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CRITICAL VALUE SETS OF GENERIC MAPPINGS

Go00 ISHIKAWA, SATOSHI KOIKE AND MASAHIRO SHIOTA

Let Y be a real analytic set. The subset of Y consisting of all points
where the local dimension of Y is maximal is called the main part of Y. A
subset Y’ of a real analytic manifold ¥ is called a main semi-analytic set
if Y’ is the main part of some analytic set in a neighborhood of each
point of N. In this paper it is shown that any proper C* mapping
between analytic manifolds can be approximated by an analytic mapping
in the Whitney topology so that the critical value set is a main semi-ana-
lytic set. An analogue holds true for the algebraic case too.

1. Analytic results. The topology of our spaces of C* or analytic
mappings is the Whitney C* topology [see M. Hirsch [11]] except for the
last section, and M, N always mean real analytic manifolds of dimension
n, p respectively. We denote by 2 f the critical point set {x € M |rank df,
< min(n, p)}. Our main result is the following.

THEOREM 1. Let f be a proper C* mapping from M to N. Then every
neighborhood of f in C*(M, N) contains a proper analytic mapping g such
that g(2g) is a main semi-analytic set of dimension | = min(n — 1, p — 1).

It is natural to ask if g(2g) can be analytic in the above. The answer
1s negative.

ExampLE. Let f: R® - R® be the polynomial mapping defined by
f(xy, x5, X3) = (X, X5, X5 + x,x3 + x,x;). Then f(2f) is “Swallow’s
Tail” [see T. H. Brocker [5] or M. Golubitsky and V. Guillemin [8]]. It is
known that f(2f) is not analytic. Moreover there exists a neighborhood U
of fin C*(R% R®) such that for any g of U, g(Zg) is not an analytic set.
(See Figure 1.)

We see easily that a main semi-analytic set is semi-analytic [see S.
Lojasiewicz [12]]. Any nowhere dense semi-analytic set is the critical value
set of some analytic mapping, to say more precisely.

REMARK. Let K be a semi-analytic subset of N of codimension > 0.
Then there exist an analytic manifold M and an analytic mapping f:
M — N such that

dim M =dimN>dimZf and f(Zf)=K.
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1

FIGURE 1

Let Y be a main semi-analytic set of dimension /. Then we define the
fundamental class of Y in the homology group H/(Y; Z,) as follows, where
we use infinite chains if Y is not compact. By [12] we have a triangulation
of Y. Consider the homology groups of the simplicial complex with
coefficient Z,. Then the sum of all /-simplexes defines a cycle, because
any analytic set has the fundamental class [see A. Borel and A. Heafliger
[4]]. The cycle is called the fundamental class of Y. If Y is a subset of N,
we denote by [Y] the image of the fundamental class of Y in H/(N; Z,).

Proper C* mappings f,, f,: M — N are called proper homotopic if we
have a proper C* mapping F: M X [0,1] - N such that F|,,,, = f, and

Flysi = b

THEOREM 2. There exists an open dense subset G of the set of all proper

analytic mappings from M to N such
(i) for any f of G, (2f) is a main semi-analytic set of dimension

[=min(n — 1, p — 1),

(ii) the fundamental class of Zf is mapped to it of f(2f) by fs for
fEG,

(iii) if f and g of G are proper homotopic, we have [ f(2f)] = [g(Zg)] in
H/(N;Z,).

2. Preliminaries. First, we prepare some notations of singularities
[see J. Boardman [3] and J. Mather [14]]. For any integer r = 1, J'(n, p) is
the linear space of r-jets of C* map germs (R”,0) — (R?,0), and J'(M, N)
is the set of all r-jets of germs (M, x) —» (N, y) for any x € M, y € N.
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Then J'(M, N) is fiber bundles over M X N and M with fibers J'(n, p),
J'(n, p) X N respectively. We put for any integer r > 0

M® = {(x,,...,x,) € M*: x, # x, for i #j},
J'(M,N) =g (M)

where g: J' (M, N)* > M* is the projection. For any C* mapping f:
M — N, we denote by j’f the cross section of the fiber bundle J(M, N) —
M naturally defined by f, and by , j'f the restriction of (j7f)* to M®. If a
subset B of J'(n, p) is invariant under the coordinate transformations of
(R",0) and (R?,0), we denote by B(M, N) the total space of the subbun-
dle whose fiber is B, and by B( f) the inverse image j'f~'(B(M, N)) for a
C*® mapping f: M - N.

