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A SPECTRAL DUALITY THEOREM FOR CLOSED
OPERATORS

I. ERDELYI AND WANG SHENGWANG

The spectral duality theorem asserts that a densely defined closed
operator T induces a spectral decomposition of the underlying Banach
space X iff the conjugate Γ* induces the same type of spectral decom-
position of the dual space X*. This theorem is known for bounded linear
operators in terms of residual (S^-decomposability. In this paper we
extend the spectral duality theorem to unbounded operators, under a
general type of spectral decomposition. Our approach to the spectral
duality leads through the successive conjugates T*, Γ** and Γ*** of Γ,
under their domain-density assumptions.

1. Elements of local spectral theory for a closed operator. X is an

abstract Banach space over the complex field C. If S is a set, we write S

for the closure, Int S for the interior, Sc for the complement, dS for the

boundary, and covS for the collection of all finite open covers of S. If S is

a subset of C, then the above mentioned topological constructs are

referred to the topology of C.Without loss of generality, we assume that

for S C C , each {(?,}"=() ̂  covS has, at most, one unbounded set Go. An

open G C C is said to be a neighborhood of oc, in symbols G E V^ if for

r > 0 sufficiently large, (λ e C: | λ | > r } C C . We write S± for the

annihilator of S C X in X* (as well as that of S C X** in ****) and x S

for the preannihilator of S C X* in X (or that of S C X*** in X**). B{ X)

denotes the Banach algebra of all bounded linear operators which map X

into X. I stands for the identity operator.

For a linear operator T: Dτ (C X) -» X, we use the following nota-

tions: spectrum σ(Γ), resolvent set ρ(Γ), and resolvent operator R( T).

If Γhas the single valued extension property (SVEP) then, for x E X,

στ(x) is the local spectrum, pτ(x) is the local resolvent set and x(-) is the

local resolvent function. For S C C, an extensive use will be made of the

spectral manifold X(T, S) = {x £ X: στ(x) C S}.
Inv T represents the lattice of all invariant subspaces under T. For

Γ E l n v Γ , T\Y is the restriction of T to Y and T/Y denotes the

coinduced operator on the quotient space X/Y with domain Dτ/Y = { ί E

X/Y: x Π Dτφ 0}.
If not mentioned otherwise, throughout this paper T is a densely

defined unbounded closed operator with domain and range in X.
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Given Γ, the following domain-density conditions will guarantee the
existence of the successive conjugates:

(*) Γ* is densely defined;
(**) Γ* and Γ** are densely defined;

(***) Γ*, r** and Γ*** are densely defined.
With / and K, the natural embeddings of X into X** and of X* into

X***, respectively, we shall explore the direct sum decomposition

(1.1) **** = KX* θ

For completeness, we give a short proof of (1.1), (e.g. [10]). For every
**** e ****, one defines x* E X* by

(*,**)= (/*,****), x ex.

Then, (Jx,Kx*)= (x*9Jx) = (x,x*)= </JC,X***> and hence j * * * =
x*** - jfcc* E {JX)^. This, together with KX* Π (/AΓ)-L= {0}, estab-
lishes (1.1).

The spectral theoretic results will be expressed in terms of operators
with the spectral decomposition property, decomposable operators and
{oo}-decomposable operators.

1.1. DEFINITION. Γ is said to have the spectral decomposition prop-
erty (SDP) if, for any {<?,},% Ξ covσ(Γ) with Go E V^, there is a system
{Yι)"=o ^ ^ n v ^ satisfying the following conditions:

(I) Yt C Dτ if Gι is relatively compact in C (1 < / < « ) ;
(II) X=l?=l Yt and σ(Γ| Yt) C Gz, 0 < i < π.

If we restrict « to « = 1 then Γis said to have the 1-SDP.
The concept of spectral maximal space [3] has two distinct extensions

to the case of unbounded operators.

1.2. DEFINITION. Y e Inv T is called a spectral maximal space (SMS)
of T if, for any Z E InvΓ, the inclusion σ(T\Z) C σ(T\ Y) implies
ZCY.

1.3. DEFINITION. Y e Inv Γ is said to be a Γ-bounded spectral maxi-
mal space (Γ-bounded SMS) if

(i) Y C Dτ;
(ii) for every Z E Inv Γ, Z C Dτ and σ(Γ | Z) C σ(Γ| Γ) imply Z C 7 .
This concept appears in [8] under the name of maximal invariant

space. Clearly, every SMS of T is a Γ-bounded SMS. Conversely, however,
not every Γ-bounded SMS is a SMS of Γ. In fact, if 7 is a Γ-bounded
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SMS and Z E Inv Tis not contained in Dτ, then σ(T\ Z) C σ(T\ Y) need

not imply Z C Y. In the bounded case, the two concepts coincide.

The following properties of the spectral manifold X(T, -) for closed T

are analogous, in statement and proof, to the one for a bounded operator

[3, 5].

1.4. PROPOSITION. Let Thave the SVEP. If, for closedF C C, X(T, F)

is closed then X(T, F) is a SMS of Tand

(1.2) σ[τ\X(T,F)] CFΠσ(T).

Moreover, if T has the l-SDP then, for every closed F C C, X(T, F) is

closed.

1.5. PROPOSITION. Given T, let Y <Ξ InvΓ be such that σ(T\ Y) is

compact in C. There exist T, W E Inv T with the following properties'.

