gλ such that KnΠV^0,

and

the map y-*λ(f) is continuous on Kn for each

fEL\G).

This may be seen as follows. Ho is σ-compact and metrizable (since by
hypothesis G is) so C0(H0) is separable. Then the subspace A of C0(G)
consisting of all/ E C0(G) with supp/ C /f0 *s a ^ s o separable with, say, a
countable dense set 3\ For each n > 1 apply Luzin's theorem and (3) to
find a closed set #„ C supp v such that (8) and (9) hold, and such that the
mapping y -> λy(f) is continuous on Kn for each/in the countable set <$.
Then since ^ is dense in A and the norms of the λ^ are uniformly
bounded, it follows that y -» λ^(/) is continuous on Kn for all / E A,
Now let / E ^ ( G ) . Since /ί̂ " is compact, (/* mH±) E: A. Noting that
λy — oy * δ , and recalling that supp σ̂  C //0 and j 0 E Ho, we find that

= fj(x+yo)day(x) =

Consequently, y -> λ^ί/) is continuous on i^w, from which it follows that
(8)-(10)hold.

To complete the verification of (7) let / E L\G) with supp/C
φ-\φ(E))c. Let γ E G and χ E Glβ If /(γ) ^ 0, then since S + p(Gx)
QE + H^ , we must have y <£ S + PiG^. Thus γ - χ o p ^ 5, so
(μq)(y — X°p) — 0. Therefore, using (4)

0 = (Λy)(μq)\y - x ° P) rfγ = / / /

,(/) dv{y).
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Since trigonometric polynomials are dense in Lλ(v) it follows from the
calculation above that

f F(y)λy{f)dv(y) = 0

for all F E L\v). But >> -> λy(f) belongs to L°°(v) so we conclude that

λ F (/) = 0 for ^-almost ally E Gx.

We now infer from (9) and (10) that, in fact,

λ , ( / ) = 0 foral l jΈT^ (n > 1).

Thus for >> EKn,

(li) o = λy(f) = fj(x) d\y(x) = fj(y)λy(y) dy-

Since (11) holds for all/ E L\G) with supp/ C φ \φ(E))c we have

(12) λ j ;(γ) = 0 forallγ Eφ" 1 (φ(^)) c and7 E7Γπ (* ^ 1)

(note that it is implicit in (ii) that φ(E), hence φ"1(φ(£')) also, is
measurable).

Now let K— U™ Kn. Then v(Kc) = 0 by (8). Since supp σ>; C /f, σy is
constant on cosets of H1-. Moreover, if γ + H± &φ(E)9 then γ ί
φ-^φί^)), so iiy E #, (5) and (12) show that

σy(y + H1-) = όy(y) = λy(y)y{yQ) = 0.

Thus ay vanishes off φ(E) for all y E K and this establishes the claim in

By (ii) φ(E) is small p in G/H1-, and by (7) σy = 0 off φ(E) for all
j G l Thus,

whenever j j , . . . 9yp E K(see [11, Lemma 4]).
Let Gf = G, X XG, (/? times) and define ω <Ξ M(G) by

( 1 4 ) ω ( / ) = /^ λ y χ * * λ } , ( f ) d ( r X X r ) { y l 9 . . . ,>
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for fEC0(G) (it follows from (3) that the function (yl9...,yp)->
λyι* * λy(f) is (v X X ̂ -measurable for bounded Borel /: G ->
C; cf. [12]). This formula extends to all bounded Borel functions /:
G -> C. For γ E G we have by (4) that

ώ<γ) = /G

 λ* * ' *' * λ J ϊ M " x

P r P

1 JG
= Π/

Thus, ω = JU^.
Now, let 5 be a Borel set in G such that mG(B) = 0. Then there exists

a Borel set F c G/H such that

(15) mG/H(Fc) = 0,

and

(16) mH((B~ x) ΠH)= ί ξB(x + h)dh = 0 for allx + if E F.

Let β: G/H -» G^ β(x + ίΓ) = ρ(x) be the 1-1 continuous map induced
on the quotient by p. Then by (15) and Lemma 1, mGχ(ρ(G) Π β(F)c) =
mGχ(β(Fc)) = 0. Since we know by (1) that vp < mGχ and vp is con-
centrated on ρ(HQ), it follows that vp(β{F)c) = 0. Letting α: Gf -> G! be
the map a(yl9... 9yp) = y, + +>^, we thus find that

Furthermore, since by (7) v{Kc) = 0, we also have (y X
= 0, and therefore that

(17) (vX Xv){(Kp)cUa-\β(F))c)=0.