Let 2‘ or Z*/ denote the Thom-Boardman symbol (see J. Boardman
[3]). We put

Zr9(f) (n=zp),

%“”:{w%f) (n<p).

We further put
A= {(jzfl(xl)’ j2f2(x2)) €,J%(M, N): fi(x)) :fz(xz)}-

Here we introduce the transversal condition concerning the Thom-Board-
man singularities. We say that a C* mapping f: M — N satisfies the
condition (T-B), if f has the following properties:
(I) In the case n = p,
(1) j'f is transversal to each Z(M, N),
(2) j*f is transversal to each =" 7*%J(M, N),
(3) ,j*fis transversal to (S" 7'M, N) X =" P*10( M, N)) N A.
(I1) In the case n < p,
(1) j'f is transversal to each =(M, N),
(2) j*f is transversal to each ="/(M, N),
(3) ,j*f is transversal to (2'"°(M, N) X Z%(M, N)) N A.

3. Proof of Theorem 1. In this section we give the proof of
Theorem 1.

LEMMA 3.1. [Multi Transversality Theorem [8], [11], [14].] Let S be a
Whitney stratification of a closed subset of ,J'(M, N). Then the set of C*
mappings f: M — N such that , j'f is transversal to each stratum of S is
dense in C*(M, N).
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A germ of C* mapping f: (M, x) — (N, f(x)) is called H-finite, if the
quotient &, /(J; + fH My 1))y ) is finite dimensional over R,
where J . is the ideal in 5M’x generated by (p X p)-minors of the
Jacobian matrix of f at x and My ;. is the maximal ideal of &y /.
Especially, a germ is called H-v-finite, if the quotient is at most »
dimensional. The following lemma is an easy consequence from III,
Theorem 7.2 in G. Gibson et al. [7] and Lemma 3.1.

LEMMA 3.2. For sufficiently large v, the set of C* mappings f: M - N
such that the germ f, is H-v-finite for all x € M is an open dense subset of
C®(M, N).

LemMA 3.3 [H. Whitney [19].] The set C(M, N) of analytic mappings
is dense in C*(M, N).

LEMMA 3.4. Let g: M — N be a proper analytic mapping which satisfies
the condition (T-B). Then g has the following properties:

(1) By(g) is dense in 2g.

(ii) There exists a semi-analytic subset L D Zg — By(g) such that
dim L <dim 2g, and g5, ,: 2g — L — g(Zg — L) is an analytic isomor-
phism.

Proof. It follows from (1) and (2) of (T-B) that By(g) is dense in Zg,
has dimension p — 1, and the restriction of g to it is an immersion. Put

L, = {y € N: there exist points x,, x, € By(g)
such that x, # x, and g(x,) = g(x,) = y}.

Since g is a proper analytic mapping, g( B,(g)) and L, are semi-analytic.
By (3) of (T-B), we have dim L, < dim g(B(g)). Putting L, = 2g —
By(g), L, is semi-analytic and dim L, <dim 2g. Here we put L =
g (L)) U L,. Then (ii) follows.

LEMMA 3.5. Let g: M — N be a proper analytic mapping such that for
any point x of M, the germ of g at x is K-finite. Suppose that B,(g) is dense
in 2g and for an analytic subset L of Zg with dim L < dim 2g, gls, ;:
2g— L - g(Z2g— L) is an analytic isomorphism. Then g(Zg) is main
semi-analytic.