(I) Y = ϊ Θ W, σ(T\ ϊ ) = σ(Γ| Y), σ(T\ W) = 0

(II) T C Dτ.

Proof. oλ — σ(T\ Y) and σ2 = 0 can be regarded as disjoint spectral

sets of σ(T\ Y). Thus, the functional calculus produces (I). For a bounded

Cauchy domain Δ D σ(T\ Y), ϊ and W can be expressed in terms of the

spectral projection

(1.3) Q = ^r- ί *(λ; T\Y)dλ
Zπi JdΔ

(independent of the choice of Δ) as follows: T = QY, W= (Iγ- Q)Y,

where Iγ is the identity in Y. Since T is closed, it follows easily that T,

W E l n v Γ a n d T C Dτ. G

1.6. THEOREM. Given T, let Y be a SMS of T with σ(T\ Y) compact in

C. Then T, as defined by Proposition 1.5, is a T-bounded SMS.

Proof. Let Z E Inv T be such that Z C Dτ and

(1.4) σ(7 |Z)Cσ(Γ |T) .

By Proposition 1.5, (1.4) implies σ(T\Z) C σ(T\ Y) and since Y is a SMS

of T, we have Z C Y. Then, for x E Z, λ e p(T\ Y), relation

R(λ; T\Z)x = R(λ; T\Y)x
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implies

where Δ D σ(T\ Y) is a bounded Cauchy domain and Q is the projection

(1.3). Thus, we have x = Qx E T and hence Z C T. D

The next theorem (partly adopted from [11]) gives some necessary and

sufficient conditions for a Γ-bounded SMS to be a SMS of T.

1.7. THEOREM. Given T, the following assertions are equivalent:

(I)l{0} is a SMS of T\

(II) for every Y E Inv T with σ(T\Y) compact in C, we have Y C Dτ;

(III) for every Y E Inv Γ, YΦ {0} implies that σ(T\ Y) Φ 0

(IV) eυery T-bounded SMS is a SMS of T.

Proof. (I) => (II). Given Y E Inv Γ with σ(T\Y) compact in C, Prop-

osition 1.5 gives Y = T Θ W, T C Dτ, σ(Γ|T) = σ(Γ| 7), σ(Γ| JΓ) = 0 .

Then, by hypothesis, W = {0} and hence F = ΐ C f l r .

(II) =* (III). Let Y E Inv T be such that Y φ {0} and suppose that

σ ( Γ | 7 ) = 0 . σ(Γ |7) being compact in C, Y C Dτ. Hence Γ| Γ is

bounded and Yφ {0} implies that σ(Γ| Γ) ^ 0 . This, however, con-

tradicts the assumption on σ(T\ Y).

(III) => (IV): Let Z be a Γ-bounded SMS and let Y E Inv T be such

that

(1.5) σ ( Γ | 7 ) C σ ( Γ | Z ) .

a(T\Z) being compact in C, so is o(T\ Y). It follows from Proposition 1.5

that 7 = ΐ θ Wwith Ί,W<Ξ Inv Γ , ΐ C Dτ, σ(Γ|T) = σ(T\ Y) and

(1.6) σ(Γ|H^) = 0 .

By hypothesis, (1.6) implies that W = {0} and hence

(1.7) y=ΪCDΓ

It follows from (1.5), (1.7) that Y C Z and hence Z is a SMS of Γ.

(IV) =* (I). Evidently, {0} is a Γ-bounded SMS and hence {0} is a

SMS of T, by hypothesis. D

1.8. LEMMA. Let T have the SVEP. If, for Y e Inv T, T\ Y is bounded

then x E Y and στ(x) = 0 imply x = 0.
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Proof. By oτ(x) = 0 , the local resolvent is an entire function. For
x BY, the SVEP implies

= R(λ;T]Y)x, |λ|>||7iY||.

Consequently, for Γ = {λ e C: | λ | = | |Γ| Y\\ + 1}, we have

x = J-(R(λ:r\Y)xdλ = J-[x(λ)dλ = O. D

1.9. THEOREM. If T has the l-SDP then, for every compact F C C , there
exists a T-bounded SMS Ξ(Γ, F) with the following properties:

(I) X(T9 F) = Ά(T9 F) ® X(T9 0);
(IT)σ[T\Z(T,F)] = σ[

Proof. Since σ[T\ X(T, F)] CFis compact in C, for Y = X{T, F) and
ϊ = Ξ(Γ, F), Proposition 1.5 gives

X(T9 F) = Ξ(Γ, F) θ ^ ,

σ{T\W) = 0.

X(T, F) being a SMS of Γ, Ξ(Γ, F) is a Γ-bounded SMS, by Theorem
1.6. Since X(T9 0) is a SMS of T9 σ(T\ W) = 0 implies fF C ̂ (Γ, 0) .
Conversely, let Λ: E X(T9 0). Then x e l ( Γ , F) and hence Qx E Ξ(Γ, F),
where β is the projection (1.3) for Y = X(T, F). Since Q commutes with
Γ, we have στ(Qx) C σΓ(x) = 0 and hence (λx = 0, by Lemma 1.8.
Thus, X(T9 0) C PΓand hence W = X(Γ, 0) . D

