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TYPESETS AND COTYPESETS
OF RANK-2 TORSION FREE ABELIAN GROUPS

D. ARNOLD AND C. VINSONHALER

A sufficient condition is given for a set of types to be the typeset of
a rank-2 group, strengthening all previous results on this subject. A
correct version of a theorem of Schultz on types and cotypes is provided,
along with a variety of other results on typesets and cotypesets of rank-2
groups. Numerous examples are included.

Beaumont-Pierce [3], in 1961, posed the problem of finding necessary

and sufficient conditions for a set of types to be the typeset of a rank-2

torsion free abelian group. They also, among other things, solved the

problem in case the given set of types is finite. Koehler [10], in 1964,

extended some of these results. Dubois [5] and [6], 1965 and 1966, used

basic analytic number theory techniques to give some necessary and some

sufficient conditions for a set of types to be realized as the typeset of a

rank-2 torsion free abelian group.

Ito [9], in 1975, gave a sufficient condition for the realization of a set

of types, which is easily seen to be equivalent to a sufficient condition of

Dubois [5], Theorem 1. Ito's construction, however, is somewhat easier to

understand, the group being given as a homomorphic image of a com-

pletely decomposable group rather than as a subgroup of the direct sum of

two copies of the Z-adic integers.

Schultz [11], in 1978, claimed to have given necessary and sufficient

conditions on two sets of types Sx and S2 such that there is a rank-2 group

A with typeset(^l) = S, and cotypeset(^) = S2. A counterexample to this

theorem is given by Vinsonhaler-Wickless [12] (also see Example 1.6).

Vinsonhaler-Wickless [12] also give some simple necessary and sufficient

conditions for a set of types to be realized as the cotypeset of a rank-2

group.

The theme of this paper is to examine Dubois' results from the point

of view of Ito's construction. This point of view leads to:

THEOREM. Let S = {η, τ2,...} be a set of types with in^r,, T ) =

type(Z) whenever ΊX Φ T . Assume that {τi\τι is very large) has no snarls

in S.

(a) There is a rank-2 group A with typeset(yί) = S iff either type(Z) E

S or else S has an infinite subset with no snarls in S;
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(b) Let S' = (σ,, σ2,...} be another set of types. Then there is a rank-2
group A with typeset(^4) = S αm/cotypeset(yl) = S' if and only if

(i) There is a type σ0 = sup{σ/9 oj) for i φj\

(ii) η < o0for each i\
(iii) σ, = σ0 — τ,/<9r eαcΛ /; and

(iv) Either type(Z) E S or else S has an infinite subset with no snarls

in S.

Included as special cases are Dubois' theorems (Theorem 2.9(b) and
Corollary 2.10); Koehler's results (Theorem 2.9(a)); Ito's theorem
(Corollary 2.14(b) which includes the Beaumont-Pierce results), and a
corrected version of Schultz's assertions (Corollary 2.11). Also included is
a simplification of the proof of the Vinsonhaler-Wickless theorem (Theo-
rem 3.1).

Of particular interest are the locally completely decomposable groups,
discussed in §4. If A is a finite rank torsion free group then there are
locally completely decomposable groups B and € with B C A C C; C/B
torsion; typeset(yl) = typeset(5), and cotyρeset(^4) = cotypeset(C) (The-
orem 4.1).

Section 5 is devoted to some open questions.

This paper is largely self-contained, and as a result partially exposi-

tory, due to the complexity and the history of the problems considered.

However, references for published results are given as well as numerous

examples.

0. Notation and preliminaries. The basic properties of finite rank
torsion free groups may be found in Fuchs [7]. Special notation used
herein includes: if h is a height sequence (characteristic) then h(p) is the
pih entry for a prime p\ τ — [h] denotes the type of A, an equivalence
class of height sequences; and write h E T. If A is torsion free and a £Ξ A

then hA(a)9 hA(a)9 and type^α) denote the height sequence,/^-height, and
type of a in A, respectively. If rank A = 1 then type(A) = typeA(a) for

If T = [t] and σ = [s] then inf{τ, σ) and sup{τ, σ} are defined by
[min{/, s}] and [max{/, s}]9 respectively. For two types r and σ, T < σ iff
there is t E τ and s E σ with t < s. In this case σ — τ — [s — t]9 agreeing
that oo — oo = 0.

If S is a subset of A then (S) denotes the subgroup of A generated by
S and (S>* denotes the pure subgroup of A generated by S.

Also assumed are some basic analytic number theory results as found,
for example, in Hardy-Wright [8]. For a positive integer n, let π(n) be the
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number of primes < n. Let U = {(r, ί ) | r , j 6 Z , r > 0, gcd(r, 5) = 1}

and /„ = {(r, 5) E t/|max{r, |.s|} < «}. Denote the /th prime by pr

LEMMA 0.1.

(a) (Chebyshev's Theorem.) There is cx > 0 ##*/ c2 > 0 such that

c,w/log n <π(n) < c2n/\og n.

Oήhm^^ n/pn = 0.

(c) | / w | = 4Φ(n) wΛere Φ(w) = Σ{Φ(/)| 1 ^ Ϊ ^ w} απrf Φ(i) is the

Euler φ-function.
(d)φ(n) = 3n2/π2 + O(nlogn)

Note that (b) follows from (a) since n — ir{pn) < c2pn/log pn implies

that n/pn < c2/\ogpn. Also (c) is a fairly routine counting argument,

while (e) follows from (d) and (a).

As a consequence of (b), if c is any constant then for sufficiently large

n,pn>cn.

1. Type sequences. A type sequence is a countably infinite sequence

of types (repetition of types is permitted). Two type sequences T and T

are equivalent, T « T\ if one is a permutation of the other.

Let A be a rank-2 group and letAl9A29... be an indexing of the pure

rank-1 subgroups of A. Define τι — typeset^,) and σ, = type(A/A;) for

each /. Then TA = (τ 1 ? τ 2 , . . . ) and CA — (σ l 5 σ2,...) are type sequences.

Note that TA and CA are unique up to equivalence. Define typeset(^ί) =

{τz I / > 1} and cotypeset(v4) = {σ, | / > 1}.

The following proposition is folklore.

PROPOSITION 1.1. Let A be a rank-2 group with TA = ( η , τ 2 ? . . . ) and

CA = ( σ l 9 σ 2 , . . . ) .

(a) There is a type τ0 such that τ0 = infl^, τy} for each i φj and if

typeset(^l) is finite then τ0 = ijor some i > 1.

(b) There is a type σ0 such that σ0 = sup{σz, σ7} /or each i φ j and if

cotypeset(^) is finite then σ0 = oι for some i >: 1.

(c) T, < σ7 /or α̂c/z / φj and τ0 < σ0.

(d) σ; — τy = σ7 — τz /or each i φj with i > 0 and] > 0.

(e) / / τ 0 = type(Z) /Λe« σz = σ0 — τf/ί?r <?αc/z /.