Note. From the assumption that B,(g) is dense in 2 g, we see that the
local dimension of g(Zg) is constant.
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Proof. Since g is proper and gls, is locally finite-to-one, g(2g) is
closed and gls, is finite-to-one. Hence, g(£g) turns out to be main
semi-analytic if we show that for any point x of Zg the image by gls, of a
neighborhood of x in Zg is the main part of some analytic set in a
neighborhood of g(x).

Since the germ of g at x is analytic and H-finite, there exists a
representative g¢c: U — V of the complexification of g such that g¢ s, v
is proper and finite-to-one, where U [resp. V'] is an open neighborhood
of x [resp. g(x)] in a complexification M [resp. N.] of M [resp. N] [see
C. T. C. Wall [20] and H. Hironaka [10]]. Then, using the same argument
as the proof of Lemma 1.1 in R. Benedetti and A. Tognoli [2], we can
prove that g(2g N U) is the main part of some analytic set in V' € N if
we take U, V smaller, as follows:

We take a desingularization m: X — 2g. N U and an irreducible
component Y of X with dimg#(Y) N 2g = dimg 2g. Put 0 = gc o m
Y - o(Y)(C V C Ng). First we prove

(+)  dim[(o(Y) N N) = g(7(Y) N (Zg — L))] < dim g(Zg).

From a reason of dimension, a regular value of = |, is contained in
2g — L. Thus, at a point of Y, o is isomorphic. Hence there exists a
complex analytic subset S” of Y with codimension > 0 such that §' D
(m]y)"(L) and o|y_g is a local isomorphism. Then S = o~ !(a(S")) is a
complex analytic subset of codimension >0 in Y. As Y is connected,
o(Y — §) is connected. Furthermore, o is proper. Thus 6|, _¢: ¥ - S -
o(Y — S) is a covering of finite degree. We claim that this degree is odd.
In fact, (7(Y) N 2g) — 7(S) # & and for a point y € g((7(Y) N =g)
~m(S)) =o(Y— S) N g(Zg — L), 0" '(y) consists of a unique real point
and several pairs of non-real conjugate points. This implies that # (o~ '( y))
is odd. Now assume inequality (*) does not hold. Then the difference

(o(Y=58)nN)— (g(n(Y)) N Zg)

has an element y’. But we see that o~ '( y’) consists of only several pairs of
non-real conjugate points, and # (o~ (') is even for the element y’ €
o(Y — §), which is a contradiction. We consider the analytic closure
,——‘—_/ . .

g(m(Y) N Zg) of the germ g(7#(Y) N Zg) at g(x). Since o is proper, o(Y)
is a complex analytic subset of ¥ and o(Y) N N D g(w(Y) N Zg) at
g(x). Thus, from (*), we have

(xx) dim[g(n(Y) — 2g) — g(=(Y) N (g — L))] < dim g(=g)

at g(x). Lastly, we take a decomposition X = U, Y, into a finite number
of irreducible components. We denote by A the union of g(7(Y;) N Zg)’s.
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Then A is an analytic set and contains g(2g N U). Furthermore, from
(*x), dim(A4 — g(Zg — L)) <dim g(Zg) at g(x). From Note, we have
that g(Zg N U) is the main part of 4. Thus Lemma 3.5 is proved.

Proof of Theorem 1. Let f: M - N be a proper C* mapping. From
Lemmas 3.1-3.3 and the fact that the set of proper C* mappings is open
in C*(M, N), f can be approximated by a proper analytic mapping g:
M — N such that for any x of M, the germ of g at x is H-finite, and g
satisfies (T-B). Hence, by Lemmas 3.4-3.5, we see that g(Zg) is main
semi-analytic. This completes the proof of Theorem 1.

4. Proofs of the other results.

Proof of the statement in Example. It is easy to check [see e.g. [7]] that
this f is stable in Mather’s sence. Hence there exists a neighborhood U of f
in C*(R?, R®) such that for any g of U, we have C* diffeomorphisms 7, 7,
of R® such that f= 17,0 gor, Let g € U. We want to see that g(Zg) is
not an analytic set. Let 7 be a C* diffeomorphism of R® such that
T(f(Zf)) = g(Zg). We assume g(2g) to be analytic.