Next \et(yl9...9yp) EKp Π a'\β(F)). LetyJ0 be the fixed element
associated with σy as in (5). Then we assert that

(18) σΛ ••• * a ^ J ^ - | j , ) J

For if all of they} lie in ρ(HQ), then, by definition,yjQ E ρ"ι(y7) (1 ^j^ ρ)9

and we must havey10 + +yp0 + ί ί E f . Otherwise,
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which contradicts that Σf y} = a(yl9...9yp) E β(F)9 since (yl9...,yp) E
cr\β(F)). Thus, j f + - - + ^ 0 + Jϊ G F9 so, by (16),

But each j>7 E # , so by (13) oyχ * * σ E L\H)9 and this together
with the last line shows that (18) holds. If, on the other hand, some
yj £ ρ(H0), then (2) and (5) show that σy - 0 and (18) clearly holds.
Thus, (18) holds for all (yλ9... 9yp) G Kp Π a~\β(F)).

Therefore, combining (14), (17), and (18) and recalling that the
support of each σv lies in H we find that

Gf

Xd{vX -Xv){yλ,...,yp)

= ί %* ••• °J(*-Σ:ϋ n//
Jκ'na-\β(F)) ^ y\\ 1 / /

xc/l^x xOίj,,...,^)

σ * * σJ \B - 2y,o Π //

Thus, μpq E Lj(G) and the proof is complete.
The assumption that G be metrizable in Theorem 1 may be eliminated,

and also in some cases the requirement that p{G) be metrizable. This is
carried out with the aid of the following Lemma, which reduces the
general case in part to Theorem 1. First, some notation.

Let G and Gx be LCA groups and let p: G -» Gλ be a continuous
homomorphism into Gx. If Γ is a closed subgroup of G, then we set
Γj = p~!(Γ) and denote the restriction of p to Γ, by p0: Γj -» Γ. p0 is the
adjoint of the induced homomoφhism p0: G/T±-+ Gλ/T^ defined by
po(jc + I1-) = ρ(x) + Γj1. We let φ0: Γ -̂  Γ/ίkerpo)-1 denote the natural
quotient map.
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LEMMA 2. Notation as in the last paragraph. Let S C E be measurable
subsets of G which satisfy (i) and (ii) of Theorem 1 (we do not assume that
either G or p(G) is metrizable). Let Γ be an open σ-compact subgroup of G.
Then

(i)' po!(γ + S Π Γ) is a small q set in Tγ for a dense set D'ofyE Γ,
and

(ii)' φo(E Π Γ) is a small p set in T/ikeΐp^ .
Consequently, if po(G/T±) is metrizable, then S Π Γ is a smallpq set in G.

Proof. If γ E D Π Γ = D', then

Since γ E D, Theorem l(i) shows that ρ~\y + S), hence ρ~\y + S) Π Tλ

is also small q in Gv Now, since Tx is open in Gx, a subset T C Γj is small
q in (j, if and only if T is small q in Γ\ ([11, Lemme 6]). Thus,
Pόι(y + S Π Γ) is small # in Γj for each γ E Z>', which is dense in Γ, so
(i)' holds.

In order to establish (ii)' we first note that since p is the adjoint of p,
Γ, = p'\T n p(G,)) = PίΓ-1)1-, and thus T^= p(Γ x) (p(Γ x) is closed in
Gx since Γ± is compact). Hence, letting π: G -> G/Γ-1 be the quotient
map, we have

kerp0 = π(p-}(T^)) = π ^ +kerp) = ττ(kerp).

It follows easily from these last relations that (kerp o)"L=Γ(Ί
(kerp)-1. Thus our objective is to show that φo(E Π Γ) is a small/; set in
r/rn(kerp)x.

Let H = (kerp)-1. Now since Γ is open and σ-compact in G we have
Γ/Γ Π H « Γ + H/H ([5, 5.33]). Specifically, the map a: Γ + # / # ->
Γ/Γ Π H defined by α(γ + H) = γ + Γ Π // is a topoplogical isomor-
phism. Again since Γ is open, φ(Γ) = Γ + H/H is open in G/H. By
Theorem l(ii), φ(E) Π (Γ + H/H) C φ(J5) is a small^ set in G/77, and
thus since Γ + H/H is open, it is also small p in Γ + H/H. Topological
isomorphisms preserve small p sets, hence a(φ(E) Π (Γ + H/H)) is
small /? in Γ/Γ Π H. It is not difficult to check that <po(E Π Γ) C
α(φ(£") Π (Γ + H/H)), and consequently we find that φ o(£ Π Γ) is a
small p set in Γ/Γ Π # , i.e., (ii)' holds.

