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TYPESETS AND COTYPESETS
OF RANK-2 TORSION FREE ABELIAN GROUPS

D. ARNOLD AND C. VINSONHALER

A sufficient condition is given for a set of types to be the typeset of
a rank-2 group, strengthening all previous results on this subject. A
correct version of a theorem of Schultz on types and cotypes is provided,
along with a variety of other results on typesets and cotypesets of rank-2
groups. Numerous examples are included.

Beaumont-Pierce [3], in 1961, posed the problem of finding necessary
and sufficient conditions for a set of types to be the typeset of a rank-2
torsion free abelian group. They also, among other things, solved the
problem in case the given set of types is finite. Koehler [10], in 1964,
extended some of these results. Dubois [5] and [6], 1965 and 1966, used
basic analytic number theory techniques to give some necessary and some
sufficient conditions for a set of types to be realized as the typeset of a
rank-2 torsion free abelian group.

Ito [9], in 1975, gave a sufficient condition for the realization of a set
of types, which is easily seen to be equivalent to a sufficient condition of
Dubois [5], Theorem 1. Ito’s construction, however, is somewhat easier to
understand, the group being given as a homomorphic image of a com-
pletely decomposable group rather than as a subgroup of the direct sum of
two copies of the Z-adic integers.

Schultz [11], in 1978, claimed to have given necessary and sufficient
conditions on two sets of types S, and S, such that there is a rank-2 group
A with typeset(A4) = S, and cotypeset(A4) = S,. A counterexample to this
theorem is given by Vinsonhaler-Wickless [12] (also see Example 1.6).
Vinsonhaler-Wickless [12] also give some simple necessary and sufficient
conditions for a set of types to be realized as the cotypeset of a rank-2
group.

The theme of this paper is to examine Dubois’ results from the point
of view of Ito’s construction. This point of view leads to:

THEOREM. Ler S = {7, 7),...} be a set of types with inf(7, 1) =

type(Z) whenever 1, 7 1,. Assume that {7,|7, is very large} has no snarls
inS.

(a) There is a rank-2 group A with typeset(A) = S iff either type(Z) €
S or else S has an infinite subset with no snarls in S;
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(b) Let S” = {0,, 0,,...} be another set of types. Then there is a rank-2
group A with typeset(A) = S and cotypeset(A) = S’ if and only if
(i) There is a type o, = sup{o;, 0;} for i # j;
(ii) 7, < o, for each i;
(iii) o; = o, — T, for each i; and
(iv) Either type(Z) € S or else S has an infinite subset with no snarls
in S.

Included as special cases are Dubois’ theorems (Theorem 2.9(b) and
Corollary 2.10); Koehler’s results (Theorem 2.9(a)); Ito’s theorem
(Corollary 2.14(b) which includes the Beaumont-Pierce results), and a
corrected version of Schultz’s assertions (Corollary 2.11). Also included is
a simplification of the proof of the Vinsonhaler-Wickless theorem (Theo-
rem 3.1).

Of particular interest are the locally completely decomposable groups,
discussed in §4. If 4 is a finite rank torsion free group then there are
locally completely decomposable groups B and € with BC A4 C C; C/B
torsion; typeset(A) = typeset(B), and cotypeset( 4) = cotypeset(C) (The-
orem 4.1).

Section 5 is devoted to some open questions.

This paper is largely self-contained, and as a result partially exposi-
tory, due to the complexity and the history of the problems considered.
However, references for published results are given as well as numerous
examples.

0. Notation and preliminaries. The basic properties of finite rank
torsion free groups may be found in Fuchs [7]. Special notation used
herein includes: if 4 is a height sequence (characteristic) then 4( p) is the
pth entry for a prime p; 7 = [h] denotes the type of 4, an equivalence
class of height sequences; and write 4 € 7. If 4 is torsion free and a € 4
then h“(a), h ;‘(a), and type,(a) denote the height sequence, p-height, and
type of a in A, respectively. If rank 4 = 1 then type(A) = type,(a) for
0+#ac€A.

If 7 =[¢] and o = [s] then inf{7, ¢} and sup{r, ¢} are defined by
[min{z, s}] and [max{¢, s}], respectively. For two types 7 and o, 7 < o iff
there is t € 7 and s € o with ¢t <. In this case 0 — 7 = [s — ], agreeing
that o0 — 00 = 0.