Proof, (a) If / 7^7 then A/(Aι ® A) is torsion. Thus, for each k,

τk > inf{T,, 1̂ }. Consequently, ϊi kφl then inf{τA, τ7} > inf{τ |9 τy} >

inf{τA, Tf). Now assume that typeset(v4) — {τl5 τ 2 , . . . ,τΛ}. If j > n then
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τ0 = inf{τ7, τ, } for each 1 < i < n. But τy = T, for some 1 < / < w so that

τ0 = τf. E typeset(Λ).

The proof of (b) is similar.

(c) follows from the fact that if / φj then there is a monomorphism

(d) First assume that i φj are both non-zero. There is an exact

sequence 0 -> At -+ yί/yί, -> 4/(Λy θ ^.) -> 0. Choose O ^ α ^ Λy and

Xj E ^4/^ 7 with α, -> jCy. Then

0 -» ^,/Zfl,. -> ( ^ / ^ )/ZJC7 -» Λ/ (Aj θ ^.) -* 0

is exact. ΨήtQA/(Ai θ ^ y ) = Φ^ Z(pkp) so that

kp = (^-height of xy in ^4/^47) — (^-height of at in Aι).

Then [ (^)] - oj - τs. Similarly, [(kp)] = σf. - τy .

Given three distinct positive integers /,y, /:,

σ0 - τ7 - sup{σ7 - τ7, σ̂  - Tj} = sup{σ7 - τf , σy - r^} = oj - τ0.

(e) follows from (d).

Following Warfield [14], τ0 is called the inner type of A, denoted by

, and σ0 is called the outer type of A, denoted by

LEMMA 1.2. Assume that Zx θ Zy C A, a rank-2 torsion free group and

that TA=(τl9τ29...). Define

UA = {rx + sy\r9s e Z9r>09gcd(r9s) = 1}.

(a) For each i > 1 there is a unique at E UA Π At. Moreover, Ai Π

(Zx ® Zy) = Zfly /̂?J type4(β/) = τr

(b) OT(^) = [max{/^(α)|α e UΛ}\.

Proof, (a) is routine.

(b) Write A/(Zx θ Zy) = © ^ [ Z i ^ ) θ Z(/>'>)] with 0 < /̂  <jp <

oo for each/?. Then IT(Λ) = [(i^)] and OT(^) = [(jp)] (Warfield [14] or

Arnold [2]). If a + (Zx θ Zy) E (A/(Zx θ Zy))p then order (a + (Zx

θ Z^)) = least j with pja — mu for some u £Ξ UA and some m E Z with

gcd(/?, m) = 1. Sincey < A^(M), it follows thaty^ < max{Λ^(α) |α E ί/}.

But

i4/ (Zx θ Zy) D (At + (Zx θ Zy))/ (Zx θ Zy) ^ Ai/Zaι
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where lp = hA

p{at) (by (a)) so that max{h*(ά)\a E UA) <jp. Thus, OΎ(A)
A

The following lemma reduces the problem of realizing a type sequence
T = (τ1? τ2,...) to the case that type (Z) = inf{τf , τy} whenever /

LEMMA 1.3 (Schultz [11]). Let T- (η, τ2,...) tftfd C = (σ,, σ2,...) fte
sequences with τ0 = inf{τz, T,} #ftd σ0 = sup{σz, σy } whenever i φjm

There is a rank-2 group A with TA — T and CA = C iff there is a rank-2
group B with TB = (η - τ0, τ2 - τ 0,. . .), Q = ^ - τ0? σ2 - τ 0 , . . .),

= type(Z), α«rf 0T(5) = σ0 - τ0.

(«=) Let X be a rank-1 group with type (X) = τ0 and define
4̂ = X ®ZB- Then 7 is a pure rank-1 subgroup of A iff Y — X ®ZZ> for
some pure rank-1 subgroup 2) of B. Moreover, A/Y — X®Z{B/D)\
type(7) - τ0 + type(P); and type(^ί/7) = τ0 + type(5/Z)). Thus, 7̂  =
Γ a n d Q = C.

(=>) Choose Λz E 7) for / > 0 such that h0 < Λî  for each /. First of all,
it suffices to assume that τ0 is idempotent: Let X be a rank-1 group with
type(X) = τ0 and x E Jίwith Λ^(x) = Λo. Define^' = Hom(X, ^ ) . Then
φ: >4' -> (α E Λ | Λ^(α) > Λo} is an isomorphism, where Φ(f) = f(x).
Thus 7> - (T, - τ0', τ2 - TJ,. . .), CA. = (σ, - TJ, σ2 - τo\...), and IT(A')
= τo~ τo w h e r e τo = [ΛΌL Λ'oί/?) = 0 if ho(p) = oc, and ho(p) = /zr

0(^)
if Λo(/?) < oo. Therefore, τ0 — τ0' is idempotent.

Now assume that τ0 is idempotent, say τ0 = [h0] with ho(p) — 0 or oo
for each /?. Let i 7 be a free subgroup of A with A/F torsion and define
B = A Π (Π{Fp\h0(p) = QQ}).ΎhmBp = Fpiϊh0(p) = 00 and Bp = Ap

if ho(p) — 0. Let R be the subring of Q generated by {\/p\hQ(p) — oo}
and define θ: R®ZB -> ̂  by θ(r ® 6) = rfe, noting that iM = ^ . Then 0
is an epimorphism, hence an isomorphism, since rank(i? ®ZB) —
rank(^4) = 2. Finally, if Ai is a pure rank-1 subgroup of A let

Then B{ is a pure rank-1 subgroup of B and typeB(2?,-) = τf — τ0, since
(ΛJ^ = ( ^ if Λ0(^) = 0 and Π{(Bt)p \ho(p) = oo} is pure in
n ( ^ \ho(p) = oo}. Consequently, Γβ - (η - τ0, τ2 - τ 0,. . .), Q =
(σ{ — τ0, σ2 — τ 0,...), and IT(5) = type(Z), as desired.

Let T — (TJ, T2,. ..) be a type sequence with type(Z) = inf{τ/9 τy}
whenever / φ j , let /i,. E τ; for each /, and let T be a type with h E r. Then
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T is a snarl of T if {p\0 < h(p) < hj(p) — oo for somey} is infinite. Note

that this definition depends only upon T and T and not upon the choice of

h E T and hi E η . Snarls of sets of types are defined analogously.

Suppose that A is a rank-2 group with TA — ( η , τ 2 , . . . ) . By Proposi-

tion 1.1.a, Π(A) is the only type in TA that may be repeated. Following

Beaumont-Pierce [3], A is completely amsotropic if τz φ Ύj for each / φj. In

this case, IT(A) appears at most one time in TA.

THEOREM 1.4 (Dubois [1]). Let A be a rank-2 group with TA =

(TJ, T 2 , . . . ) α«d IT(v4) = type(Z). ΓAe« 7^ Aαs α« infinite subsequence T

such that no snarls of T are in TA.

Proof. Choose ZxθZyCA with inf{hA(x), hA(y)} = 0. There is an

indexing Wj, w2,... of l^ such that ux = x9 u2— y9 uι — r{x + sty and

max{r/91^1} < max{ry, |^|} if / <j. Relabel TA so that τ7 = type^w,-)- Let

A, = hA{Ui) E τz for each / > 1.