Now we see easily that the singular point set of f(2f) contains
S, ={»=0,,=<0,4y; = —y;} where (y,, y,, »3) = f(x;, X, x3) and
that S, N f(Sf) = {0} where S, = {y, =0, y, =0, 4y, = —y}}. We can
assume 7(0) = 0. Then the singular point set of g(Zg) contains 7(S,). It is
well-known that the singular point set of a semi-analytic set is semi-ana-
lytic [12]. Since g(Zg) is analytic, there exists a one-dimensional analytic
set S in a neighborhood V of 0 such that

g(Zg)dDSo7(Ss)NnV.

Let 2 be an analytic function on V such that A~'(0) = S. As S, is
diffeomorphic to (— 0, 0], there exists a C* imbedding ¢: (—1,0] - R?
such that ¢(0) = 0, ¢((—1,0]) = 7(S,;) N V. It follows that A(¢(z)) = 0.
Let ¥ = (¥, ¥,, ¥3) be the Taylor expansion of ¢ at 0. Then y(¢) is a
formal series solution of the equation h(y,, y,, y;) = 0. By M. Artin
Theorem [1], this equation has a convergent series solution y(¢) =
(¥i(2), yo(2), y5(2)) such that y(z) = {(¢) modulo IN° for any given in-
teger ¢, where 9l is the maximal ideal of the formal series ring. We see
easily that the convergent solution is an analytic imbedding. This implies
that S is the image of ¢ in a neighborhood of 0. Hence S and 7(.S,) are not
regularly situated at the origin [see [12] for the definition of “regularity
situated”]. Therefore S, and f(Zf) are not regularly situated because of
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771(S) C f(Zf). This contradicts the regular situation property of closed
semi-analytic sets [12]. Hence g(Zg) is not analytic.

Proof of Theorem 2. Let G’ be the set of proper analytic mappings g:
M - N such that for any x € M, the germ of g at x is H-»-finite [»:
sufficiently large], and g satisfies (T-B). From the proof of Theorem 1, we
see easily that G’ includes an open dense subset G of the set of proper
analytic mappings, and (i) holds.

For any f of G we have a closed semi-analytic subset K C 2 f such
that 2f — K is an analytic manifold, the restriction of f to which is an
analytic imbedding, dim K <dim 2f, f~'f(K) = K, and f(2f— K) is
semi-analytic. By [12] there exist respective triangulations L,, L, of 2f,
f(Zf), and subcomplexes L] C L,, L) C L, such that K and f(K) corre-
spond to the underlying polyhedrons of L] and L, respectively. Hence (ii)
follows immediately.

From (ii), in order to prove (iii), it is sufficient to see [2f] = [2g] in
H/(M; Z,). This follows from the fact that j'f and j'g are transversal to
each 2/(M, N) [see Theorem 7 in [16] for details of the proof].

5. Algebraic results. In this section we will consider algebraic ana-
logues in the compact open C* topology. We assume this topology on any
C* mappings space.

Let Y be an algebraic set of R?. Then we see that the set {y € Y-
dim Y, = dim Y} is semi-algebraic [12]. We call this subset the main part
of Y, and a semi-algebraic set of R” is called main semi-algebraic if it is
the main part of some algebraic set. We remark that for a main semi-alge-
braic set Y’, the main part of the Zariski closure of Y’ is Y’. Here, we
denote by Y’ the Zariski closure of Y”.

A C* algebraic manifold means at once an affine algebraic set and a
C* manifold. Restrictions on a subset of polynomial mappings or rational
mappings between Euclidean spaces are called equally polynomial or
rational. A rational mapping of C* class is called a C* rational mapping.

THEOREM 3. Let M [C R™] be a C* algebraic manifold, and f:
M — R? be a C* mapping. Then every neighborhood of f contains a proper
polynomial mapping g: M — R? such that the critical value set g(2g) is
main semi-algebraic.