If S is a subset of 4 then () denotes the subgroup of A generated by
S and (S), denotes the pure subgroup of 4 generated by S.

Also assumed are some basic analytic number theory results as found,
for example, in Hardy-Wright [8]. For a positive integer n, let 7(n) be the
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number of primes <n. Let U= {(r,s)|r,s € Z, r =0, ged(r, s) = 1}
and I, = {(r,s) € U|max{r,|s|} =n}. Denote the ith prime by p,.

Lemma 0.1.

(a) (Chebyshev’s Theorem.) There is ¢, >0 and ¢, >0 such that
cn/logn < a(n) <c,n/logn.

(b) lim, ... n/p, = 0.

(c) [1,|=4®(n) where ®(n) = Z{¢(i)|l <i=n} and ¢(i) is the
Euler ¢-function.

(d) ¢(n) = 3n?/7> + O(nlogn)

(&) lim,, (| 1,] —7(2n%)) = oo.

Note that (b) follows from (a) since n = #( p,) < ¢, p,/log p, implies
that n/p, <c,/log p,. Also (c) is a fairly routine counting argument,
while (e) follows from (d) and (a).

As a consequence of (b), if ¢ is any constant then for sufficiently large
n, p, > cn.

1. Type sequences. A type sequence is a countably infinite sequence
of types (repetition of types is permitted). Two type sequences 7" and 7"’
are equivalent, T ~ T, if one is a permutation of the other.

Let A be a rank-2 group and let A,, 4,,... be an indexing of the pure
rank-1 subgroups of 4. Define 7, = typeset(4,) and o, = type(A4/A,) for
each i. Then T, = (7, 7,,...) and C, = (o0,, 0,,...) are type sequences.
Note that 7, and C, are unique up to equivalence. Define typeset(A4) =
{7,]i = 1} and cotypeset(A4) = {o,|i = 1}.

The following proposition is folklore.

PROPOSITION 1.1. Let A be a rank-2 group with T, = (1), 7,,...) and
C,=1(0,,0,,...).

(@) There is a type 7, such that 7, = inf{, 7} for each i # j and if
typeset( A) is finite then 7, = 7, for some i = 1.

(b) There is a type o, such that o, = sup{o,, 0,} for each i # j and if
cotypeset( A) is finite then o, = o, for some i = 1.

(¢) 7, =< g, for each i # j and 1, < 0.

(d)o,— 1 =0, — 1 foreach i #jwithi=0andj=0.

(e) If 7, = type(Z) then 6, = o, — 1, for each i.

Proof. (a) If i #j then 4/(A4,® A)) is torsion. Thus, for each k,
7, = inf{r, 7}. Consequently, if k #/ then inf{7,, 7} =inf{7, 7} =
inf{7,, 7,}. Now assume that typeset(4) = {7, 7,,...,7,}. If j>n then
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7o = inf{7, 7.} for each 1 <i=<n. But 7 = 7, for some 1 =i =n so that
Ty = T, € typeset(A4).

The proof of (b) is similar.

(c) follows from the fact that if i #j then there is a monomorphism
A,-A/4,

(d) First assume that i #j are both non-zero. There is an exact
sequence 0 >4, > A/A; > A/(A; D 4;) > 0. Choose 0#a, € 4, and
x, € A/A; with a; - x;. Then

0-A,/Za;,~(A/A;)/Zx;, > A/ (4,0 4;) >0
is exact. Write 4/(4, ® 4;) = @, Z( p*) so that
k, = (p-height of x, in A/A;) — ( p-height of g, in 4,).
Then [(k,)] = 0; — 7. Similarly, [(k,)] = 0, — .

J
Given three distinct positive integers i, j, k,

0= T, = sup{o; — T, 0f — ,,j} = sup{oj - 7,0, — T} =0, — 1.

J
(e) follows from (d).

Following Warfield [14], 7, is called the inner type of A, denoted by
IT(A), and g, is called the outer type of A, denoted by OT(A).

LEMMA 1.2. Assume that Zx © Zy C A, a rank-2 torsion free group and
that T, = (7, 7,,...). Define

U ={rx+tsy|lr,s€Z,r=0,gcd(r,s) =1}.