Define K — {j\ for eachj9, hj(p) < oc or A7(/>) = oo and there is no

i <j with 0 < h}(p) < hj(p) = oo}. Let Γ be the subsequence of TA

determined by K. Then for each /, τ, is not a snarl of T since

{/?|0 < ht(p) < hj(p) = oo, for somey E

C {p\0 < Λ^p) < A / p ) = oo, i > 7 E

is finite (recalling that inflA^/?), hj(p)} — 0 for almost all /?, since

IT(^4) = type(Z), and that there are only finitely manyy < /).

It now suffices to prove that Kis infinite. Let In — {i\max{r/?|sι|} <

n). If y E I\K then there is some p and some / <y with 0 < ht(p) <

hj(p) — oo and max{r7, 1̂ 1} < n. Now r̂ ŵ  = ryw, — (r y^ — rtSj)y and

^My = ^w,. + (rJsi - ηs^x. Since inf{/^(x), A^(y)} = 0, j7 divides rJsι -

r,- .̂ Furthermore, l / ^ — ^ 1 ^ 2/?2. Thus, \I^\K\< π(2n2), the number

of primes < 2«2, since for each/? there is at most oney with A7(/?) = oo.

It follows that

\InnK\ = \In\-\In\K\>\In\-τr(2n2).

Now apply Lemma 0.1.e to see that K is infinite.

EXAMPLE 1.5. Let T — (T,, T 2,. ..) be given by τ, = [AJ where hλ =

( l , l , l , . . . ) ; A 2 = (oo,0,0,...);A3 = (0,oo,0,...),A4 = (0,0,oo,.. .),. . . .

(a) There is no rank-2 group A with TA — T.

(b) There is no rank-2 group A with typeset(yί) = {τz \ι: > 1}.

(c) There is no rank-2 completely anisotropic group A with typeset(y4)

= {T, I i > 0} where τ0 = type(Z) = inflη, τ7} for /
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Proof, (a) Note that τx is a snarl of every infinite subsequence of T

and apply Theorem 1.4.

(b) If there is a rank-2 group with typeset(^ί) = {τ | / > 1} then

IT(^) = type(Z) £ typeset(^). Thus TA = ( η , τ 2 , . . . ) since IT(^) is the

only type that can be repeated and Π(A) does not appear in TA. But this

contradicts (a).

(c) For such an A, TA = (τ 0, τ l 5 τ 2 , . . .) since 4̂ is assumed to be

completely anisotropic. Once again, τ1 is a snarl of every infinite subse-

quence of TA contradicting Theorem 1.4.

EXAMPLE 1.6. Let 5, = {τjι > 1} be as defined in Example 1.5,

σ0 = type((?), and S2 = {σ0 — TJ/ > 1}. Then there is no rank-2 group A

with typeset(y4) = S, and cotypeset(^ί) = 5 2 by Example 1.5. On the

other hand, 5 1 and S2 satisfy the hypotheses of Theorem 1, Schultz [11].
Thus Schultz's main theorem is incorrect as stated.

2. Realization of type sequences and typesets. In this section the

following notation is consistently employed: T— ( η , τ 2 , . . . ) is a type

sequence with inf{τ,, TJ = type(Z) if / φj\ h{ E τf for all /; aι = ηx + s(y

is a denumeration of U = {rx + sy E Zx θ Zy \ r, s E Z, r > 0, and

gcd(r, j ) = 1}; det(/, j) = rtSj ~ s/y, and άtίp(U j) = A j ί ^ ~ ^r 7 ) .

The type sequence T is admissible if there is an indexing of U so that

for each / there is an Λ̂  > 0 such that hn(p) = oo for some n > N implies

Since for each/? there is at most one n with hn(p) = oo, the admissi-

bility of T does not depend on the choice of hι E τ7 or the ordering of T.

LEMMA 2.1. Given h\ E τz /or each /, /Λere ex/̂ s1^ Λz E τ7 /or eαcA /

t < Λ; α/ίrf(a) //y < A: andhk(p) < oo //ze« min{Ay(/?), AΛ(/7)} = 0;

and (b) // A^(/?) < oo and άdp(i, k) > 0 /or wme / < k then hk(p) — 0.

Proof. Assume hλ,...,hn_x have been chosen such that hι^Ίohi<h\

and (a) and (b) are satisfied for /, y, k < n. Define hn(p) = 0 if h'n(p) < oo

and either 0 <h((p) for some / < n or det^/, «) > 0 for some / < n\ and

define/*„(/?) = h'n(p) otherwise.

Note that there are only finitely many / < n and only a finite number

of primes can divide det(/, n) if iφn. Furthermore, h'fΊ(p)>0 and

hXp)>0 for some i<n can happen for only finitely many p since

inf{Trt, η} = type(Z). Thus hn{p) = h'n(p) in case h'n(p) — oo and for

almost all /?, and hn(p) < A^(/?). Therefore Aπ E τπ and A,,... ,An satisfy

(1) and (2). The proof is now complete by induction on n.
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LEMMA 2.2. Suppose that h{ E ijor each i. Define A to be the subgroup

of Qx @ Qy generated by {ai/pJ \p is a prime, 0 < y < ht( p),i — 1,2,...}.

Then OΎ(A) = [A] where h = max{A,|z > 1}.

. By Proposition 1.1 (a),

OT(Λ) = s u p { t y p e U / ^ , ) , type(A/A2)}9

where ^ and ̂ 42

 a r e the pure rank-1 subgroups of Λ generated by x and y,

respectively. Since

lype(A/Ax) = t y p e ^ / p 7' E β|/> is a prime, 0 < y < A, (/>),/ = 1,2,. . .) ,

t y p e ( Λ / 4 2 ) = type(rt/pJ E ρ|/? is a prime, 0 < y < ht{p))9

and gcd(rz , ̂ ) = 1 for each /, the result follows.

LEMMA 2.3. Let p be a prime, and Zx ® Zy Q A C Qx ® Qy with

h*{at) = 0 for each i9 B = (A U [ak/pJ\j < e}> /or some A: > 0, α^J

0 < e < oo. Then for each /, h^{at) — mm{e,aeXp(i> k)}.

Proof. Fix / > 0 and assume that gcd(/?, sk) = 1. We first show that

Λ^( c) = 0. Suppose that x/p — a + cak/pι for some α E ^ , c G Z, 0 < /

< e, / < oo. Then x =/?α + cak/pι~x so cak/pι~x E. A. Thus we may

assume that c/pι~x — c' E Z with gcd(c', /?) = 1. By Lemma 1.2, a —

(m/n)aι for some / Φ k, gcd(m, n) — 1. Equating coefficients of j> gives

0 = (pm/n)si + c'sk. Since g c d ( c ^ , p) — \,p divides n. This contradicts

Λ^flf) - 0.
The lemma now follows, in this case, from the equation skai — stak =

det(/, k)x. Indeed, since h*(x) — 0 and g c d ( ^ , p) — 1,

On the other hand, if pι divides at in B, then / < e by the construction of

5, so /?' divides ak in 5. Since hp(x) — 0, the equation implies pι divides

det(/, k). Hence, Λp(α, ) ^ minfejdet^i, fc)} as desired.

