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CRITICAL VALUE SETS OF GENERIC MAPPINGS

Goo ISHIKAWA, SATOSHI KOIKE AND MASAHIRO SHIOTA

Let Y be a real analytic set. The subset of Y consisting of all points
where the local dimension of Y is maximal is called the main part of Y. A
subset Y' of a real analytic manifold N is called a main semi-analytic set
if Y' is the main part of some analytic set in a neighborhood of each
point of N. In this paper it is shown that any proper C00 mapping
between analytic manifolds can be approximated by an analytic mapping
in the Whitney topology so that the critical value set is a main semi-ana-
lytic set. An analogue holds true for the algebraic case too.

1. Analytic results. The topology of our spaces of C0 0 or analytic

mappings is the Whitney C°° topology [see M. Hirsch [11]] except for the

last section, and M9 N always mean real analytic manifolds of dimension

n, p respectively. We denote by Σf the critical point set {x E M | rank dfx

< min(ft, /?)}. Our main result is the following.

THEOREM 1. Let f be a proper C°° mapping from M to N. Then every

neighborhood off in C°°(M, N) contains a proper analytic mapping g such

that g(Σg) is a main semi-analytic set of dimension I = min(π — 1, p — 1).

It is natural to ask if g(Σg) can be analytic in the above. The answer

is negative.

EXAMPLE. Let /: R3 -» R3 be the polynomial mapping defined by

f(xl9 x29 x3) — (X\, x2> *3 + *2 X3 + *i*3). Then f(Σf) is "Swallow's

Tail" [see T. H. Brocker [5] or M. Golubitsky and V. Guillemin [8]]. It is

known t h a t / ( Σ / ) is not analytic. Moreover there exists a neighborhood U

o f / i n C°°(R3,R3) such that for any g of U9 g(Σg) is not an analytic set.

(See Figure 1.)

We see easily that a main semi-analytic set is semi-analytic [see S.

Lojasiewicz [12]]. Any nowhere dense semi-analytic set is the critical value

set of some analytic mapping, to say more precisely.

REMARK. Let K be a semi-analytic subset of N of codimension > 0.

Then there exist an analytic manifold M and an analytic mapping /:

M -* N such that

dim M = dim N > dim Σf and f(Σf) = K.
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FIGURE 1

Let Y be a main semi-analytic set of dimension /. Then we define the
fundamental class of Y in the homology group Ht(Y; Z2) as follows, where
we use infinite chains if Y is not compact. By [12] we have a triangulation
of Y. Consider the homology groups of the simplicial complex with
coefficient Z 2 . Then the sum of all /-simplexes defines a cycle, because
any analytic set has the fundamental class [see A. Borel and A. Heafliger
[4]]. The cycle is called the fundamental class of Y. If Y is a subset of N9

we denote by [7] the image of the fundamental class of Y in Ht(N\ Z2).
Proper C°° mappings /j, /2: M -* N are called proper homotopic if we

have a proper C00 mapping F: M X [0,1] -» N such that F\MX0= /, and
F\MX\ ~Λ

THEOREM 2. There exists an open dense subset G of the set of all proper
analytic mappings from M to N such

(i) for any f of G, /(Σ/) is a main semi-analytic set of dimension
I — min(n — 1, p — 1),

(ii) the fundamental class of Σf is mapped to it of f(Σf) by /* for

/eG,
(iϋ) if f and g of G are proper homotopic, we have [/(Σ/)] = [g(Σg)] in

2. Preliminaries. First, we prepare some notations of singularities
[see J. Boardman [3] and J. Mather [14]]. For any integer r > 1, J\n, p) is
the linear space of r-jets of C°° map germs (R", 0) -> (R*, 0), and Jr(M, N)
is the set of all r-jets of germs (M, x) -> (N9 y) for any x G M, y E N.
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Then J\M, N) is fiber bundles over MX N and M with fibers J\n, p),
Jr(n, p) X N respectively. We put for any integer r > 0

„...,xj E Mk: x^Xj for i

where q: Jr(M9 N)k -» Mk is the projection. For any C°° mapping /:
M -» N9 we denote byyr/the cross section of the fiber bundle J\M9 N) -*
M naturally defined by/, and by kj

rf the restriction of (jrf)k to M w . If a
subset 5 of J\n, p) is invariant under the coordinate transformations of
(R",0) and (R^O), we denote by B(M, N) the total space of the subbun-
dle whose fiber is B, and by B(f) the inverse imagejrf~ι(B(M9 N)) for a
C°° mapping/: M -> N.