1.10. PROPOSITION. Given Γ, et e/y T-bounded SMS and every SMS of
T is hyperinvariant under T.

Proof We confine the proof to a Γ-bounded SMS. Let A e δ ( I )
commute with T and fix λ E C with | λ | > p | | . Then R{λ\ A) =
Σ ^ = o λ~M~ U n . For every x EL Dτ and positive integer A:, we have

k Ik \

2 λ~n~]AnTx = T\ 2 X"1 1 '1^^ .
H = 0 \ A7 = 0 /

Γ being closed, k -> oo implies that 7?(λ; ^4)x E Z>Γ and

(1.8)
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Now, let Y be a Γ-bounded SMS and put Yλ - R(λ; A)Y. Since
Y C Dτ, we have Yλ C Dτ and Yλ E Inv T. For Λ; e Y, (1.8) implies

hence T\ Yλ and Γ| Fare similar. Thus, σ(Γ| 7λ) = σ(T\ Y). Since 7λ C Dτ

and 7 is a Γ-bounded SMS, 7 λ C 7, i.e. Y is invariant under /?(λ; A), for
| λ | > ||Λ||. It follows from the identity

A = lim λ[λΛ(λ;Λ) - / ] ,

that Y is invariant under ̂ 4. •

1.11. LEMMA. Given T with the l-SDP, let F C C be compact. Then
xEZ(T,F)iff

(i) στ(x)cF and (ii) lim x(λ) = 0.
λ-^oo

Proof. (Only if): Let xEK(T, F). We have

σ r(x) C σ[rjΞ(r, F)] = σ[Γ|X(Γ, F)] C F.

Since Γ| Ξ(Γ, F) is bounded, it follows that

lim x(λ) = lim R[\; Γ|Ξ(Γ, / )]Λ: = 0.
λ—»oo λ - * oo

(If): By (i), x G Z(Γ, i7). Since Γ is closed, it follows from (ii) and
from the identity

λ c(λ) -χ = Tx(λ),

that

lim [λx(λ) -x] = T lim jc(λ) = 0.
λ-*oo λ-^oo

The function /: V ^ X, defined by /(λ) = λx(λ) — x is analytic on a
neighborhood F of oo and /(oo) = limλ_00/(λ) = 0. Let r > 0 be suffi-
ciently large, for

F C {λGC: | λ | < r } and VD {λ G C: | λ | > r } .

We have
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and note that oo is, at least, a double zero of/(λ)/λ. Consequently, we
have

f ( ψ d λ

Jγ 2πι Jτ A

Jfγ > F)]xdλ = QxG Ξ(Γ, F)9

where

Γ= {λeC: |λ| = r} and Q = j ~ f R[\; T\X(T, F)] dλ. D

A direct sum decomposition property of X(T, F) for a bounded
decomposable operator [1, Lemma 2.3] admits the following generali-
zation.

1.12. THEOREM. Given T with the IS DP, let Fx C C be closed and
F2 C C be compact. If Fλ and F2 are disjoint, then

X(T9 Fλ U F2) = X(T9 Fλ) Θ Ξ(Γ, F2).

Proof. By denoting F = Fx Uf 2 ) one obtain easily

(1.9) X(T9 F) D X(T9 Fx) + Ξ(Γ, F 2).

On the other hand, by the functional calculus X(T9 F) admits a direct
sum decomposition

with o{T\Xi) C Ft (i = 1,2) and Z 2 C Dτ. Then A, C JΓ(Γ, F,)9 i = 1,2.
Since Γ| X2 is bounded, for every x E ^2?

 w e have στ(x) C F2 and

lim jc(λ) = lim i?(λ; T\X2)x = 0.
λ-^oo λ - * cxi

Lemma 1.11 implies that x e Ξ(Γ, F2) and hence ^ί2 C Ξ(Γ, i^). Thus,
the opposite of (1.9) is obtained and hence

(1.10) X(T9 F) - X(T9 Fλ) + Ξ(Γ, F 2).

To see that (1.10) is a direct sum, suppose that

x e x(τ9 F}) n Ξ(Γ, F2) c x(r, F,) n x(τ9 F2) = jf(r, 0).

Then σΓ(x) = 0 and hence x( ) is an entire function. It follows from
JC e Ξ(Γ, F2) that limλ_>oox(λ) = 0 and hence x(λ) = 0. Thus x = 0. D
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1.13. THEOREM. Given T with the \-SDP, if Fx C C is closed and

F2 C C is compact then

(l.ii) Ξ(Γ, FX n F2) = *(r, F,) n Ξ(Γ, F 2 ) .

. With the help of Lemma 1.11, inclusion

(1.12) Ξ(Γ, F, n F2) c *(r, F,) n Ξ(Γ, F2)

follows easily. Let x E l ( Γ , F , ) Π Ξ(Γ, F 2). Then σ Γ (x) C F, Π F 2

and hence x G X(T9 Fλ Π F 2). Since x G Ξ(Γ, F 2), Lemma 1.11

implies l im λ _ o o x(λ) = 0. Quote again Lemma 1.11 and infer that x E

Ξ(Γ, F, Π F 2). Thus, the opposite of (1.12) follows and hence (1.11) is

obtained. D

1.14. PROPOSITION. Given T9 if there is a decomposition

X = Xλ + X2 with Xl9X2E \nwTandXλ C Dτ

then T\X2 is densely defined.