(a) For each i =1 there is a unique a; € U; N A;. Moreover, A; N
(Zx © Zy) = Za, and type,(a,) = ,.
(b) OT(A) = [max{h*(a)|a € Uy}

Proof. (a) is routine.

(b) Write A/(Zx ® Zy) = EBP[Z(p'p) © Z(p’)] with 0 <, =j, =
oo for each p. Then IT(4) = [(i,)] and OT(4) = [(J,)] (Warfield [14] or
Arnold [2)). If a + (Zx ® Zy) € (4/(Zx ® Zy)), then order (a + (Zx
® Zy)) = least j with p/a = mu for some u € U, and some m € Z with
ged(p, m) = 1. Since j < hj(u), it follows that j, < max{h}(a)|a € U}.
But

A/(Zx® Zy) 2 (4, + (Zx ® Zy))/ (Zx ® Zy) = 4,/ Za,

= @ z(p"),



RANK-2 TYPESETS AND COTYPESETS 5

where [, = h7(a,) (by (a)) so that max{%;(a)|a € U,} <j,. Thus, OT(A)
= [(J,)] = [max{h”(a)|a € U,}].

The following lemma reduces the problem of realizing a type sequence
T = (7, 7y,...) to the case that type (Z) = inf{7, 7,} whenever i # j.

LemMMA 1.3 (Schultz [11)). Let T = (1), 75,...) and C = (0,, 0,,...) be
type sequences with 7, = inf{7,, 7} and o, = sup{o,, 0,} whenever i # j.
There is a rank-2 group A with T, = T and C, = C iff there is a rank-2
group B with Ty = (1) — 7,7 — Ty,...), Cg=(0, — 7,0, — Tp,...),
IT(B) = type(Z), and OT(B) = o, — 7.

Proof. (<) Let X be a rank-1 group with type (X) = 7, and define
A = X ®zB. Then Y is a pure rank-1 subgroup of 4 iff Y ~ X ®, D for
some pure rank-1 subgroup D of B. Moreover, A/Y =~ X ®,(B/D);
type(Y) = 7, + type(D); and type(A/Y) = 7, + type(B/D). Thus, T, =
Tand C, = C.

(=) Choose h; € 7, for i = 0 such that &, < h, for each i. First of all,
it suffices to assume that 7, is idempotent: Let X be a rank-1 group with
type( X) = 1, and x € X with A*(x) = h,. Define A’ = Hom( X, 4). Then
¢: A"~ {a € A|h*(a) = h,} is an isomorphism, where ¢(f) = f(x).
Thus T, = (7, — 15, % — 7,...), Cy = (0, — 75, 0, — 77,...), and IT(A").
= 7 — 75 where 15 =[], hy(p) = 0 if h( p) = oo, and ho(p) = hif p)
if ho( p) < 0. Therefore, 7, — 77 is idempotent.

Now assume that 7, is idempotent, say 7, = [h,] with h,(p) = 0 or o
for each p. Let F be a free subgroup of 4 with 4 /F torsion and define
B=AN(N{F,|hyp)=o0)}). Then B, = F,if hy(p) = co and B, = 4,
if ho(p) = 0. Let R be the subring of Q generated by {1/p|hy(p) = o}
and define : R ® ;B > A by §(r ® b) = rb, noting that RA = A. Then 6
1S an epimorphism, hence an isomorphism, since rank(R ®,B) =
rank(A) = 2. Finally, if 4, is a pure rank-1 subgroup of 4 let

Bi=4,NB=4,N (N {F|hy(p) = o}).

Then B, is a pure rank-1 subgroup of B and typeg(B,) = 7, — 7,, since
(B), = (4,), if ho(p)=0 and N{(B),|ho(p)=c0) is pure in
M (F,|ho(p) = 0}. Consequently, Ty = (7, — 7, T, — Ty,...), Cp=
(0, — 7, 0, — 7y,...), and IT(B) = type(Z), as desired.

Let T= (7, 7,...) be a type sequence with type(Z) = inf{7, 7}
whenever i 7 j, let h; € 7, for each i, and let 7 be a type with # € 7. Then



6 D. ARNOLD AND C. VINSONHALER

Tis asnarl of Tif { p|0 < h(p) <h,(p) = oo for some j} is infinite. Note
that this definition depends only upon r and T and not upon the choice of
h € T and h; € 7, Snarls of sets of types are defined analogously.