Let Σ' or ΣiyJ denote the Thom-Boardman symbol (see J. Boardman
[3]). We put

°

We further put

Here we introduce the transversal condition concerning the Thom-Board-
man singularities. We say that a C00 mapping /; M -> N satisfies the
condition (T-B), if/has the following properties:

(I) In the case n >/?,
(I)y1/is transversal to each Σ'(M, N),
(2) j2fis transversal to each Σ"-p+ι*J(M9 N),
(3) 2y

2/is transversal to (Σn~^h0(M, N) X Σn~p+h0(M, N)) Π Δ.
(II) In the case n <p,

(1) jιf is transversal to each Σ'(M, N)9

(2) j2f is transversal to each ΣIJ(M9 N),
(3) 2j

2f is transversal to (Σιfi(M9 N) X Σι>°(M9 N)) n Δ.

3. Proof of Theorem 1. In this section we give the proof of
Theorem 1.

LEMMA 3.1. [Multi Transversality Theorem [8], [11], [14].] Let % be a
Whitney stratification of a closed subset of kJ

r{M, N). Then the set of C°°
mappings f:M-*N such that kj

rf is transversal to each stratum of § is
dense in C°°(M, N).
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A germ of C0 0 mapping/: (M, x) -> (N9 f(x)) is called %-finite, if the

quotient &M,x/(J/,χ + fχ(^N,f(x))^M,χ) *s finite dimensional over R,

where Jfx is the ideal in &M x generated by (p X /?)-minors of the

Jacobian matrix of / at x and (3ίHyV/(jc) is the maximal ideal of &N f(x).

Especially, a germ is called %rv-finite, if the quotient is at most v

dimensional. The following lemma is an easy consequence from III,

Theorem 7.2 in G. Gibson et al. [7] and Lemma 3.1.

LEMMA 3.2. For sufficiently large v, the set of C°° mappings f:M->N

such that the germ fx is %-v-finite for all x E M is an open dense subset of

, N).

LEMMA 3.3 [H. Whitney [19].] The set Cω(M, N) of analytic mappings

is dense in C°°{M, N).

LEMMA 3.4. Let g: M -> N be a proper analytic mapping which satisfies

the condition (T-B). Then g has the following properties:

(ϊ)B0(g) is dense in Σg.

(ii) There exists a semi-analytic subset L D Σg — B0(g) such that

dim L < dim Σg, and g \Σg-L'> Σg — L -> g(Σg — L) is an analytic isomor-

phism.

Proof. It follows from (1) and (2) of (T-B) that B0(g) is dense in Σg,

has dimension/? — 1, and the restriction of g to it is an immersion. Put

Lx = {y E N: there exist points xl9x2 E B0(g)

such that Λ;, Φ X2 andg(xj) = g(x2) — y) >

Since g is a proper analytic mapping, g(B0(g)) and Lλ are semi-analytic.

By (3) of (T-B), we have dim Lλ < dim g(B0(g)). Putting L2 = Σg~

5 0 (g), L2 is semi-analytic and d i m L 2 < d i m Σ g . Here we put L =

g~\Lx) U L2. Then (ii) follows.

LEMMA 3.5. Let g: M -> N be a proper analytic mapping such that for

any point x of M, the germ of g at x is %finite. Suppose that B0(g) is dense

in Σg and for an analytic subset L of Σg with dim L < dim Σg, g\Σg-L'.

Σg — L -» g(Σg — L) is an analytic isomorphism. Then g(Σg) is main

semi-analytic.