A similar argument shows that if gcd(/?, rk) = 1, then λ^(>>) = 0 and

again h^{at) = πάn{e9dctp(i9 k)}. Since gcd(rk, sk) = I, the proof is

complete.

LEMMA 2.4. Let p be a prime, Zx ® Zy CA C Qx ® Qy with hA

p{ax)

— 0 for each /', α ̂ « irrationalp-adic integer and 0 < / < oo. Define

B = \A U {at/pJ\pJ divides rι — ast and) < ί , l < ι < o o j ) .
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Then

hp(at) = max(y|/?7 divides rι — asι and] < /} < oc

for each i.

Proof. Given z, let m — max{j\pJ divides r{ — as( and j < t). Note

that if p divides rx — asι then gcdO,, p) = 1 since gcdO,, η) = 1. Clearly,

hB

p(a^) > m and m < oo. It therefore suffices to show hB(at) is not greater

thanm. Suppose (\/pm+λ)aι E B. Then \/pm+]aι = a + Σ[ = ] ckak/pe{k\

where a E A,ck E Z,pe(k) divides rk — ask and e(k) < r. Choose 1 < y < /

so that e(j) is maximal among the e(k). Note that

djuk dkuj ^ dk\'j u V Λ T l ) / l U l ) i t ' U Λ <

Since β(j) is maximal and gcd(^y, p) = 1, this equation implies that

each (ck/pe(k))ak may be replaced by an expression of the form bk +

(ck/pe{j))a- where bk E A and cA E Z. Thus we may write (\/pm+ι)aι

— a + (c/pe)a) where a E A, c E Z, pe divides r} — as; and e < Λ This

shows that (\/pmJrλ)aι is in fact an element of the group A' = A U

{aj/Pι\i — e} By Lemma 2.3, m + 1 < mm{e9detp(i, j)}. In particular,

det^z, j)>m+ 1. Therefore, /? m + 1 divides (^^ — s/^. Since e > m + 1,

pm+\ (jjyjjgs (r^ _ as^Sj] thus/?m + 1 divides rz^; — asJsι and /> divides s;.

However p divides η — asr so p divides r} contradicting gcd(ry, s;)

— 1. Thus hp(at) is not greater than m.

The next theorem is stated in Dubois [6].

THEOREM 2.5. There is a rank-2 group A with TA « T if and only if T is

admissible.

Proof. (=>) Assume that Zx Θ Zy C A C Qx θ Qy and let aλ — x, a2

= y, a3,... be an indexing of U such that type/ί(αz) = τz for each i. Define

hι — hA{at) for each /, let

N - max{y|/zy(/?) = oo, inf{hx(p), h2(p)} >

and let N = 1 if no such j exists. Given / and n > N with hn(p) — oo,

then /!,(/?) = det/?(«, /) since 5^^ — snaι — det(/?, /)x and rnat — rtan —

det(«, i)y. Note that for this choice of hι E τn N does not depend on /.

(«=) If Γis admissible, choose hιEτι satisfying (a) and (b) of Lemma

2.1. Next define h\ < ht by setting h\(p) — 0 if /^(/?) = oc for some k φ i

and h\(p) — ht(p) otherwise. Note that h\ need not be in τz. Givenp, this
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implies (along with (a)) that h[(p) > 0 for at most one /. Let

A(p) = ((Zx ® Zy) U {at/p']0 <j < e(i)})

if e(i) = Λ (/?) > 0 for some /, and let A(p) — Zx® Zy otherwise. De-
A ^ ( 0fine A — ΣpA(p). Note that hA

p(a>) = λ^(/0(fl/) f° r a ^ ' and/?, so we can
apply Lemma 2.3 to show type^α,) = τf for all / as follows:

Let Pλ = {p\h'i(p) = 0 for each /). Then for each/? E P l 5 /^(fl,) = 0
= ht{ρ) for each/.

Let P2 = {p\h'k(p) = oo for some A: = k(p)}. Up E P2 then A (̂flz )
= det^/, /c(/?)) by Lemma 2.3. By the admissibility condition, hA

p{ax) —
ht(p) for almost all/? E P2.

Let P3 = {p\Q < h'k(p) — hk(p) < oo for some (unique) k = k(p)}.
lip E P3, then

If / = k(p) then Λ^(αz) = hk{p)(p). On the other hand, if iφ k(p) and
det^ί, A:(/?)) > 0 then k(p) < i by condition (b) on the Λ/s. This implies
/z^(αz) — 0 = h,(p) except for a finite number of/?. Thus h^(at) — ht(p)
for almost all p E P3. Consequently, type^(αz) = τz for each / as desired.

THEOREM 2.6. G/υen a rank-2 group A and a type σ > OT(^4), there is a
rank-2 group B with OΎ{B) — σ and TA — TB.

Proof. Assume that Zx® Zy QA c Qx ® Qy. Choose h E σ and
Af E type4(α/) such that h > Λ/ for each /, and such that the Λ/s satisfy (a)
and (b) of Lemma 2.1. Note that h > max{Λz |/ > 1} and that h(p) = oo
for all/? in PQQ = {,p|ΛΛ(/>) = oo for some k}. In view of Theorem 2.5, it
suffices to assume that A = ΣpB(p)9 where

B(p) = (Zx®ZyU {al/p'\0<j<h't(p),i=l,2,. }),

h'£p) = 0 if p E P^ and /*,(/?) < oo, h\(p) = ht(p) otherwise. Thus,
min{/z•(/?), h'j(p)} — 0 for each /? and / φj. We will construct 5 using
Lemma 2.4. This involves choosing an index k — k(p) and a /?-adic
integer α = α(/?) for an appropriate collection of primes/?.

First consider Pλ = {ρ\h(p) > 0 and h{(p) = 0 for all /}. Write
Pλ = {q(l)9 q(2),...} with q(i) < q(i + 1). For each p = q(t) E />„ let
/c(/?) = /, and let a(p) be an irrational/?-adic integer such that/? does not
divide rι — a(p)sι for / < t.

Next consider P2 — {/?|0 < h'k(p) < h(p) < oo for some (unique)
/: = ^(/?)} Assume gcd(^, /?) = 1 and choose an irrational/?-adic integer
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a = a(p) with /?-height(^ — ask) = h'k(p). (If p divides sk9 then
gcd(r^, p) — 1 and the roles of s and r may be reversed in the proof. For
example, α would be chosen so that/?-height(ar^ — sk) = h'k(p).)

Denote P3 = Pλ U P2. For/? G P3, let A: = &(/?), α = α(/?), and let

/p^pj divides r , - α ^ . andy </*(/>)})•

By Lemma 2.4, h^Xa^ < oo for each /. Moreover, if p E P2 and
hp(pXaι) > 0> then/? divides r, — as,, and hence

(*) p divides j*(rf. - as() - st(rk - ask) = skη - strk = det(/, k).