Proof. Recall that by our assumption, T is densely defined. For every

x G l , there is a representation

x — xx + x2, Xf E Xi9 i — 1,2,

and there is a number M > 0 (independent of x) such that H îll + H^ll —

M | | J C | | . Let x E X2. There is a sequence {xn} C Dτ converging to x. For

every n, there is a representation

χ - χ

n = *n\+ Xn2> xnι G ^ 0' = ] ' 2 )

with

Then jcnί -* 0 (/' = 1,2) as n -» oo. By hypothesis,

Λ = * - **2 = ** + Λm E ΰ r n ^ 2

and hence

II* ~~ > J = Il*π2ll-» ° asw -> oc

implies that T\ X2 is densely defined. •

1.15. LEMMA. Gΐυew Γ^w ί̂ Y E Inv Γ, consider the following conditions:

(1.13) σ(Γ) U
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(1.14) f-T/Yisa closed operator on X/7.

Then (1.13) implies (1.14) and either of them implies inclusions

(1.15) σ ( f ) C σ ( Γ | 7 ) U σ ( Γ ) ; σ(T\Y) C σ(Γ) U σ(f);

σ(Γ) Cσ(f) U σ(T\Y).

Proof. Assume (1.13) and let λ G p(T) Π p(T\ Y) be arbitrary. For

every x G 7, we have i?(λ; Γ)x = /?(λ; Γ| 7);c G 7 and hence 7 is

invariant under R(λ; T). Denote Rλ = i?(λ; Γ) and let 7?λ be the

coinduced operator by Rλ on the quotient space X/Y. The identities

(λ - T)Rλx = x, xGX; i ? λ ( λ - Γ ) x = x, x <Ξ Dτ,

give rise to

(1.16) (λ - f )Λ λ i = i , ί e l / 7 ; i?λ(λ - f )jc = c, x E Df.

It follows from (1.16) that i? λ is the inverse of λ — f. Since /?λ is bounded

and defined on X/Y, it is closed and hence f is closed. By (1.16),

λ G ρ(f) and this implies the first of (1.15). The remainder of the proof is

routine and we omit it (see [2, Proposition 2.2]). D

1.16. LEMMA. Given T, let Xo, Xu 7 G InvΓ satisfy the following

conditions:

(1.17) X=X0 + XX9 XX(ZDTΠY\

(1.18) σ(JΊ*o) C F9 o{T\X0 Π 7 ) c F ,

for some closed F c C , F ^ C .

Then f = T/Y is closed on X/Y. Furthermore, if f = (T\XQ)/Y Π XQ,

(i.e. f is the coinduced operator by T\X0 on the quotient space Xo/Y Π Xo)9

then

(1.19) σ(f) = σ(f).

Proof. The quotient spaces X/Y and Xo/Y Π Xo are topologically

isomorphic. Since by (1.18), σ(T\X0) U σ(T\ Y Π XQ) φ C, Lemma 1.15

implies that f is closed.

Next, we show that f and t are similar. In view of (1.17), every

x G Dτ has a representation

x = x0 + x, with jcf E Xi9 ι = 0, l .
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Since xx E Dτ, we have JC0 E DT. Thus, x] E 7 Π Dτ and x0E X0Γ) Dτ.
Let A — X/Y -^ XQ/Y Π ̂ O be the topological isomorphism. For x E X,
let JC = x + Y E X/7 and, for x E * 0 , jc = x + 7 Π Xo E ^ 0 / 7 Π ΛQ.

For every x E Df, there is x E x Π Dτ and we have Ax = ylx0 = Jc0 E Z)f.
Conversely, for every x E Df, there is x E x Π (Xo Π Dτ) and hence
x E £)f. Consequently, ADf = Z>f. For every jf E Z)f, we obtain succes-
sively

Afx = A(Txf= (Tx)~= fx =

and hence Γis similar to Γ. Therefore, Γis closed and (1.19) holds. D

1.17. THEOREM. Given Twith the \-SDP, let G C C be open and put

_ J X(Γ, G ), //G w unbounded;

[ Ξ(Γ, G ), */ G w bounded.

Then T = T/Y is closed and

(1.20) σ(f) CGC.

/« particular, if G E V^ then f is bounded.

Proof. First, suppose that G & V^. Let λ E G be arbitrary and let
{Go, G,} E covσ(Γ) satisfy conditions: Go G F M , λ ί Go, λ G G, C G,
C G and G, is relatively compact in C. By the 1-SDP,

and since X(T9 0) C X(T, Go), Theorem 1.9 implies the spectral decom-
position

(1.21) X=X{T9G0) + Z{T9Gλ).

Put Xo = Jί(Γ, Go), Xλ = Ξ(Γ, G,) and obtain

(1.22) I,CΰΓn 7.

Furthermore, we have

(1.23) σ(Γ|^0) = σ[r |X(Γ 9G 0)]cG 0;

(1.24) σ[rμr(Γ,G0) Π Jf(Γ,G)] = σ[r|X(Γ,G0 Π G)] C GO;

(1.25) σ[rμr(r,σ0) n Ξ(Γ,G)] - σ[r|Ξ(r,G0 n G)] C G0,

The last equality in (1.25) stems from Theorem 1.13. In view of the
definition of 7, relations (1.21)—(1.25) fulfill all hypotheses of Lemma
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1.16. Thus, Γis closed and

(1.26) σ(f) = σ(f),

where f = (T\X0)/Y Π Xo. It follows from Lemma 1.15 and from
(1.23)-( 1.25) that

(1.27) σ(f) C σ{T\XQ) U σ(T\X0 Π Y) C GO.

Since λ 6 Go, (1.26) and (1.27) imply that λ £ σ(f). Thus, (1.20) follows.
For G E F^, we may assume that C ¥= G. Let λ G G be arbitrary.