REMARK. If M is a closed C* manifold, any C* mapping f: M — R”?
can be approximated by one whose critical value set is main semi-alge-
braic. For any closed C* manifold is C* diffeomorphic to a C* algebraic
manifold [see A. Tognoli [17]].
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Proof of Theorem 3. By Weierstrass’ polynomial approximation theo-
rem, f can be approximated by a polynomial mapping g”’: M — R? [of
degree s]. In this section, we take s = 6.

We denote by P(R™, R?, /) the set of polynomial mappings #: R” — R”
of degree at most /. Then P(R™,R?, /) is identified with R* naturally for
some integer u#. For a positive number C >0, let g’: R” — R? be the
polynomial mapping defined by g'(x) = (C|x[*,...,C|x[*). Put

Q = P(R™",R?,s) — {h € P(R",R?,5): h + g’|,, satisfies (T-B)}.
LEMMA 5.1. Q is a semi-algebraic set in R* of codimension > 0.

Proof. Let F: M X P(R™,R?, 5) - J'(M,R?) be the mapping defined
by F(x, h) =j h+ g'|,,)(x), F: M X P(R",R?, 5) > JXM,R?) the
mapping defined by F'(x, h) =j*(h + g’|,,)(x), and F’: M®@ X
P(R™,R?, 5) »,J?*(M,R?) the mapping defined by

F'(x, k) =,j%(h + gl )(x).

Then F, F’, and F” are onto submersions [see T. Fukuda [6]]. Using
arguments given in [8], we easily see that Q has measure zero in R*. By
Tarski-Seidenberg Theorem, Q is semialgebraic in R*, and Q has codim >
0.

From Lemma 5.1, g” can be approximated by a polynomial mapping
g = h + g’|,, which is proper and satisfies (T-B), where 7 € P(R”,R?, ).
As g is proper, g(2g) is closed.

The next lemma follows similarly as Lemma 3.4.

LemMMA 5.2. Let g M — R” be a polynomial mapping which satisfies
(T-B). Then g has the following properties:

(1) By(g) is dense in 2g,

(it) There exists a semi-algebraic subset L D g — By(g) such that
dim L < dim Zg, Zg — L is an analytic submanifold, and g|s,_,: 2g — L
— g(Zg — L) is an analytic isomorphism.

LEMMA 5.3. Let V be an algebraic subset of R°, and o: V - R a C®
rational mapping. Suppose L is a semi-algebraic subset of V such that
dim L <dimVando|,_;: V— L - o(V — L) is an analytic isomorphism.
Then there exists an algebraic subset V' of R’ such that V' D o(V — L) and
dim(V’ — o(V — L)) < dim V.

For the proof see Lemma 1.1 in [2].
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Applying Lemma 5.2 and Lemma 5.3, there exist a semi-algebraic
subset L C Zg with dim L < dim Zg, and an algebraic subset V" of R”
such that V' D g(2g — L) and dim(V’ — g(Z£g — L)) < dim Zg. Since
the closure of the set =g — L is =g, we have g(Zg) C V. Putting S
= g(Zg) — g(Zg), we have dim § < dim g(Zg). Set

¢ = {y €g(Zg) | dimg(Zg), = dimg(Zg)} .

For any y of C, S does not include g(Zg) as germs at y. Hence the germ

of g(Zg) at y and it of g(Zg) at y intersect. Since g(Zg) is closed, we
have y € g(Zg). Thus we see that g(2g) = C, that is, g(Zg) is main

semi-algebraic.

Let M and N be C* algebraic manifolds, and f: M — N a C* rational
mapping. Then f(2f) is a semi-algebraic subset of N.
Conversely, we have the following remark.

REMARK. Let N be a C* algebraic manifold of dimension #, and K a
semi-algebraic subset of N of codimension > 0. Then there exist a C*®
algebraic manifold M of dimension » and a C*® rational mapping f:
M — N with dim 2 f < n such that f(2f) = K.
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