Define 5 = 2{A(p) \p E P3} + Σ{5(/7) |p ί P3} Then **(a£.) =
hp(pXai) for each / and/? E P3. By Lemma 2.2, OT(5) and σ agree on P3,
and therefore OΎ(B) — σ. To see that type^α,) = type5(«z), first note
that if /? = q{t) is an element of P l 9 then for / < /, hB

p(a^) = 0 by Lemma
2.4 and the choice of <x(p). Thus type^α,-) and typeB(α,) agree on P,.
Next let/? E P2. If / = A:(/?), then

^p(ai) — m a x{y|JP
7 divides r, — a(p)si andy <

by Lemma 2.4 (since hk(p)(p) < h(p)). Moreover, as in the proof of
Theorem 2.5, / ^ K ) = K(P)> s o t h a t Λ (̂flf ) = h^(at) in this case. On the
other hand, if i Φ k(p) and hp(aέ) > 0, then /? divides det(/, k(p)) as
shown above (*). By condition (b), this happens only if k(p) > /, since
0 < hk(p)(p) < oo. Thus, i¥*k(p) and h^{at) > 0 can happen for at
most finitely many/? E P2, and /^(αz) = hB

p(a^ for almost all/? 6 P 2 . It
follows that type4(«/) =

LEMMA 2.7 (Dubois [5]). Let V — (τ(, T^,. ..) be a type sequence with
type(Z) = inf{τ/, τj) whenever i φj. Assume that T has an infinite subse-
quence TQ with no snarls of Γo' ^n Tr. Then there is a type sequence
T — (Tj, τ2,...) andht E τjor each i such that T « V and

(a) Ifp{ is the ithprime, then hj{pt) — 0 wheneverj > 2i.
(b) If K — {k\ for each p either hk(p) < oo or else hk(p) = oo and

there is no j < k with 0 < hj(p) < hk(p) = oo} then {k\τk e Γo'} C K so
that K is infinite.

Proof, (a) Let Tx be the subsequence of types in T with an infinity at
some/? and let T2 be the complement of Tx in T'. Order the elements of Tx
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so that if T/ = [h\\ τj — [h'j] are elements of Tλ and mm{p\h\{p) — 00}

< mϊn{p\h'j(p) — 00} then T/ < τ7'. Let Γ be the type sequence defined

by:

τ2ι — ith element in Γ2 (if it exists)

τ 2 / _! = /th element in Tx (if it exists)

If either Tλ or T2 is finite, use the elements of the infinite sequence when

the elements of the finite sequence are exhausted and if both are finite, use

type(Z). By Lemma 2.1.a there is Λf E τf for each i so that if ht{p) > 0

andy > /, then hj(p) = 0 or 00. It follows that (a) is satisfied by T « T.

(b) It suffices to assume that for each y, {p | 0 < hj(p) < hk{p) = 00

for some τ'k E Γo'} is empty, since τ7 is not a snarl of Γo' and setting

λy(/j) = 0 for only finitely many/? with hj(p) < 00 does not change the

type of hy Consequently, {k \ i'k E Γo

r) c K and K is infinite. Note that (a)

is still satisfied.

LEMMA 2.8. Suppose that (r,, sx), (r2, s2),-.-,(rn, sn) are distinct ele-

ments of U\ ql9 q2,.--9qm distinct primes with each q} > n and det^(/, /) = 0

for q — q}, \ <i Φl<n, and 1 < y < m; e l 5 e2,... , e m non-negative in-

tegers; and {/,, / 2,.. ,/m} C {1,2,. . . ,«}. ΓΛe« r/zere are infinitely many

(r9 s) in U such that

, v / / I < y < m β«rf ^ = #y //ze« Λ^(r5z — rz 5) = 0 /or 1 < /

φ i-<n and h^{rst — rts) — e} for i — i .

Proof. The proof is by induction on m. Suppose that m — 1. Let

/ = /,, q — q\ and e = e,. First assume that e — 0. For each / with

1 < / < «, there is at most one ί with 1 < r < ^ such that ^ divides ^ z — r/β

Indeed, if q divides tst — rx and q divides tfsι — ri9 then q divides (/ — t')s}

so that t — t' or q divides sr The latter case is impossible since gcd(rf, st)

— 1. Since n < q, there must exist some 1 < t < q, such that hz

q(tsι — rt)

— 0 for each i. In this case (r, 5) = (/, 1) E ί/ satisfies (*). Next assume

that e > 0. Choose (r, j ) 6 ί / with rs,- - ηs = qe. Then A^(r^ - ηs) = 0

whenever 1 < 1 ̂  / < «, otherwise det^(/, /) = hz

q{rιsι — ηst) > 0, which

is impossible. Hence (r, s) satisfies (*). Given (r, s) E t/ satisfying (*) let

xf = r + έi0*+1, ^ r = j + 6? f f + 1, rf = gcd(xr, J O . x = x'/d and ^ = y'/d.

Then (x, 7) E U and there are infinitely many such (x, y) which satisfy

Now assume inductively that (r', s') E ί/ satisfies (*) for 1 <y < m.

Let / = /m ? q = ^ m , e = em, and let π be the product of {qju) \ 1 ^j ^ m

— 1, n(j) — e} + 1}. Assume that e — 0. Since π < 9 there is \ < t < q

such that /if((rr + tπ)sι - s'η) = 0 for each ! < / < / ? (as above). Let
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r = (r' + tm)/d, s = s'/d, where d = gcd(r' + ί*r, $'). Then (r, s) E U

satisfies (*) since if p — qj,φ q then

Λj((r' + **>, - ί'r,) = Aj(r'j7 - 5V/) for each 1 < / < n.

Next assume that e ^ O . Choose a, b E Z with αrf + fts, = 1. By the

Chinese Remainder Theorem there is x > 0, y in Z with x = r' (mod TΓ),

x = 6 ^ + r, (mod g ^ 1 ) and J / Ξ / (mod π)9 y = — α#e + ^ (mod # e + 1 ) .

Then A^xs, — ηy) = e, A*(xs/ ~ />j) = 0 if / Φ i, and if/? = qy Φ q then

hp(xSf — ηy) = hf(rfsί ~ ηsr). Consequently, (r, s) E U satisfies (*),

where r = x/d, 5 = j / d and d — gcd(x, y).

Ux' = r+ uπqe+\y' = s + vπqe+\ d = gcd(xr, y% r' = jc'/d, and

sf — y'r/d then' (r\ sf) E U and there are infinitely many such (r'9s
f)

satisfying (*). By induction on m, the proof is complete.

A type T is very large if h E τ implies that {p\h(p) = oc} is infinite.

THEOREM 2.9. Suppose that T = (T,, T 2 , . ..) is a type sequence having

an infinite subsequence To with no snarls in T and that type(Z) = inf{τz, r j

whenever i φj.