Suppose that A4 is a rank-2 group with 7, = (7, 7,,...). By Proposi-
tion 1.1.a, IT(A) is the only type in 7, that may be repeated. Following
Beaumont-Pierce [3], 4 is completely anisotropic if T, # 7, for each i # j. In
this case, IT(A4) appears at most one time in 7.

THEOREM 1.4 (Dubois [1]). Let A be a rank-2 group with T, =
(1, 7y,...) and 1T(A) = type(Z). Then T, has an infinite subsequence T"
such that no snarls of T" are in T,.

Proof. Choose Zx ® Zy C A with inf{h*(x), h*(y)} = 0. There is an
indexing u,, u,,... of U, such that u;, = x, u, =y, u,=rx + s,y and
max{r,|s;|} =max{r,|s,|} if i <j. Relabel 7, so that 7, = type,(u,). Let
h;, = h*(u;) € 7, for eachi = 1.

Define K = {j| for each p, h,(p) < oo or h (p) = oo and there is no
i<j with 0 <h,(p) <h,(p)= oo}. Let T be the subsequence of T,
determined by K. Then for each i, 7, is not a snarl of 7" since

{p|O<h,.(p) <h,(p) = oo, for some EK}
c {plo<h,(p)<h,(p)=,i>jEK]

is finite (recalling that inf{A,(p), h;(p)} =0 for almost all p, since
IT(A) = type(Z), and that there are only finitely many j < i).

It now suffices to prove that X is infinite. Let I, = {i|max{r,|s,|} =
n}. If j € I\K then there is some p and some i <j with 0 <h,(p) <
h,(p) = co and max{r, |s;|} =n. Now ru, = ru, —(rs,—rs;)y and
s,u; = su, + (s, — r;s;)x. Since inf{h7(x), hy(y)} = 0, p divides r,s, —
r;s,. Furthermore, |r;s;, — r;5,|< 2n°. Thus, | L\ K|< 7(2n?), the number
of primes < 2n?, since for each p there is at most one j with A ,(p) = oo
It follows that

|11, N KI=|L| = [L\K|=|1,| = 7(2n?).

Now apply Lemma 0.1.e to see that K is infinite.

ExampLE 1.5. Let T = (7, 7,,...) be given by 7, = [h,] where h, =
(1,1,1,...); hy = (0,0,0,...); h; = (0,00,0,...), i, = (0,0, 0,...),... .

(a) There is no rank-2 group 4 with 7, = T.

(b) There is no rank-2 group 4 with typeset(4) = {7,|i = 1}.

(c) There is no rank-2 completely anisotropic group 4 with typeset(A4)
= {r,]i = 0} where 1, = type(Z) = inf{7, 7,} for i # .
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Proof. (a) Note that 7, is a snarl of every infinite subsequence of T
and apply Theorem 1.4.

(b) If there is a rank-2 group with typeset(4) = {r,|i =1} then
IT(A) = type(Z) & typeset(A). Thus T, = (7, 7,,...) since IT(A4) is the
only type that can be repeated and IT(A4) does not appear in 7,. But this
contradicts (a).

(c) For such an A4, T, = (7, 7}, T,,...) since A is assumed to be
completely anisotropic. Once again, 7, is a snarl of every infinite subse-
quence of T, contradicting Theorem 1.4.

EXAMPLE 1.6. Let S, = {7,]i =1} be as defined in Example 1.5,
o, = type(Q), and S, = {0, — 7,]i = 1}. Then there is no rank-2 group 4
with typeset(4) = S, and cotypeset(4) = S, by Example 1.5. On the
other hand, S, and S, satisfy the hypotheses of Theorem 1, Schultz [11].
Thus Schultz’s main theorem is incorrect as stated.

2. Realization of type sequences and typesets. In this section the
following notation is consistently employed: T = (7, 7,,...) is a type
sequence with inf{,, 7.} = type(Z) if i #j; h, € 7, forall i; a, = r,x + 5,y
is a denumeration of U= {rx +sy € Zx® Zy|r,s € Z, r =0, and
ged(r, s) = 1}; det(i, j) = r,s;, — s,r;; and det (i, j) = h7(r;s; — s;7)).

The type sequence T is admissible if there is an indexing of U so that
for each i there is an N > 0 such that 4, ( p) = co for some » > N implies
det (i, n) = h,(p).