Finally, suppose po(G/ΓJ") is metrizable in Gλ/T^~. Since Γ is σ-com-
pact, the quotient G/T1' is metrizable. Thus, in light of (i)' and (ii)' we
may apply Theorem 1 to G/T1^, Gx/Γf~, and p0 to conclude that S Π Γ is
small pq in Γ. However, Γ is open in G, from which it follows that S Π Γ
is a small pq set in G, and the proof is complete.
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DEFINITION 2. We shall call a continuous homomorphism p: G -» Gx

between LCA groups G and Gx a topological homomorphism if p is an
open mapping of G onto p(G), i.e., if ρ(V) is relatively open in ρ(G) C Gx

for each open subset V C G. Note that under such a map the subgroup
ρ(G) is locally compact and therefore closed in Gx,

The use of the measure ω E M0(G) in the proof of the next theorem is
patterned after [12], where the original idea is attributed to S. Saeki.

THEOREM 2. Let G be an LCA group and let S and E be measurable
subsets of G such that S C E. Suppose Gx is an LCA group and p: G -* Gλ

is a continuous homomorphism such that
(i) ρ~\y + S) is a small q set in Gx for a dense set ofy E G, and

(ϋ) φ(E) is a small p set in (//(kerp)"1.
If either

(iii) ρ(G) is metrizable, or
(iv) p is a topological homomorphism,

then S is a small pq set in G.

Proof, Let r — pq and suppose to the contrary that S is not a small r
set in G. Let μ E M(G) be such that β = 0 off S, yet μr & L\G). Then by
([8, Corollary 3]) there exists a measure ω E M$ (G) such that μr * ωr &
L\G).

Since ω E M0(G), supp ώ is σ-compact and hence there exists an open
σ-compact subgroup Γ in G containing supp ώ. Let p0: G/Γ±^> Gx/T^ be
the induced homomorphism as in Lemma 2. Now either of the conditions
(iii) or (iv) implies po(G/Γ x) is metrizable, as we shall show shortly.
Assuming this to be true for the moment, we complete the proof as
follows. Since (i) and (ii) hold, Lemma 2 applies to show that S Π Γ is
small r in G. Then since (μ * ω) vanishes off S Π Γ, we have μr * ωr =
(μ * ω)r E L\G), a contradiction. Thus, S is a small r set in (^

It remains to show that either (iii) or (iv) implies that po(G/ΓJ~) is
metrizable. Let π: G -» G/Γ^ and πx: Gx -> Gj/Γ^ be the natural quo-
tient maps, so that ρ0 ° π = 771 Q p. Assume (iii) holds. Then since Γ^ =

) Cρ(G), the group πx(ρ(G)) is topologically isomorphic to
p(G)/Γ1

±, and thus 7rj(p(G)) is metrizable. Now T^ is compact (Γ, =
p-1(Γ) is open) so that πx is a closed map, and therefore since p^G/T^ C
τrx(p(G)l we conclude that ~pjG/Tτ) c w,(p(G)). Hence, p^G/Γ 1 ) is
metrizable. On the other hand, if (iv) holds, then it follows that the
induced map ρo:G/T±-+ Gx/Tf is also a topological homomorphism.
Since G/T1- is metrizable (Γ is σ-compact), we find once again that
po(G/Γ x) = PoiG/T^ - (G/Γ-Vkerpo is metrizable.
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REMARKS. 1. At least one of the conditions (iii) or (iv) of Theorem 2 is

satisfied in the following situations: G arbitrary and G} metrizable, or Gλ

arbitrary and G σ-compact with p(G) closed (in particular, if G is

compact).

It is perhaps worth pointing out that the metrizability requirements

arise solely as a result of the disintegration process, i.e., the requirement

that ρ(G) be metrizable is used essentially at one point only — i n the

proof of Theorem 1 to guarantee the existence of a disintegration. If one

could disintegrate μ with respect to p: G -> Gλ for general LCA G]9 then

the above proofs would carry over without restriction to yield Theorem 2

for arbitrary <?, G]9 and p. Although we have neither a reference nor a

proof, it is nevertheless tempting to conjecture that this is true.