(a) There is a rank-2 group A with Yΐ{A) — type(Z) and TA =

(τ[9 T2',. . . ) , where r- >: rtfor each i and if h\ E r/, hi E τf then h\(p) = oc

(b) // {τy |τy ϋery large) has no snarls in T then A may be chosen with

Proof, (a) By Lemmas 2.7 and 2.1 it suffices to assume that there is

η for each / such that if j < k then inf{A •(/?), hk(p)} = 0 unless

= oo {k\τkE To) C AT = {k\ for each^ either AΛ(/?) < oo or else

= oo and there is noj with 0 < h}(p) < hk(p) — oo); and h^p,)

— 0 whenever j > 2/ and/?, is the /th prime.

To construct an indexing of U, via Lemma 2.8, let uλ = (1,0) and

" 2 = (0,1).

If A: > 3 and k E K choose ŵ  = (r^, ^ ) E U with max{r fc,|jΛ |}

minimal among the elements of U not already chosen.

If k>3, k & K, and r^ is not very large let {qλ, q29... ,qm) = {p\

hk(p) = oo}; ey = A 7(^) and iy = / if 0 < Λ ^ ); ey = 0 and /y = / for

some arbitrary / < k if h^qj) = 0 for all 1 < Ϊ < /c; and let wΛ be the

largest integer less than k such that q}> nk and det^ (/,/) = 0 whenever

1 <iφl<nk and 1 <y < m. By Lemma 2.8, there is uk-= (rk, sk) E U,

not already chosen, such that ht{p) — άeip(k, i) whenever p E
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If k > 3, k & K, and τk is very large let {qv q2,...,qm) = {p|0 <

hj(P) < hk{p) — oo for somey < &}; ey = h^qj) and /y = / if 0 < Λ/(#y);

and let «Λ be the largest integer less than k such that qj> nk and

det^(/, /) = 0 whenever \ <iφl<nk and 1 <y < m. By Lemma 2.8

there is uk = (rk9 sk) E U9 not already chosen, such that h^p) —

dctp(k9 i) wheneverp E {qu q29.. .,qm) and 1 < i < Λ Λ .

Since AT is infinite, every element of U is chosen. Moreover, iί k E K

then max{r£,|^|} < A:, since only A: — 1 elements of U have previously

been chosen.

For eachy define τj = [hj]9 where hj(p) = det^ί/:, y) whenever 0 =

hj(p) < dctp(k9 j) < hk(p) — oo for somey < k & K with T^ very large,

and define hj(p) = Λ7 (/?) otherwise. Note that τj > ^ and Λ (̂/ )̂ = oo iff

*,(/>) = °°
By Theorem 2.5, it is sufficient to prove that V = (τ(, τ2 ',...) is

admissible relative to the chosen ordering of U. Fix j and let m =

LetP, = {p|O = Λ}(/?)<det/,(fc,y)<Λ/

Λ(/?) = oo for some/: G K).

If p = Pi e P, then pt divides dct(k, j) while det(&, y) < 2m/: < 4m/,

since kEK and AΛ(/?f ) = oo implies that A: < 2/. By Lemma 0.1.b,

/?7 > 4m/ for sufficiently large i, so that Pλ is finite.

Next let P2 = {p\hj(p) ¥*detp(j\k)<h'k(p) = oo, τk not very large,
j < k & K). By the choice of ŵ  = (rk9 sk) E {/, j > nk for each such k.

Assume that P2 is infinite. Then there are infinitely many y < k & K with

j > nk, inΐ{p\hk(p) = oo} > y (noting that for each/? there is at most one

/ with ht(p) — oo), and Λy(/?) Φ det^y, /:) < A^(/?) = oo for some p E

P2. For each such k9 there is 1 < / Φ I <y with 0 < det^i , /) < hk(p) =

oo for some/?, otherwisey < ΛΛ by the definition of uk. But

{/?|detp(/, /) > 0 for some \<iφl <y}

is finite, which is a contradiction.

Finally, P3 = {/?|A}(/?) ^ det^y, fc) < Λ^(/?) = oo for somey < k £

AT, T* very large} is empty by the definition of h'j. Thus Pj U P2 U P3 is

finite so that T is admissible.

(b) Note that To U {τy | τy very large} generates an infinite subsequence

of T with no snarls in T. Now apply the constructions of (a), noting that if

k & K then τk is not very large so that hj = hj for eachy.

COROLLARY 2.10. Let S be a set of types with inf{τ, r'} = type(Z)

whenever T, T' E S with τ Φ r\ Assume that {r E S \ τ is very large} has no

snarls in S.
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(a) There is a rank-2 group A with typeset(v4) = S iff either type(Z) E

S or else S has an infinite subset with no snarls in S.

(b) There is a completely anisotropic rank-2 A with typeset(yί) = S iff

S has an infinite subset with no snarls in S.

Proof, (a) (=>) Let TA = ( η , τ 2 , . . .)• By Theorem 1.4, TA has an

infinite subsequence with no snarls in TA. If S — {η;| / > 1} = typeset(v4)

does not have an infinite subset with no snarls in S then some τ, must be

repeated in TA. But IT(^4) = type(Z) is the only type in TA that may be

repeated so that type(Z) E S.

(<=) If S has an infinite subset with no snarls in S define T —

(TJ, τ 2 , . . . ) where S = {η | i > 1}. Otherwise type(Z) E 5, and in this case

define T — (τ{9 τ 2 , . . . ) where τ 2 /_ 1 = τ/9 τ2/ = type(Z) for / > 1 if S is

infinite. If S — {η, τ 2 , . . . ,τrt} is finite define τ2'z = type(Z), τ{i_x — η for

1 < / < /i and T/ = T ^ ^ , = type(Z) for / > n. For each of the above

cases, T has an infinite subset with no snarls in T. By Theorem 2.9 there is

a rank-2 group A with 7^ ~ Γ so that tyρeset(^l) = 5.

(b) is a consequence of (a) and the fact that A is completely aniso-

tropic iff TA has no repetitions.

COROLLARY 2.11. Let S, = {η, τ2,...} be a set of types with inf{τ7, τy}

= type(Z) whenever i φ j , and assume that {τ)|τ7 w uery /αrge} /2α5 «o

snarls in Sv Let S2 = (σ,, σ 2 ? . . .) be another set of types. Then there is a

rank-2 group A with typeset(^ί) = Sλ and coϊy\)Qsei(A) — S2 if and only if

(a) There is a type σ0 such that σ0 = sup{σz, σy } for i φj\

(b) τ, < σ0/or eαc/z i\

(c) σz = σ0 — τjor each /; α«ί/

(d) Either type(Z) E 5^ or else Sx has an infinite subset with no snarls

in Sx.

Proof. (=») Apply Proposition 1.1 and Corollary 2.10.

(<=) In view of (d), Theorem 2.9 can be applied to obtain a group B

such that typeset(2?) = 5,. Furthermore, B can be assumed to satisfy

OΎ(B) < σ0 by (b) and Lemma 2.2. By Theorem 2.6, there is a rank-2

group A such that typeset(v4) = typeset(#) and OΎ(A) = σ0. By (c) and

Proposition l.l(e), cotypeset(^4) = {σ,,σ2,...} = S2.