Since for each p there is at most one n with 4, ( p) = oo, the admissi-
bility of 7" does not depend on the choice of 4, € 7, or the ordering of T.

LEMMA 2.1. Given h} € T, for each i, there exists h; € T, for each i such
that h; < h; and (a) If j < k and h,( p) < oo then min{h (p), h,(p)} = 0;
and (b) If hy(p) < oo and det (i, k) >0 for some i <k then h,(p) = 0.

Proof. Assume h,...,h,_, have been chosen such thath, € 7,, h, < h’
and (a) and (b) are satisfied for i, j, k < n.Define s, (p) = 0if h/(p) < 0
and either 0 < h,(p) for some i < n or det (i, n) > 0 for some i < n; and
define h,( p) = h)( p) otherwise.

Note that there are only finitely many / < n and only a finite number
of primes can divide det(i, n) if i % n. Furthermore, h/(p) >0 and
h,(p) >0 for some i <n can happen for only finitely many p since
inf{7,, 7,} = type(Z). Thus h,(p) = h/(p) in case h/(p) = oo and for
almost all p, and h,(p) < h)(p). Therefore h, € 7, and h,,...,h, satisfy
(1) and (2). The proof is now complete by induction on .



8 D. ARNOLD AND C. VINSONHALER

LEMMA 2.2. Suppose that h; € 7, for each i. Define A to be the subgroup
of Ox © Qy generated by {a,/p’|p is a prime,0 <j <h/(p),i = 1,2,...}.
Then OT(A) = [h] where h = max{h,;|i = 1}.

Proof. By Proposition 1.1(a),
OT(4) = sup(type(A4/4,), type(A4/4,)},

where A, and 4, are the pure rank-1 subgroups of A generated by x and y,
respectively. Since

type(A4/A,) = type(s,/p’ € Qlpisaprime, 0 <j <h,(p),i=1,2,...),
type(4/4,) = type(r,/p’ € Q|pisaprime,0 < <h(p)),

and ged(r;, s,) = 1 for each i, the result follows.

LEMMA 2.3. Let p be a prime, and Zx © Zy C A C Qx © Qy with
hi(a) =0 for each i, B= (AU {a,/p’|j <e}) for some k>0, and
0 <e = oo. Then for each i, hf(a,-) = min{e, det (i, k)}.

Proof. Fix i > 0 and assume that gcd( p, s,) = 1. We first show that
h%(x) = 0. Suppose that x/p = a + ca,/p' for some a € 4, c € Z,0 <[
<e, [ <. Then x = pa + ca,/p'~" so ca,/p'"' € A. Thus we may
assume that ¢/p'~' = ¢’ € Z with ged(c’, p) = 1. By Lemma 1.2, a =
(m/n)a, for some i # k, gcd(m, n) = 1. Equating coefficients of y gives
0 = (pm/n)s; + c’s,. Since ged(c’s;, p) = 1, p divides n. This contradicts
hi(a,) = 0.

The lemma now follows, in this case, from the equation s, a, — s,a, =
det(i, k)x. Indeed, since 7(x) = 0 and ged(s,, p) = 1,

h%(a,) = min{e,det, (i, k)}.

On the other hand, if p’ divides a, in B, then [ < e by the construction of
B, so p' divides a, in B. Since h;(x) = 0, the equation implies p’ divides
det(i, k). Hence, h5(a,) < min{e,det (i, k)} as desired.

A similar argument shows that if ged( p, r,) = 1, then A 5( y) =0 and
again hﬁ(ai) = min{e, det (i, k)}. Since ged(r,,s,) =1, the proof is
complete.

LEMMA 2.4. Let p be a prime, Zx © Zy C A C Qx © Qy with h}(a,)
= 0 for each i, a an irrational p-adic integer and 0 < t = . Define

B= <A U {a,/pflpf dividesr, — as;andj <t,1 <i < oo}>
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Then
h%(a,) = max{j|p’ divides r, — as, andj < 1} < oo

for each i.

Proof. Given i, let m = max{j|p’ divides r, — as; and j =< ¢}. Note
that if p divides r, — as, then ged(s,, p) = 1 since ged(s,, r;) = 1. Clearly,
hf(a,) = m and m < oo. It therefore suffices to show //(a,) is not greater
than m. Suppose (1/p"™*"Ya, € B. Then 1/p" " la, = a + S, _, ¢ a, /p~,
wherea € 4, ¢, € Z, p*® divides r, — as, and e(k) < t. Choose 1 =j <

so that e( j) is maximal among the e( k). Note that

s,a, = spa; + 5,(r, = as, )x + 5 (as, — r,)x.