Choose Gj relatively compact in C such that {G,Gλ} Ecovσ(Γ) and
λ $ Gj. Since f and f = [T\ Ξ(Γ, G,)]/Ξ(Γ, G , ) Π 7 are similar and f is
bounded, σ(Γ) = σ(Γ) and Γis bounded. By Lemma 1.15,

σ(f) = σ(f) Cσ[7iΞ(Γ,G,)] U σ[Γ|Ξ(Γ, G ΠG,)] C G,

and hence λ E p(Γ). Thus, inclusion (1.20) follows. D

While the two-summand spectral decomposition property (1-SDP) of
the given operator is a convenient mechanism in our spectral theoretic
study, it does not confine its scope. Similarly to some other types of
spectral decompositions (i.e. [6, 7]) it is shown that the 1-SDP and the
general SDP are equivalent. Details of that proof will be included in
another work. The two extensions of the spectral maximal space concept
give rise to two generalizations of the decomposable operator concept.

1.18. DEFINITION. Γis said to be decomposable if, for any {G,},% E
covσ(Γ) with Go E V^ there is a system {^}"=0 °f SMS of T satisfying
conditions (I) and (II) of Definition 1.1.

1.19. DEFINITION. T is said to be {oo}-decomposable if, for any
{GJJLQ E covσ(Γ) with Go E V^, there is a SMS Yo of T and a system
{YiYi=\ of Γ-bounded SMS satisfying conditions (II) of Definition 1.1.

The case of {oo}-decomposable operator fits into the theory of the
residually decomposable operators [8, 9] with residuum S ~ {oo}. If T is
{oo}-decomposable for n confined to n — 1, then T is said to be
({oo}, l)-decomposable. If T is ({oo}, l)-decomposable then its conjugate
Γ* is again ({oo}, l)-decomposable [9]. Moreover, for every open G C C,
the spectral manifold X(T,G) is closed in X, as a fulfilment of condition γ
[ibid.].

We conclude this section with some necessary and sufficient condi-
tions which make the unbounded operators with the SDP and the un-
bounded decomposable operators equivalent.
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1.20. THEOREM. Given T, the following assertions are equivalent:

(I) T is decomposable;

(II) Thas the SDP and X(T, 0) = {0}, or

Thas the SDP and {0} is a SMS of T\

(III) T has the SDP and every T-bounded SMS is a SMS of T;

(IV) T has the SDP and X(T, F) C Dτfor some compact F in C.

Proof. The conclusion will be reached through the following sequel of

implications: (I) =» (II) =» (III) => (IV) => (II) and (III) => (I).

(I)=>(Π). Clearly, T has the SDP. Let {Go, G,} Gcovσ(Γ) with

Go E V^. There corresponds the spectral decomposition

X = Xo + X\ with Xx C Z)Γ spectral maximal.

Consequently, σ[T\X(T,0)]= 0 C o{T\Xχ) implies I (Γ, 0 ) C I , C

Dτ. Then X(T, 0) = {0}, by Lemma 1.8.

(II) => (III) follows from Theorem 1.7.

(III) => (IV). Let F C C be compact. By hypothesis, Ξ(Γ, F) is a SMS

of Γ. Then σ[T\X(T, F)] = σ[Γ|Ξ(Γ, F)] implies X(T, F) C Ξ(Γ, F) C

i ) r .

(IV) =» (II). If, for some compact FCC,X(T,F)C Dτ, then

X(T, F) = E(T, F) Φ X(T, 0) and E(T, F) C Dτ

imply that JΓ(Γ, 0 ) = {0}.

(Ill) =»(I). By the SDP, for any {G,}1=0 E covσ(Γ) with Go e F^,

there exists {Y,}"={) C Inv Γsuch that σ(Γ| Yj) C G, (0 < / < n) and

n

Σ γ<c Σ
/=0 1=0

By Proposition 1.4, every ^(Γ, G,) is a SMS of T. Moreover,

jr(r,σ;) = Ξ(r,G;.)

imply

z = l

Since X(T, GQ) and, by hypothesis, every Ξ(Γ, G7) (1 < / < «) is a SMS of

Γ, 71 is decomposable. D

(After this paper was accepted for publication, we noticed that

Lemma 1.15 appeared explicitly in F.-H. Vasilescu, Analytic Functional

Calculus and Spectral Decompositions, D. Reidel, Dordrecht: Holland,

1982.)
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2. Elements of spectral duality theory. While this section prepares

the main Theorem 3.1, some of the properties discussed here have intrinsic
values. Various topologies are involved in the duality theory. If A and B
are dual spaces, we use the notation τ(A9 B) for the topology on A
induced by 2?, under the given duality.

2.1. THEOREM. // T has the SDP then Γ* has the SDP.

Proof. Let T have the SDP. Then, for closed f C C , X(T, F) is closed
(Proposition 1.4). Let {Go, Gx) G covσ(Γ) with Go G Fς. The SDP im-
plies the spectral decomposition (1.21)

Since X(T, GQ) is a SMS of T and Ξ(Γ, Gx) is a Γ-bounded SMS, T is a
({oo}, l)-decomposable operator. By [9, Theorem 2.10] as mentioned in 1,
Γ* is ({oo}, l)-decomposable. Consequently, Γ* has the 1-SDP and hence
it has the SDP. D

2.2. LEMMA. Given T, let Y G Inv T be such that Y C Dτ. If Γ* | Y^ is
densely defined then T/Y is closable. Moreover, (T/Y)* = Γ* | Y1-.