Note. From the assumption that B0(g) is dense in Σg, we see that the

local dimension of g(Σg) is constant.
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Proof. Since g is proper and g\Σg is locally finite-to-one, g(Σg) is
closed and g\Σg is finite-to-one. Hence, g(Σg) turns out to be main
semi-analytic if we show that for any point x of Σg the image by g \Σg of a
neighborhood of x in Σg is the main part of some analytic set in a
neighborhood of g(x).

Since the germ of g at x is analytic and ^finite, there exists a
representative g c: U -» V of the complexification of g such that g c |Σgcn/y
is proper and finite-to-one, where U [resp. V] is an open neighborhood
of x [resp. g(x)] in a complexification M c [resp. Nc] of M [resp. TV] [see
C. T. C. Wall [20] and H. Hironaka [10]]. Then, using the same argument
as the proof of Lemma 1.1 in R. Benedetti and A. Tognoli [2], we can
prove that g(Σg Π U) is the main part of some analytic set in V E N if
we take U, V smaller, as follows:

We take a desingularization m\ X -* Σg c Π t/ and an irreducible
component 7 of I with dimRπ(7) Π Σg = dimR Σg. Put σ = g c ° π:
Y -> σ( 7) (C FCiV c). First we prove

(*) dim[(σ(7) Π TV) - g(ττ(7) Π (Σg - L))] < dim g(Σg).

From a reason of dimension, a regular value of π\γ is contained in
Σg — L. Thus, at a point of 7, σ is isomorphic. Hence there exists a
complex analytic subset S' of 7 with codimension > 0 such that S' D
(π\γy\L) and σ|y_5, is a local isomorphism. Then S — σ~\σ(S')) is a
complex analytic subset of codimension > 0 in Y. As Y is connected,
0 ( 7 — 5 ) is connected. Furthermore, σ is proper. Thus σ| y_ 5: 7 ^ S ->
σ( 7 — 5) is a covering of finite degree. We claim that this degree is odd.
In fact, (ττ(7) Π Σg) - π(S) Φ 0 and for a point y E g((τ7(7) Π Σg)
— 7r(S)) = 0 ( 7 — 5 ) Π g(Σg — L), σ~](3/) consists of a unique real point
and several pairs of non-real conjugate points. This implies that #(σ~ \y))
is odd. Now assume inequality (*) does not hold. Then the difference

(σ(7-S)nΛ0-(g(τr(7))nΣg)

has an element y\ But we see that σ" 1 ^') consists of only several pairs of
non-real conjugate points, and #(σ~ι(y')) is even for the element y' E
σ(7— S), which is a contradiction. We consider the analytic closure
g(τr(7) Π Σg) of the germ g(ττ(Y) Π Σg) at g(x). Since σ is proper, σ(7)
is a complex analytic subset of V and σ(7) Π N D g(π(Y) Π Σg) at
g(x). Thus, from (*), we have

(**) dim[g(ττ(Y) - Σg) - g(π(Y) Π (Σg - L))] < dim g(Σg)

at g(x). Lastly, we take a decomposition X = U. Ŷ  into a finite number
of irreducible components. We denote by A the union of g(π(Yi) Π Σg)'s.
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Then A is an analytic set and contains g(Σg Π U). Furthermore, from
(**), dim(yί — g(Σg — L)) < dim g(Σg) at g(x). From Note, we have
that g(Σg ΓΊ U) is the main part of A. Thus Lemma 3.5 is proved.

Proof of Theorem 1. Let / : M -» N be a proper C°° mapping. From
Lemmas 3.1-3.3 and the fact that the set of proper C00 mappings is open
in C°°(M, N)9 f can be approximated by a proper analytic mapping g:
M -» N such that for any x of M9 the germ of g at x is %-finite, and g
satisfies (T-B). Hence, by Lemmas 3.4-3.5, we see that g(Σg) is main
semi-analytic. This completes the proof of Theorem 1.

4. Proofs of the other results.

Proof of the statement in Example. It is easy to check [see e.g. [7]] that
this/is stable in Mather's sence. Hence there exists a neighborhood Uoίf
in C°°(R3, R3) such that for any g of U9 we have C°° diffeomorphisms τl9 T2

of R3 such that / = τλ ° g ° τ2. Let g E U. We want to see that g(Σg) is
not an analytic set. Let T be a C°° diffeomorphism of R3 such that
τ(/(Σ/)) = g(Σg). We assume g(Σg) to be analytic.