2. If μ vanishes off S, and μ is a positive measure, or, more generally,

if there exists a sequence (Qn) of trigonometric polynomials such that

Qnμ
q ^\μ\q are (equivalently, | μ q | and |μ\ q are absolutely continuous with

respect to one another), then in fact μ m a x ^'^ e L\G). This may be seen

by modifying the proof of Theorem 1 as follows. Set v = p(| μ |), rather

than v — p(| μq |), and argue as in the beginning of the proof of Theorem 1

to show that vq E L\G}). Then disintegrate μ to obtain formula (4) with

μq replaced by μ. The middle portion of the proof is the same as before up

to line (14). This is now modified to read

where r ~ max(/>, q). Then only minor changes are necessary in the tail

end of the proof to conclude that μr E Lι(G). These same conclusions

hold for Theorem 2.

We do not know if S is, in general, a small max(/?, q) set in G. If

condition (i) is altered to read

(i) p~1({γ1,... ,yq) + S) is a small q set in Gx whenever γ 1 ? . . . ,γq E D

(D dense in (J) , then one can show that S is a small max(/?, q) set. In this

case, p(Qμ)q E L\G{) for each trigonometric polynomial Q, and it fol-

lows that vq E Lλ(Gx), where p = ρ(\μ |). We may then proceed as outlined

in the last paragraph.

THEOREM 3. Let G be an LCA group and S a measurable subset of G. In

order that S be a small r set in G it is necessary and sufficient that there exist

a closed subgroup Γ c G and positive integers p and q such that

(i) r = pq9

(ii) (γ + S ) Π Γ is a small q set in Γ for a dense set ofy E G, and

(iii) φ(S) is a smallp set in G/T.
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Proof. If S is a small r set in G let q = r, /> = 1, and Γ = G. Then (i)

and (ϋi) clearly hold, and (ii) holds since the translate of a small r set is

again a small r set.

Conversely, assume (i)-(iii) hold. Let p: G -> G/Γ^ be the standard

quotient map, so that the adjoint p: Γ ^ G is the injection of Γ into G.

Since p is an open map and (i) and (ii) of Theorem 2 hold (with S = E)

by virtue of (ii) and (iii) above, Theorem 2 applies to show that S is a

small r — pq set in G.

To illustrate Theorem 3, we use the F. and M. Riesz Theorem on Z to

derive its analogue in R, that i? + = [0, oo) is a Riesz set in R ([10, 8.2.7]).

Take S = i ? + , G = i?, and Γ = Z in Theorem 3 with p = q=l. Then

(iii) holds since Λ / Z is compact, and (ii) holds since (jc + 7 ? + ) Π Z i s a

translate in Z of Z + for each x E R and is therefore a Riesz set in Z by

the F. and M. Riesz theorem.

Now let h: G -> Go be a continuous homomorphism and Γ a small /?

set in Go. For 5* C h~λ(T) we seek conditions from which we may infer

that S is a small # set in G for some # > 1. Some additional conditions are

required, inverse images of small /? sets behave poorly even under very

reasonable circumstances. Consider, for example, the imbedding h: Z -» R

of Z into i?. Here every subset S of Z is a Riesz set in i?, but, of course,

h~ι(S) = S need not be a Riesz (or small q) set in Z, even though Λis a

1-1 topological homomorphism into i?. Again, if G is not compact and h:

G -> Gb is the injection of G into its Bohr compactification Gb, then every

measurable subset T C Gbis Riesz in G^, but h~\T) — T Π G need not

be small g in G for any ̂  > 1.

If, in Theorem 2, we take E — h~\T) and suppose (i) and (ii) hold (p

as in (iii) or (iv)), then we force S to be small pq set in G. This is the idea

behind the next theorem and its corollaries and, thus, also behind the

applications which follow.

THEOREM 4. Let G9Gl9 and G2 be LCA groups and consider the

mappings

* g /v h /v

Gj -*G -*G2,

where h is a topological homomorphism, and g is either a topological

homomorphism or a continuous homomorphism such that Gj/kerg is σ-com-

pact. Let Γ = ker/i and Λ =g(όι). Assume h(A) is closed in G2, and let

φ}: h(G) -» h(G)/h(A) be the natural quotient map. Suppose Tis a smallp

set in h(G)/h(A) and S C (φ, ° hy\T) is measurable. If

(i) g~\y + S) is a small q set in Gx for a dense set ofγ E G, and
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(ii) [χ + Λ + φ((φ, ° h)~\T))] Π (Γ + Λ/Λ) is a small r set in

Γ + Λ/Λ for a dense setofχ + A<E G/A,
then S is a small pqr set in G. In particular, if

(iii) Γ + Λ/Λ is compact and (i) holds,
then S is a small pq set in G. The group Γ + Λ/Λ is compact if either Γ is
compact, or G/Λ is compact, or T Q A, and so in these cases (i) alone is
sufficient to guarantee that S is a small pq set in G.