Proof. Y1- can be viewed as the conjugate of X/Y, under the isometric
isomorphism (X/Y)* -> y x . For convenience, we make no distinction
between Y1- and (X/Y)* and denote by (jc, x*> the linear functional
x* G y ^ o n ^ / y . F o r x EDτ/γ,x GxΠ Dτ,y G yandx* G Y±

we have

(2.1)

Hence Γ/7 and Γ* | Y1- are conjugates to each other. Since Γ* | Y± is
densely defined, 7 / 7 is closable (e.g. [4, III. Theorem 5.28]). It remains to
prove the second statement of the lemma. Let T/Y be the minimal closed
extension of T/Y. It follows from Dτ— X that Dτ/γ — X/Y and hence
( 7 / D * = (T/YY exists. Then (2.1) implies

(2.2) G'(-T*\Y^) c [ G ( Γ / y ) ] x = G r [ - (7/7)*] .

It follows from (2.2) that (T/Y)* D T*\Y±.
To prove the opposite inclusion, let x* G Z)(7y7)*. For x E Dτ and

j> G y, we obtain successively

(2.3) ((7/Tμ, x*) = (x, (7/y)*x*>
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Thus, for every x* G D ( ί / 7 ) * , ({T/Y)x, x*) is a bounded linear func-
tional of x and hence x* E Dτ*. Furthermore, x* E D(T/γ)* C Y1- and
hence JC* E 7"1 ΠDT*.

On the other hand, since x E Z)Γ, for every y E 7, we have

(2.4) ((ΐyyμ,x*)=<(r/γ)*,x*)

It follows from (2.3) and (2.4) that (T/Y)* C T* | 7 ± . D

2.3. LEMMA. Sw/?/>α«> /Λβf 7*** C X*** is closed for τ(X***, X**) and
Y*** is invariant under the projection P of X*** onto KX*, along (JX)X .
Then PY*** is closed for τ(KX*, JX).

Proof. Let S*** be the closed (for the metric topology of X***) unit
ball of PY***. Let {****} C S*** be a net converging to JC£** e KX*
for τ(KX*,JX). Since {****} is bounded in X***, there is a subnet
{x%**} of {****} such that x|** -»- x*** E X*** for T ( ^ * * * , X**).
Since, by hypothesis, Y*** is closed for τ(X***, X**), we have x*** E
7***. Let/ c E /X. Then (Jx,(I- P)x***) = 0 and hence

(2.5) l i m ( / x , x | * * ) = </x, x***)= (/x, .Px***).
8

On the other hand, we have

\Δ.Ό) lim \ t/Λ, xό / — lim KJX, xa j — KJX, XQ ) .
β a

It follows from (2.5) and (2.6) that

(Jx,Px***)= (Jx9x***).

Since both Px*** and x*** a r e elements of KX*, we have

(2.7) **** =P;t*** E P 7 * * * .

Since, clearly ||JC£**|| < 1, (2.7) implies that JC£** E 5*** and hence 5***
is closed for τ{KX*, JX). By the Kreϊn-Smul'jan theorem, py*** is
closed for τ(KX*,JX). D

2.4. THEOREM. Given Γ, the following properties hold:
(i) // rΛe density condition (*) ώ satisfied then, for every x E Z)Γ, we

haveJx E Z>Γ** ύf«(i Γ**/x = /7x; likewise
(ϊ) if the density condition (**) w satisfied then, for every x* E 2)Γ*, we

have Kx* E £>Γ*** and T***Kx* = KT*x*.
(ii) Suppose that the density condition (**) is satisfied and ****

If(T**Jx, x***) w ^ bounded linear functional of Jx E /Z)Γ,
Γ******* = KT*K~xx***.
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Proof, (i): Since G{t) = ±[G'(-T*)] and [G'(-T*)]± = G(T*% for
every ( i , 7x) E G(Γ) we have (Jx, JTx) E G(T**) or, equivalently, Jx
E Dτ** and Γ**/x = JTx.

(ϊ) follows directly from (i), with the original space X* and embed-
ding K.

(ii): Let x E Dτ and suppose that (T**Jx, x***) is a bounded linear
functional oΐJx. With the help of (i), we obtain

(Tx9K~ιx***) = (K~]x***,JTx)= (KΓxx***9T**Jx)

= (Γ**/x,x***)

and hence K~ιx*** is a bounded linear functional of x. Then K~ιx*** E
£>Γ* and by (i'), we obtain x*** E Z)Γ*** a n d Γ***x*** = ΛΓ3n*Ar"'1jc***.D

2.5. COROLLARY. G/t;en Γ, suppose that (**) Λo/ώ.

)Γ* = KX* n £>r***.

f. It follows from Theorem 2.4 (ϊ) that KDT* C KX* Π Z>r*** To
obtain the opposite inclusion, let x*** E KX* Π Z>Γ***. Then

(Γ**/x, x***) = (Jx9 Γ***χ***)

is a bounded linear functional of Jx. By Theorem 2.4 (ii), x*** E ΛZ>r*
and hence KX* Π Z)Γ*** C KDT*. D

2.6. LEMMA. Given T, assume that (**) holds. Then, the projection P of
ΛΓX*, α/o«g (JX)^ commutes with Γ***.

. Let x*** E £Γ***. Then ^x*** E ^ST*. For x E Z)Γ, we have
successively

( T * * J x 9 P χ * * * ) = ( T * * J x 9 / > x * * * ) + ( T * * J χ , ( I - P )

- (Γ**/x,x***)= (/x,Γ***x***)= (/x

and hence (T**Jx9 Px***) is a bounded linear functional of /x E /Z)Γ.
Theorem 2.4 (ii) implies that Px*** E 2)Γ***. Then

implies that

Γ—I
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2.7. THEOREM. Given T, assume that (***) is satisfied. Then

Moreover, for every Jx E JDT, we have

JTx = T**Jx.