Now we see easily that the singular point set of f(Σf) contains
S\ = [y\ = 0, j>2 ^ 0, 4y3 = -yl) where (yl9 y29 y3) = f(xl9 x2, x3) and
that S2 Π f(Σf) = {0} where 52 = {yx = 0, j 2 > 0, 4y3 = -j2

2}. We can
assume τ(0) = 0. Then the singular point set of g(Σg) contains τ(5j). It is
well-known that the singular point set of a semi-analytic set is semi-ana-
lytic [12]. Since g(Σg) is analytic, there exists a one-dimensional analytic
set S in a neighborhood V of 0 such that

g(Σg) D S D τiS,) Π V.

Let h be an analytic function on V such that λ'^O) = 5. As Sj is
diffeomorphic to ( — oo,0], there exists a C00 imbedding φ: (—1,0] -» R3

such that φ(0) = 0, φ((-l,0]) = r(Sλ) Π V. It follows that h(φ(t)) = 0.
Let ψ = (ψj, ψ2, ψ3) be the Taylor expansion of φ at 0. Then ψ(/) is a
formal series solution of the equation h(yl9 y2, y3) — 0. By M. Artin
Theorem [1], this equation has a convergent series solution y(t) =
()Ί(0» Λ(0ί Λ(0) such that >>(0 — Ψ(0 modulo 9HC for any given in-
teger c, where 91L is the maximal ideal of the formal series ring. We see
easily that the convergent solution is an analytic imbedding. This implies
that S is the image of ψ in a neighborhood of 0. Hence S and τ(52) are not
regularly situated at the origin [see [12] for the definition of "regularity
situated"]. Therefore S2 and f(Σf) are not regularly situated because of
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τ~~\S) C/(Σ/). This contradicts the regular situation property of closed
semi-analytic sets [12]. Hence g(Σg) is not analytic.

Proof of Theorem 2. Let G' be the set of proper analytic mappings g:
M -> N such that for any x E M, the germ of g at x is %-p-finite [v\
sufficiently large], and g satisfies (T-B). From the proof of Theorem 1, we
see easily that G' includes an open dense subset G of the set of proper
analytic mappings, and (i) holds.

For any / of G we have a closed semi-analytic subset K C Σ/ such
that Σf — K is an analytic manifold, the restriction of / to which is an
analytic imbedding, dim K< dim Σf, ΓV(K) = K, and f(Σf- K) is
semi-analytic. By [12] there exist respective triangulations L{9 L2 of Σf,
/(Σ/), and subcomplexes L\ C Ll9 L2 C L2 such that K and/(ϋΓ) corre-
spond to the underlying polyhedrons of L\ and L2 respectively. Hence (ii)
follows immediately.

From (ϋ), in order to prove (iii), it is sufficient to see [Σf] = [Σg] in
Ht(M\ Z 2). This follows from the fact that jιf and jιg are transversal to
each Σ'(M, N) [see Theorem 7 in [16] for details of the proof].

5. Algebraic results. In this section we will consider algebraic ana-
logues in the compact open C00 topology. We assume this topology on any
C°° mappings space.

Let Y be an algebraic set of RΛ Then we see that the set {y e Y:
dim Yy = dim Y) is semi-algebraic [12]. We call this subset the main part
of Y", and a semi-algebraic set of Rp is called main semi-algebraic if it is
the main part of some algebraic set. We remark that for a main semi-alge-
braic set Y\ the main part of the Zariski closure of Yr is T. Here, we
denote by Y' the Zariski closure of Y'.

A C°° algebraic manifold means at once an affine algebraic set and a
C°° manifold. Restrictions on a subset of polynomial mappings or rational
mappings between Euclidean spaces are called equally polynomial or
rational. A rational mapping of C°° class is called a C°° rational mapping.

THEOREM 3. Let M [CRm] be a C00 algebraic manifold, and /:
M -» R^ be a C°° mapping. Then every neighborhood of f contains a proper
polynomial mapping g: M -> R^ such that the critical value set g{Σg) is
main semi-algebraic.