Proof. We first note that since h(A) is assumed to be closed in G2,
Γ + Λ = h~ι(h(A)) is closed in G, and thus the group Γ + Λ/Λ appear-
ing in (ii) is an LCA group.

If we denote the adjoint of g by p: G -> Gλ (hence p = g), then p
satisfies either (iii) or (iv) of Theorem 2. For if g is a topological
homomorphism, then so is p, and if G^/kerg is σ-compact, then p(G) —
(ker g ) x is metrizable. Moreover, since g(Gx) is dense in (kerp)"1, we have
Λ ^ ί k e r p ) ^ . Thus, by (i) and Theorem 2 it suffices to show that
φ((Φi ° h)~λ(T)) is a smaller set in G/Λ.

Let α: G/Λ -* A(G)/Λ(Λ); α(γ + Λ) = A(γ) + Λ(Λ) be the con-
tinuous homomorphism induced by h, and let

be the canonical factorization of a. Since h is a topological homomor-
phism, a is an open surjection and, consequently, ψ is a topological
isomorphism. By hypothesis, Γis small/? in h(G)/h(A), and thus ψ~!(Γ)
is small p in (G/Λ)/kerα. We have ττ(φ((φ1 o h)'\T))) = ψ-\T)9 so
^(φ((Φi ° ^)~1(^))) i s a small /? set in (G/Λ)/kerα. Now kerα =
φ(ker/z) = Γ + Λ/Λ, and this combined with (ii) shows that [χ + Λ +
φ((Φi ° ^)~1(^))] ^ kerα is small r in kerα for a dense set of χ + Λ E
G/Λ. Therefore, by Theorem 3, φίίφ, ° h)~\T)) is a smaller set in G/A,
which is what we wished to show.

Lastly, if Γ + Λ/Λ is compact, then (ii) holds with r — 1 so that S is
a small pq set in G. If Γ is compact, then φ(Γ) = Γ + Λ/Λ is also, and if
G/Λ is compact, then the closed subgroup Γ + Λ/Λ is again compact. If
Γ c Λ, then Γ + Λ/Λ = {0} is clearly compact, and the proof is com-
plete.

Several results akin to Theorem 4 may be obtained by adapting the
proof suitably. We state one such variant below. Its proof is a direct
consequence of Theorem 3 and the following observations. If h: G -> Go is
a topological homomorphism, Γ a closed subgroup of h(G), and T C
Λ(G)/Γ, then the induced homomorphism a: G/h~\T) -» h(G)/T is a
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topological isomorphism and a~\T) — (φ(φx ° h)~x(T)), where φ: G -»
G/h'\T) and φ,: h(G) ->h(G)/T denote the associated quotient maps.

THEOREM 5. Let G and GQ be LCA groups and let h: G -> Go be a
topological homomorphism. Let Γ be a closed subgroup of h(G) and denote
the quotient map h(G) -> h(G)/T by φx. Suppose T is a small p set in
h(G)/T andS C (φ, o h)'\T) is measurable. If

(i) (γ + S) Π Λ-1(Γ) is a small q set in h'\T) for a dense set ofy G G,
then S is a small pq set in G.

REMARK. It is perhaps worth pointing out that if H is a closed
subgroup of G and S C H is a smallp set in H, then S is also a small/? set
in G. This can be made a consequence of the above, but there is a more
direct route. If H is open, then S is small p in G by [11, Lemma 6]. If H is
not open, then it is locally null in G (otherwise H contains a compact
subset K of positive measure, and thus K — K contains a neighborhood of
0). Then Hc, and hence Sc also, is dense in G. Consequently, if β vanishes
off 5, then, by continuity, μ = 0 and so certainly S is small p in G. The
converse is true if H is open (again by [11]), but is false generally; if if is a
closed subgroup of G which is not open, and if S is small p in G, then
S Π H need not be small q in H for any q > 1 (e.g., Z in R).