Proof. In view of Theorem 2.4 (i), JDT C JX Π Dτ**. Let x*** E
(JX)1-. There is a sequence {x***} C Dτ*** such that x*** -> ****
as « -* oo. By Lemma 2.6, for every n, Px*** E Z)Γ*** and hence
(/ - P)x*** E Z>Γ***

 τ h u s >

(/ ~ P)x%** -> (/ - P)**** = x***.

Consequently, (Z^)"1 ΠZ)Γ*** is dense in (/X)"1.
Now let Jx EJX Π Dτ**. For every x*** E (Z^)"1 Π ΰ Γ * * , we have

Since (JX)2- ΠDT*** is dense in (JX)1-, it follows from (2.8) that Γ**/x
E /X For x* E Z)Γ*, Theorem 2.4 (i') implies that

T***Kx* = i^Γ*x*

and hence, we obtain successively

(JC,Γ*JC*)= (Jx,KT*x*)= (Jx,T***Kx*)= (T**Jx,Kx*)

— / v* T**7Ύ\— / 7"~1T**7'v v*\

This means that the element (JC, J'iT**Jx) E±[G'(-T*)] = G{T). Con-
sequently, x EDT and J~ifΓ**Jx = Tx, i.e. Γ**/Λ: = 7Γx. Thus, it fol-
lows that

JX n DT» C /D Γ . D

2.8. THEOREM. Gϊϋew Γ, assume that condition (**) Ao/c/s1. // Γ*

(i)/or eυery c/o^t/F C C, X*(Γ*, F) w closed for τ(X*> X)\
(ii) /<9r ere/y compact F C C , Ξ*(Γ*, T7) w closed for τ(X*9 X).

Proof. We confine the proof to (ii), that of (i) is similar. Assuming
that Γ* has the SDP, it follows from Theorem 2.1 that both Γ** and Γ***
have the SDP. Consequently, Ξ***(Γ***, F) is a Γ***-bounded SMS and
it is closed for τ(KX*, JX), by [9, Proposition 2.9]. It follows from
Lemma 2.6, Proposition 1.10, and Lemma 2.3 that />Ξ***(Γ***, F) is
closed for τ(KX*9 JX).
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Next, we prove the equality

(2.9) KZ*(T*,F) = PΈ,***(T***,F).

Let x*** e KΈ*(T*, F). Since T* and T*** \KX* are similar (Theorem

2.4 (ii)), T*** IKX* has the SDP and KΈ*(T*, F) is a Γ*** | /OΓ*-bounded

SMS. Consequently, στ,,*(x***) C F and limλ^o ox***(λ) = 0. Lemma

1.11 implies that x*** G Ξ***(Γ***, F) and hence

(2.10) KΈ*(T*, F) = PKz,*(T*, F) C />Ξ***(r***, F).

Conversely, let x*** £ E * * * ( Γ n , F). Then Lemma 1.11 implies that

σΓ«,,(x***) C F and limA^oox***(A) = 0. Since, by Lemma 2.6 and

Proposition 1.10, PΞ***(7***, F) C Ξ***(Γ***, i7), we have

σ r,,,(Px***) C F and lim />x***(λ) = 0.
λ-» 00

Since x***(λ) e Z>Γ.»,, it follows from Lemma 2.6 that Px***(λ) G

DT,,». By Corollary 2.5, Px***(A) E KDT* and hence, for λ G

pΓ»«»(x***), we obtain

(λ - T*)K~λPx***(λ) = K~ι{λ - T***)Px***{λ)

= K']P(λ - τ***)x***{λ) = K~xPx***.

Thus, στ*(K~]Px***) C F. Since limA_o 0^"'Px***(X) = 0, Lemma 1.11

implies that K~ιPx*** G Ξ*(Γ*, F), i.e. Px*** G KΈ,*(T*, F). Thus, we

have

(2.ii) ? Ξ * * * ( Γ * * , F ) C J S : Ξ * ( Γ , F )

and hence (2.9) follows from (2.10) and (2.11). Now, by Lemma 2.3,

KΞ*(T*, F) is closed for τ(KX*, JX) and hence Ξ*(Γ*, F) is closed for

τ(X*,X). D

2.9. THEOREM. (7/WM T, assume that condition (***) holds and T* has

the SDP. Let G C C fo> open, G G F^ α/κ/ Y = x X*( Γ*, G). Then

(I) F C f l r , 7 G Inv T, σ(T\ Y) C Gc;

(II) T/Y is closable and, for its minimal closed extension T/Y, we have

σ(T/Y) C G.