REMARK. If M is a closed C00 manifold, any C00 mapping f: M ^Rp

can be approximated by one whose critical value set is main semi-alge-
braic. For any closed C00 manifold is C°° diffeomorphic to a C00 algebraic
manifold [see A. Tognoli [17]].
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Proof of Theorem 3. By Weierstrass' polynomial approximation theo-
rem, / can be approximated by a polynomial mapping g": M -+ Rp [of
degree s]. In this section, we take s >: 6.

We denote by P(R"\ Rp, I) the set of polynomial mappings h: Rm -* R^
of degree at most /. Then P(Rm,Rp

9 /) is identified with R" naturally for
some integer u. For a positive number C > 0, let g': Rm -> R̂ 7 be the
polynomial mapping defined by g'(x) — (C\x f \ . . . , C| x \2s). Put

Q = P(Rm,Rp, s) - [h E P(RW,R*, s): h + g'|Msatisfies (T-B)}.

LEMMA 5.1. Q is a semi-algebraic set in Ru of codimension > 0.

Proof Let F: M X P(R"\ R ,̂ j) -» J\M, Rp) be the mapping defined
by F'(x,h)=j\h + g'\M){x\ Γ: M X P{Rm,Rp, s) ^ J2{M,RP) the
mapping defined by F\x, h) = f(h + g' \M){x\ and F"\ M ( 2 ) X
P(RW, R ,̂ s) -+2J

2(M, Rp) the mapping defined by

Then F, F\ and Z77' are onto submersions [see T. Fukuda [6]]. Using
arguments given in [8], we easily see that Q has measure zero in R". By
Tarski-Seidenberg Theorem, Q is semialgebraic in RM, and Q has codim >
0.

From Lemma 5.1, g" can be approximated by a polynomial mapping
g = h + g'\M which is proper and satisfies (T-B), where h E P(Rm, Rp, s).
As g is proper, g(Σg) is closed.

The next lemma follows similarly as Lemma 3.4.

LEMMA 5.2. Let g: M -> Rp be a polynomial mapping which satisfies
(T-B). Then g has the following properties:

(ϊ)B0(g)isdenseinΣg,
(ii) There exists a semi-algebraic subset LΏ Σg — B0(g) such that

dim L < dim Σg, Σg — L is an analytic submanifold, and g \%g-L°- Σg — L
-» g(Σg — L) is an analytic isomorphism.

'00
LEMMA 5.3. Let V be an algebraic subset of R\ and σ: V ->R! a C

rational mapping. Suppose L is a semi-algebraic subset of V such that
dim L < dim Vand o\v_L: V — L -> σ(V — L) is an analytic isomorphism.
Then there exists an algebraic subset V ofR! such that V D o(V — L) and
dim(F - σ(V~ L))< dim V.

For the proof see Lemma 1.1 in [2].
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Applying Lemma 5.2 and Lemma 5.3, there exist a semi-algebraic
subset L C Σg with dim L < dim Σg, and an algebraic subset V of R^
such that V D g(Σg - L) and dim(F - g(Σg - L)) < dim Σg. Since
the closure of the set Σg — L is Σg, we have g(Σg) C V. Putting S
= g(Σg) - g{Σg\ we have dim S < dim g(Σg). Set

C = {y e g(Σg) I dimg(Σg)y = dimg(Σg)).

For any 7 of C, S does not include g(Σg) as germs at y. Hence the germ
of g(Σg) at y and it of g(Σg) at j> intersect. Since g(Σg) is closed, we
have y E g(Σg). Thus we see that g(Σg) = C, that is, g(Σg) is main
semi-algebraic.

Let M and N be C00 algebraic manifolds, and/: M -» N a C00 rational
mapping. Then/(Σ/) is a semi-algebraic subset of iV.

Conversely, we have the following remark.

REMARK. Let iVbea C°° algebraic manifold of dimension n, and K a
semi-algebraic subset of N of codimension > 0. Then there exist a C00

algebraic manifold M of dimension n and a C00 rational mapping /:
M -> TV with dim Σ / < /i such that/(Σ/) = ̂ Γ.
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