COROLLARY 1. Let G,G]9 and G2 be LCA groups and consider the
mappings

A 8 A h A

where h is a topological homomorphism, and g is either a topological
homomorphism or a continuous homomorphism such that Gj/ker g is σ-com-
pact. Assume g{Gλ) C ker/z. Suppose T is a small p set in h(G) and
S C h'\T) is measurable. If

(i) g~\y + S) is a small q set in G, for a dense set ofy E G, and
(ii) ker Λ/g(G1) is compact,

then S is a small pq set in G.
In particular, if g{Gλ) = ker A, or if ker A is compact, then (i) alone

implies S is a small pq set in G.

Proof. Let Γ = kerΛ and Λ = g(Gx) as in Theorem 4. By hypothesis
Λ c Γ, whence h(A) = {0}, so we may clearly suppose, in Theorem 4,
that T c h(G) and S C h~\T). By (ii), Γ + Λ/Λ = Γ/Λ is compact, and
this, together with (i) and Theorem 4(iii), shows that S is small pq in G.
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COROLLARY 2. Let G and Go be LCA groups, h: G -> Go topological

homomorphism, and A a closed subgroup of G. Assume h(A) is closed in Go

and let φ{: h(G) -» h(G)/h(A) be the natural quotient map. Suppose T is a

smallp set in h(G)/h(A) and S C (φλ ° h)~\T) is measurable. If

(i) (γ + S) Π Λ is a small q set in A for a dense set ofyEG, and

(ii) either ker/z is compact, or G/A is compact, or ker/z C Λ,

then S is a small pq set in G.

Furthermore, if

(iii) (γ + S) Π (Λ + ker h) is a small q set in A + keτhfor a dense set

ofy e G,

then S is a small pq set in G. In particular, if A + ker h is compact, then

(φx o h)~ι(T) is a smallp set in G.

Proof. For the first part apply Theorem 4 (iii) with Gλ — A and g

equal to the injection of Λ into G. For the second part apply Theorem 5

with Γ there equal to h(A) and observe that h~ι(h(A)) = A + ker/*. If

Λ + kerΛ is compact, then (iii) holds with q — 1 and S — {ψx ° h)~ι(T).

COROLLARY 3. Let G and Go be LCA groups.

(1) Let h: G -> Go be a topological homomorphism, T a small p set in

h(G), and S C h~\T) a measurable subset. If

(i) (γ + S) Π ker h is a small q set in ker h for a dense set of γ E G,

then S is a small pq set in G. In particular, if T is a small p set in h(G) and

ker h is compact, then h~](T) is a smallp set in G.

(2)([11]). // Λ is a compact subgroup of G and T is a small p set in

G/A, then ψ~\T) is a smallp set in G, where φ: G -» G/A is the natural

quotient map.

Proof. For part (1) apply Corollary 2 (iii) with Λ = {0}. For part (2)

apply the "in particular" statement in part (1) to the quotient map φ:

G -> G/A.
As we mentioned earlier, it is shown in [12] that if Sx C Gλ is a Riesz

set and S2 C G2 is a small p set, then the cartesian product Sλ X S2 is a

small/? set in G, X G2. This may be regarded as a generalization to LCA

groups of Bochner's F. and M. Riesz theorem for Z X Z. The following

theorem provides a further extension along the same lines.

THEOREM 6. Let Gx,..., Gn be LCA groups. If Sj is a smallPj set in Gj

for each j = \,...,n, then the cartesian product Sλ X XSn is a small

P\Pi'''Pn s e t in G\ X " X<v In particular, the cartesian product of

Riesz sets is again a Riesz set.
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Proof. By induction it is sufficient to establish the theorem for n — 2.
We consider the mappings

Gx -*GX X G2 ->G29

w h e r e j \ ( y ) = ( γ , 0 ) is the injection of Gx i n t o GXX G2, a n d 7r2(γ, χ ) = χ
is t h e project ion of Gx X G2 o n t o G2. T h e m a p s jx a n d π2 a re topological
h o m o m o φ h i s m s with jx(Gx) = GXX {0} = kerττ 2 . T h u s , since S2 is a
smal l p 2 set in ( J 2 a n d SXX S2CGXX S2 = τ r 2 \ S 2 ) 9 we n e e d only show,
b y Corol lary 1, t h a t y f ^ γ , χ ) + Sx X S2) is a small p x set in Gx for a
d e n s e set of ( γ , χ) E GXX G2. But for each ( γ , χ ) E Gx X G2 we have

ί0

Thus, since, by hypothesis, Sx is small />, in Gu Corollary 1 applies to
show that Sx X S2 is smallpxp2 in Gx X G2, which completes the proof.