Proof. Since T* has the SDP, X*(T*±G) is closed for τ(X*, X) and

hence 7 X = X*(T*, G). Clearly, X*(T*, G) is invariant under T*. Let i ί

be a relatively compact open set such that Gc C H. Then {G, H) G covC

with G E ζ and the SDP of T* gives rise to the decomposition

(2.12) X* = X*(T*,G) + Ξ*(Γ*,77).
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Since Ξ*(Γ*, H) C Dτ*> it follows from Proposition 1.14 that

T*\X*{T*,G) = T*\Y±

is densely defined. It can be easily shown that 7 E Inv T.
Next, we show that 7 C Dτ. In view of (2.12), for every x* E

there is a representation

x* - x* + x*, x* E A*(Γ*, G), x£ E Ξ*(Γ*, Ϊ7)

with ||x*|| + ||x* || < M||x*||, where the number M is independent of x*.
Let x* E Dτ*. Then x£ E Ξ*(Γ*, H) C DΓ* implies that xf E Z)Γ* and
hence, for every x E 7, we have successively

| | ^ ) | | ||x|| | |xj|| < M||Γ*|Ξ*(Γ*, H)\\ ||x|| ||x*||.

Thus, (Γ*x*, /x) is a bounded linear functional of x* and hence Jx E
£>Γ**. By Theorem 2.7, /x E / D Γ , i.e. x E Z)Γ. Consequently, Y C DΓ .
Since 7 satisfies all hypotheses of Lemma 2.2, 7 / 7 is closable and

(2.13)

Thus, it follows that

σ(lyY) =σ[(T/Y)*] = σ[Γ*|A*(Γ*, G)] C GΠσ(Γ).

It remains to show that σ(T\ 7) C Gc. By applying Theorem 1.17 to
Γ\ we infer that T*/X*(T*, G) is bounded and

o[τ*/X*(T*,G)] C Gc.

Now, it follows from the unitary equivalence

(Γ|7)* - Γ * / ^ * ( ^ * ? G ) 9

that

σ(Γ|7) = σ[(Γ|7)*] = σ[Γ*/A*(Γ*, G )} C Gc. D

3. The duality theorem.

3.1. THEOREM. Given T9 assume that (***) holds. If Γ* Λα̂  /Λe SDP

then T has the SDP.

Proof. Given {G^GX} Ecovσ(Γ) with Go E F^ and Gx relatively
compact, let FQ, Fλ C C be closed such that Fo E P^, Fo C Go, i

7, CG,
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and {Int Fo, Int F,} G covσ(Γ). Then Ho = F,c e Vx, Hλ = Fo

c is com-
pact. Put

(3.1) Y = xlX*{T*, HQ)], Z =-L[Ξ (Γ*, #,)]>

use Theorem 2.9 and obtain

(3.2) YCDT, y ε l n v Γ , σ{Ί]Y) C //g= F, C G,.

Our next objective is to obtain the decomposition

(3.3) X=Y+Z.

Since, by Theorem 2.8, X*(T*, Ho) and z*{T*,Hλ) are closed for
τ(X*, X), we have

(3.4) y J -=**(Γ > ,/?o), Z J - = Ξ * ( Γ * , ^ 1 ) .

It follows from

Ξ*(T*,H]) = Ξ*[T*,ϊϊιnσ(T)],

[HQ Π σ(T)] Π [F, Π σ(Γ)] = 0, and Theorem 1.12, that X*(T*, ΪT0) +
Ξ*(Γ*, Hx) is a direct sum and

(3.5) X*(Γ*, ^o U Hx) = X*(Γ*, ^o) θ Ξ*(Γ*, flj).

Apply [4, IV. Theorem 4.8] to Y and Z, as defined by (3.1), and infer that
Y + Z is closed. On the other hand,

^ X*(T*,H0) n Ξ*(Γ*,F,) = {0}

implies (3.3).

It remains to show that

(3.6) (a) Z G l n v Γ , (b) σ(T\Z) C Go.

F o r x ε Z Π DΓ, x* G Ξ*(Γ*, ^,) = Z x , we clearly have

(Tx,x*)= (x,T*x*)=0

and hence Tx G Z. This implies (3.6, a). By (3.3) and Proposition 1.14,
T\ Z is densely defined and hence (T\ Z)* exists. Next, we shall obtain

(3.7) {T\Z)* = T*/Έ*{T*, Hλ) =

For x G Z Π Z>Γ, x* G Dτ. and

(x*)*= x* + Ξ*(Γ*, fli) G X*/Ξ
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we have

((7]Z)x,(x ϊ)= ({Ί]Z)x,χ )= (x,T*x*)= (x,(Γ*)

Consequently,

(3.8) (Γ |Z)* D {T*)\

To obtain the opposite of (3.8), let x E Dτ and (x*)*E D{Ί]Zy. In view of

(3.3), there is a number M > 0 and a representation

A: = X J + X 2 , J C , G 7 , X 2 E Z and ||JC, || + ||x2 | |

Then, for every x* E (JC*) ( E D(7]Z)*), w e have successively:

Thus, (Tx9 x*) is a bounded linear functional of x. Consequently, x* E

Dτ* and hence (**) E D(T*y In view of (3.8), (3.7) is obtained. Now

Theorem 1.17 applied to T*9 gives

σ[(Γ*f] CJΪf

and hence (3.6, b) follows by

σ(Γ|Z) = σ[(Γ|Z)*] - σ[(Γ*)] C //f = Fo C Go.

By (3.3), (3.2) and (3.6), Γ has the SDP. Π

The combination of Theorems 2.1 and 3.1 gives

3.2. COROLLARY. Given Γ, assume that condition (***) holds. Then T

has the SDP iff Γ* has the SDP.
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