EXAMPLE 2.12. Let τz for / > 1 be defined as in Example 1.5. Let

S = {τt\i > 1} U {type(Z)}. Then there is a rank-2 group A with

typeset(yί) = S, by Corollary 2.10.a. On the other hand, by Corollary

2.10.b there is no completely anisotropic rank-2 group A with typeset(^l)

= S (compare Example 1.5).
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EXAMPLE 2.13. (Ito [9].) Let τ , , τ 2 , . . . be given by T, = [A,], where

A, = ( 0 , 1 , 0 , 1,0, 1,...); A2 = (oo,0,0,.. .); A3 = (0, oo,0,.. .); A4 =

(0,0,oo,. . .) ; . . . . Let 5 = { τ / | / > l } . Then {τ2ί | / > l } is an infinite

subset of S with no snarls in S. By Corollary 2.10(b), there is a completely

anisotropic rank-2 group A with typeset(^) = S. Similarly, there is a

completely anisotropic rank-2 group A with typeset(^4) = S U (type(Z)}.

COROLLARY 2.14. Le/ 5 = {τ,|/ > 1} Z>e α setf 0/ (ypes w/YA τ0 =

inf{τi9 Tj) whenever i φj.

(a) (Beaumont-Pierce [3]) If S is finite and τ o £ S then there is a rank-2

group A with typeset(^ί) — S.

(b) (Ito [9]) // there is A, E τz /or / > 0 wzYA Ao = inf{Az, A,-} /<?r eαcA

/ Φ j then there is a rank-2 group A with typeset(^4) = S and OT(^4) =

Proof, By Lemma 1.3, it suffices to assume that τ0 = type(Z). In

either case S has no snarls in S. Now apply Corollary 2.10 to get a rank-2

group A with typeset(yl) = 5. This group is constructed via Theorem 2.9

so that OΎ(A) < [sup{A71 / > 1}]. By Theorem 2.6, A may be chosen with

The next example shows that the hypothesis of Corollary 2.10 that

( r E S\τ is very large} has no snarls in S is not necessary.

EXAMPLE 2.15. There is a rank-2 group A such that IT(^) = tyρe(Z)

and ( τ | τ E typeset(^) and r very large} is infinite with infinitely many

snarls in typeset(^4).

Proof. Let S — (τJf | / > 1} where τf = [AJ and Az is defined by:

A, = (1,1,1,. . . ,oo, oo, oo, . . . ,0,0,0, . . . ,0,0,0, . . . ,0,0,0, . . . )

A2 = (oo,0,0, . . . ,0,0,0, . . . , 1,1,1,...,oo, oo, oo,. . . ,0,0,0,. . .)

A3 = (0,oo,0, . . . ,0,0,0, . . . ,oo,0,0, . . . ,0,0,0, . . . , 1,1,1,...), etc.

Apply Theorem 2.9(a) to obtain a rank-2 group A with typeset(Λ) = (r/1 /

> 1}, T/ > T, for each /, and ( τ | τ E typeset(yί) and T very large} is

infinite with infinitely many snarls in typeset(^4).

3. Realization of cotypesets.

THEOREM 3.1 (Vinsonhaler-Wickless [12]). Let S- {σ,,σ2,...} be a

set of types with σ0 = sup{a/? σy} for each i φj and σ0EiSifS is finite.

(a) There is st E ojor i > 0 such that s0 = max{^; , Sj] if i φj.
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(b) There is a rank-2 group A with cotypeset(yl) = S, OΎ(A) — σ0,
IΎ(A) = [inffoli > 1}], and ΐypeset(A) = {σ0 - σ, + lΎ(A)\i>: 1}.

Proof. The following proof is a simplification of the arguments given

in Vinsonhaler-Wickless [12].
(a) Given sQ9 sl9... ,sn_{ with st E σ- for 0 < / < w — 1 and ^0 =

max{j/5 Sj) for 1 < / φj < « — 1 choose ^ E σΛ with s0 = sup{j/5 s,7} for

1 < i < π — 1.

(b) Define t'o = min{sι \ i > 1}, τ0' = [^], and γ, = σz - τ0' for / > 0.

Note that γ, = [^ — ^ ] for each / > 0. Now Γ = (γ1 ? γ 2,...} with γ0 =

sup{γz , Ύj] if / Φj and γ0 E Γ if Γ is finite. Define τι = γ0 — γf for / > 0.

The next step is to show that there is a rank-2 group B with

typeset(J?) = (τ7\ι: > 1} and cotypeset(2?) = Γ. For each /, let tt = (s0 —

^o) - (st ~ t'o) e T, = γ 0 - γ f. Note that:

(i) if tt(p) — oc thenso(;?) = oc, t'0(p) < oo, a n d ^ ( ^ ) < oc.

(ii) if 0 < tj(p) < oc then^0(/?) < oo.

(w)tj(p) = so(p) -sάp).
(iv) inf{//9 tj) — 0 whenever / 7^7.

By (iv) and Corollary 2.14.b there is a rank-2 group B with typeset(5)

- {T/|i > 1}, OT(5) = [sup{/7|/ > 1}], and \Ί{B) = τo = type(Z). By

(Hi), sup{^|/ > 1} = 5 0 — /Q SO that OT(2?) = γ 0. Therefore, cotypeset(5)

= (γ 0 — η | / > 1} by Proposition l.l.e.

Furthermore, γ0 — τf = % for each / >: 0. To see this, note that γ 0 — τf

= [ ( J 0 - t'o) - (s0 - J , ) ] , by (iii), and γ, = [s, - ^ ] τ h e only non-trivial

case is t'0(p) < ^(/?) < ^ ( P ) ~ °°J i n which case ^ O ) = ^o(,P) f°ΓJ ^ ^

(by (a)), t'Q(p) = st(p)9 and ( j o (p) - t'0(p)) - ( j o (p) - st(p)) = 0 =

^/(Z7) ~~ ίό(/?) Consequently, cotypeset(5) = {γz |i > 1}.

By Lemma 1.3, there is a rank-2 group A with typeset(^4) = {η + τo'| /

> 1}, IT(^) = To', cotypeset(^) = {γ, + τo' |ι > 1} = S, and OT(^) - γ 0

+ τo

r = σ0. Finally, r, + τo

r = σ0 - σ, + τ0' by (iii).

COROLLARY 3.2. Lei S = {σ,, σ2,...} be a set of types. There is a

rank-2 group A with cotypeset(yl) = S iff there is σ0 = sup{a;, σ7} whenever

i Φj and σ0 (Ξ S if S is finite.

REMARK. Vinsonhaler-Wickless [12] have given necessary and suffi-

cient conditions for a set of types to be the cotypeset of a finite rank

torsion free group, with Corollary 3.2 as a special case.

4. Locally completely decomposable groups. A finite rank torsion

free group A is locally completely decomposable if Ap = Zp ®ZA is the
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direct sum of a free Z^-module and a divisible Z^-module for each prime
p, where Zp is the localization of Z at p.