By a proper cone in Rn we shall mean a subset of the form

C{v9 x 0 9 r)= U {(1 - t)v + tx: t > 0 ) ,
x<ΞB(xo,r)

where B(x0, r) is a closed ball in i?" of radius r > 0 with center at x0, and
t> is a point in Rn not contained in B(x0, r). A proper cone in 7?" is closed
and convex. Geometrically, C(v9xO9r) consists of all half-lines issuing
from v which pass through the ball B(x0, r). A proper cone in Zn is by
definition a subset of Zn of the form C(v, xQ9 r) Π Zn, where C(v, xQ9 r)
is a proper cone in Rn with v and x0 in Zn.

Note that a proper cone in Z (or R) is simply a half-line and is
therefore, by the F. and M. Riesz theorem, a Riesz set. The classical
Bochner theorem ([1, Theorem 5]) is the higher-dimensional analogue of
the F. and M. Riesz theorem and may be accurately paraphrased by
stating that any proper cone in Zn is a Riesz set. By combining the earlier
material and the F. and M. Riesz theorem we obtain the following
extension of Bochner's theorem.

By a hyperplane H in Rn we mean an (n — l)-dimesional subspace of
Rn. Denoting the usual inner product of x and y in Rn by x y9 we thus
have H= {x <ΞR": x a = 0] for some a<ΞR\a=£0. The sets Hx = {x
e Rn: x a > 0} and H2 = {x E Rn: x α < 0} will be called the closed
half spaces determined by H. We define a hyperplane in Zw to be a
subgroup of the form H = {x E Z": x ύr = 0}, where α E Z", α ̂  0.
The corresponding sets Hx = {x E Zn: x α > 0} and H2 = {x Eί Zn:
x - a < 0} will again be called the closed half spaces determined by //.
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THEOREM 7. Let S be a measurable subset of Rn [any subset of Zn\ such
that a translate of S lies in a closed half space determined by some
hyperplane H in Rn[Zn]. If (x + S) Π H is a smallp set in H for a dense
set of x G R"[Znl then S is a small p set in Rn[Zn}. In particular, if
(x + S) ΓΊ H has finite measure in H for a dense set of x G Rn[Zn]9 then S
is a Riesz set in Rn[Zn].

Proof. Since small p sets are preserved by translation we may assume
that S itself lies in one of the half spaces determined by H, say, Hx — {x:
x α > 0 } .

Consider the case of R" first. The linear map Rn -> R; h(x) — x a is
a topological homomorphism of Rn onto R (a G Rn

9 a φ 0) with ker/z =
H. The set T = {x G R: x > 0} is a Riesz set in R and, by hypothesis,
S C Hx — h~\T). Since (x + S) Π ker/z is a small p set in ker/z for a
dense set of x G Rn, Corollary 3(1) applies, showing that S is a small p set
inRn.

The proof for Zn is similar. The map h: Zn -> Z defined by h(x) ~
x - a is a topological homomorphism of ZΛ onto a nontrivial subgroup of
Z(aEZ\aΦ0) with ker h = H. Let Λ(ZW) - bZ, where Z> G Z, b > 1.
Since Z?Z is isomoφhic to Z, the set T = [bn\ n> 0} is a Riesz set in &Z
and, as before, 5 C Hx = Λ^Γ). By hypothesis, (x + 5) Π ker/z is a
small /? set in ker/z for all * G Z". Thus, again by Corollary 3(1), S is
small p in Z", and the proof is complete.

Bochner's theorem, that a proper cone is a Riesz set, is contained in
Theorem 7. This is evident on purely geometric grounds, since if C is a
proper cone it seems clear that we may choose a hyperplane H such that
any translate of C intersects H in a set of finite measure. A proof follows.

THEOREM 8 [Bochner], Any proper cone in Zn or Rn is a Riesz set.

Proof. Assume first that C is a proper cone in Rn. The translate of a
proper cone in i?" is again a proper cone so we may suppose the vertex of
C is υ = 0, i.e., we may assume C — C(0, x0, r), where x0 G Rn, x0 φ 0,
and r > 0. Let H be the hyperplane

H= {x ER":x - xo = O},

i.e., H is the orthogonal complement of the 1-dimensional subspace {tx0:
t G R}. We will show that C is contained in one of the half spaces
determined by H and that (x + C) Π H has finite measure in H for every
x G Rn. It will then follow from Theorem 7 that C is a Riesz set in Rn.
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These assertions are a consequence of the following claim.
Claim: for each z0 E Rn and w E (z0 + C) Π H we have

(i) I M I ^ W + *'Ί^o ^ol (̂  + 11̂011).
where 8 > 0 is a constant depending only on C.