Let A be a finite rank torsion free group. Recall that typeset (A) =
(typeί^lJf is a pure rank-1 subgroup of A} and cotypeset(A) =
(tyρe(y) I Y is a rank-1 torsion free quotient of Λ}.

THEOREM 4.1. Assume that A is a finite rank torsion free group.
(a) There is a finite rank torsion free locally completely decomposable

group B with B C A, A/B torsion, and typeset(5) = typeset(^).
(b) (Vinsonhaler-Wickless [12]). There is a finite rank torsion free

locally completely decomposable group B with A C B, B/A torsion, and
cotypeset(v4) = cotypeset(^).

(c) Further assume that rank(^4) = 2, typeset(^4) = {τf | / > 1}, Af £ τf

for each i and s0 E OT(A). Then A is locally completely decomposable iff
whenever so(p) = oo then ht(p) = oo for some /.

Proof, (a) Let Al9 Al9... be a listing of the pure rank-1 subgroups of
A, let pt be the /th prime and choose a free subgroup F of A with A/F
torsion.

Define Bp = FPι + d(Ap) + (Ax)Pι + +{Ai)Pι where d(Ap) is the
maximal divisible Z^-submodule of Ap. Define B — f^pBp. Then
F= ΠpFpQB CA= Γ)pAp and A/B is torsion. Let X = A{. Then Xp

C Bp for almost all p. If ^ - β then Â  C d(Ap) C J?̂ . Otherwise,
Xp/{Xp Π Bp) is finite. Hence X/X Π B is finite since ( * / * n B)p =
Xp/Xp O Bp = 0 for almost all p and Xp/(Xp Π Bp) is finite otherwise.
Consequently, J f ^ ^ f Π i ? and so tyρeset(^4) = typeset(^). Finally, B
is locally completely decomposable since for each/?, Bp/d(Bp) is a finitely
generated free Z^-module.

(b) The following is a rank-2 version of the proof in Vinsonhaler-
Wickless [13]. Define

B= Π

where A is regarded as a subgroup of QA. Then A C B C β̂ 4 and 5/^4 is
torsion. Suppose that g(A) — Y C β for some g: 4̂ -* g. Then g: β̂ 4 -̂  β
and g(A) c g(B) C g(g"!g(i4)) = g(Λ). Conversely, if g(Λ) =YQQ
for some g: B -> Q then g: β^ -̂  β since (λ4 = β ^ and g(A) C g(^) C
g(g-1g(yί)) = g(yl). Consequently, cotypeset(v4) = cotyρeset(^), noting
that each rank-1 torsion free group is isomorphic to a subgroup of Q.

To show that B is locally completely decomposable suppose that
Bp — X θ Y where X has no rank-1 summands and Y is the direct sum of
a free and a divisible Z -module. Let 0 Φf ε Hom((λ4, £>). If f(X) φ 0,
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then f(X) = Q — f(Bp), since otherwise f(X) ^ Zp and X has no rank-1
summands. But Ker/ is divisible so Bp Qf~ιf(Bp) = Ker/Θ H where
f(H) =f(Bp) = Q. Thus // is divisible so that f~xf{Bp) =Γιf(Ap) =
QA D QX in this case. Now assume that f{X) = 0. Then QX C Ker/ C
ΓXf(Ap). Thus, QXQf-χf(Ap) for all/ E Hom((λ4, β). But

= ( Π

= Π
so that QX — X is divisible. Since X has no rank-1 summands, X — 0 as
desired.

(c) (=*) Let Ap — Xx ® X2. Then there are pure rank-1 subgroups At

of A with (Λy)̂  = Xέ. If ^oί/7) ~ °° ^en (A/A^p ^ g for some /, say
/ = 1. But (A/A{)p ^ ^ / ί ^ ! ^ ^ Γ̂2 so that X2 - Q &ndA2 is/7-divisible.
Therefore, for some k, τk = typeset(^42)

 a n d iί hk E τk then ^^(p) = oo.
(̂ =) Assume that so(ρ) < oo and that 4̂Z is a pure rank-1 subgroup of

A. Then 0 -* (̂ 4,.)̂  -* Ap-> (A/A^ -* 0 is exact with {A/A^p ^ Z^ since
type(4/Λ,) < OT(^). Thus Ap^Zp® (At)p is completely decomposa-
ble. Now assume that so(p) — oo —h^p). Let 4̂y be a pure rank-1
subgroup of A with τf = typeί^^). Then (Ai)p^Q so that Ap — Q®
(A/At)p is completely decomposable as desired.

REMARK. In view of Theorem 4.1(c), each rank-2 group constructed in
Theorem 2.5 is locally completely decomposable, noting that the Λ2 E T, in
this construction are chosen to satisfy (a) of Lemma 2.1.

COROLLARY 4.2. Let Sx — {η, τ2,...} be a set of types with inf{τ,, τy}
= type(Z) whenever i φj and assume that {TJ,\ Tj very large] has no snarls
in Sj. Let S2 = (σ l 9 σ2,...} be another set of types. Then there is a rank-2
locally complete decomposable group A with typeset(^4) = Sx and
cotypeset(^4) = S2 iff

(a) There is a type σ0 such that σ0 = sup{σ/? σy} for i φj\
(b) η < Go for each i\
{c)σi = σ0 - τt for each i\
(d) Either type(Z) E Sλ or else Sx has an infinite subset with no snarls

in Sx\
(e) If SQ E σ0, ht E η /or eαcΛ /, α«ί/ ̂ (Z 7) ~ °° ^ e w ht{p) = oo /or

Proof. A consequence of Corollary 2.11, Theorem 4.1(c), and the
preceding remark.
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5. Open questions.
(5.1) Is it true that Corollaries 2.10 and 2.11 are true without the

hypothesis that (T E S | T is very large} has no snarls in SI
As noted earlier, Example 2.15 shows that this hypothesis is not

necessary. In fact, it is unknown whether or not the set S of types in
Example 2.15 may be realized as the typeset of a rank-2 group.

The construction of Theorem 2.9 uses Lemma 2.8. Consequently,
some strengthened, possibly infinite, version of Lemma 2.8 would be
needed to make the construction of Theorem 2.9 work without the
hypothesis that {TJ\TJ very large} has no snarls in T.

(5.2) Are the results of the paper true for modules over an arbitrary
principal ideal domain?

The results of this paper use a version of the prime number theorem
(Lemma 0.1 (b)) which is not applicable for arbitrary principal ideal
domains. De Munter-Kuyl [4], claims that Ito's Theorem (Corollary
2.14(b)) is true for arbitrary principal ideal domains. However, the con-
struction is incorrect, even in the case of groups. For example, the
construction fails for a set of types = {TJJ > 1} where η = [ΛJ and
ft, = (oo,0,...), h2 = (0,oo,0,...), A3 = (0,0, oo,...),..., even though
Ito's theorem is true for groups.

The answer to (5.2) may depend on:
(5.3) Can the results of this paper be proved without appealing to

some version of the prime number theorem?
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