The claim is established as follows. The function f(x) — \x - xo\ is
continuous, and thus/(2?(jc0, r)) = {\x xQ\: x E 5 ( i 0 , r)} is compact.
Suppose 0 E/(2?(Λ;0, r)). Then Λ: x0 = 0 for some x E 2?(x0, r). But
0 & B(xo,r) since C is a proper cone with v — 0 and, consequently,
||xo | | > r. Then

||x||2 + r 2 < ||x||2 + ||xo | |2 - ||x - xo | | 2 < r\

the middle equality holding since x x0 = 0. This contradiction shows
0 £ f(B(x09 r)) and, therefore, δ = dist(O, f(B(x0, r))) > 0. In particular,
|JC x 0 | > 5 > 0 f o r a l l x E J5(JC0, r).

Now, let w E (z0 + C) n H. Since w — z0 E C, there exists an x E
5(x 0 , r) and a t > 0 such that w — z0 — tx. Since also w E //, we have

0 =|κ> ΛΓ0|=|(ίx + z0) x o | > /|x x o | -\z0 x o | > /δ - \z0 x o | ,

i.e., / < δ"11 z0 x01. Then

IMI < ||zo | | + /||Λ|| < ||zo | | + δ-1 \z0 xo\(r + \\χo\\)

as claimed.

Setting z0 = 0 in (1) we find that C Π H= {0}. Since C\{0) is
connected, it follows that C lies entirely in one of the half spaces
determined by H. On the other hand, if z0 E Rn, then (z0 + C) Π H is
closed and is also bounded by (1), hence compact. Consequently, (z0 +
C) Π H has finite measure in H for every z0 E JR", so C is a Riesz set in

Consider next the proper cone C — C(υ, x09 r) Π Zw, v, x0 E ZΛ, in
Z n . As before we may assume v = 0 (and thus x0 £ 0). Let i/ = {x E i?":
x JC0 = 0} be the hyperplane in Rn generated by x0. Then since JC0 E
Z"\{0), H Π ZΛ is a hyperplane in Zw. We know from above that
C(0, x0, r) lies in one of the half spaces determined by H, so, clearly,
C = C(0, x0, r) (Ί Zn lies in one of the half spaces determined by H Π Zn.
Moreover, for each z0 E Z π we have

(z0 + C(0, x0, r) DZn) ΠHΠZn C (z0 + C(0, JC0, r)) Π H.

Since (z0 + C(0, JC0, r)) Π H is compact, the set (z0 + C) Π H Π Z n is
finite in /ί D ZΛ. Thus, again by Theorem 7, C is a Riesz set in Z", and
the proof is complete.
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Finally, let us call a subset S in an LCA group G a conical Riesz set if

there exists an open subgroup Γ of G which contains S and a topological

isomorphism p: Rn X Z m X F -» Γ onto Γ such that S = p(CxX C2 X F ) ,

where C\ is a proper cone in Rn (n > 0), C2 is a proper cone in Zm

(m > 0), and i 7 is a compact abelian group. It follows from Theorems 6

and 8 that such a set S is, in fact, a Riesz set in G. For C, and C2 are Riesz

sets in Rn and Z m by Theorem 8, and F is clearly a Riesz set in itself;

hence, by Theorem 6, C, X C2 X F is a Riesz set in Rn X Z m X i7. Since T

is a topological isomorphism, S = p(C\ X C2 X i 7 ) is a Riesz set in Γ and

also in G since Γ is open.

Now, if F i s an open relatively compact (i.e., F i s compact) neighbor-

hood of 0 in G, then gp(F), the group generated by V9 is an open

compactly generated subgroup of G. Then, as is well known, gp(F) is

topologically isomorphic to Rn X Z m X F for some nonnegative integers n

and m, and some compact abelian group F. Combining these facts with

the definition above we obtain the following version of Bochner's theo-

rem.

THEOREM 9. Let G be an LCA group. Then every open compactly

generated subgroup of G contains a conical Riesz set. In particular, for each

open relatively compact neighborhood VofO in G, gp(V) contains a conical

Riesz set.

If G itself is compactly generated, say, G = Rn X Zm X i7, where

n, m >: 0 and F is a compact abelian group, then every subset of the form

C] X C2X F, where Cλ is a proper cone in Rn and C2 is a proper cone in

Z m , is a Riesz set in G.
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