Since e(/) is maximal and ged(s,, p) = 1, this equation implies that
each (¢,/p“*)a, may be replaced by an expression of the form b, +
(ci/p?)a; where b, € A4 and ¢; € Z. Thus we may write (1/p""")a,
=a+ (¢/p°)a, where a € A, ¢ € Z, p° divides r, — as, and e = 1. This
shows that (1/p™*")a, is in fact an element of the group 4’ = A4 U
{a,/p'|i=e}. By Lemma 2.3, m + 1 = min{e,det (i, j)}. In particular,
det (i, j) = m+ 1. Therefore, p™*' divides (7,5, — s,7,). Since e = m + 1,
p™ " divides (r, — as))s,; thus p”*" divides r,s, — as,s, and p divides s,.
However p divides r;, — as,, so p divides r, contradicting ged(r, s))
= 1. Thus /}(a,) is not greater than m.

The next theorem is stated in Dubois [6].

THEOREM 2.5. There is a rank-2 group A with T, ~ T if and only if T is
admissible.

Proof. (=) Assume that Zx ©® Zy C A C Ox ® Qy and let a, = x, a,
=y, as,... be an indexing of U such that type,(a,) = , for each i. Define
h, = h*(a,) for each i, let

N = max{jlh,(p) = oo, inf{h\(p), hy(p)} >0},

and let N =1 if no such j exists. Given i and n > N with &,(p) = oo,
then A (p) = det (n, i) since s,a, — s,a, = det(n, i)x and r,a, — ra, =
det(n, i)y. Note that for this choice of 4, € 7,, N does not depend on i.
(=) If T is admissible, choose /, € 7, satisfying (a) and (b) of Lemma
2.1. Next define 4] < h, by setting h)( p) = 0if h,( p) = oo for some k # i
and hi( p) = h,( p) otherwise. Note that 4/ need not be in 7,. Given p, this
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implies (along with (a)) that 4/( p) > 0 for at most one i. Let

A(p) = ((zx® Zy) U {a,/p’l0 <j <e(i)})

if e(i) = hi(p) >0 for some i, and let A(p) = Zx © Zy otherwise. De-
fine 4 = 3, A( p). Note that h/(a,) = h,"(a,) for all i and p, so we can
apply Lemma 2.3 to show type,(a,;) = 7, for all i as follows:

Let P, = { p|hj(p) = 0 for each i}. Then for each p € P, h(a,) =0
= h,(p) for each i.

Let P, = { p|h}(p) = oo for some k = k(p)}. If p € P, then h(a,)
= det (i, k(p)) by Lemma 2.3. By the admissibility condition, h;‘(a,) =
h,(p) for almost all p € P,.

Let P, = {p|0<hi(p)=h(p) < oo for some (unique) k = k(p)}.
If p € P;, then

hy(a;) = min{hy,,(p), det, (i, k(p))}.

If i = k(p) then h;‘(a,) = hy(,(p)- On the other hand, if / # k(p) and
det (i, k(p)) > 0 then k( p) <i by condition (b) on the #,’s. This implies
h;’(a,) = 0 = h,(p) except for a finite number of p. Thus h;‘(a,) =h(p)
for almost all p € P;. Consequently, type,(a,) = 7, for each i as desired.

THEOREM 2.6. Given a rank-2 group A and a type 6 = OT(A), there is a
rank-2 group B with OT(B) = o and T, = Ty.

Proof. Assume that Zx ® Zy C A C Ox © Qy. Choose h € ¢ and
h, € type,(a;) such that &7 = h, for each 7, and such that the /,’s satisfy (a)
and (b) of Lemma 2.1. Note that # = max{A,|i = 1} and that A(p) = o
forallpin P, = {p|h,(p) = o for some k}. In view of Theorem 2.5, it
suffices to assume that 4 = X, B( p), where

B(p) = <Zx ® Zy U {al/pf|0 =j=hl(p),i= 1,2,--.}>,

hi(p)=0if pE€ P, and h,(p) < oo, h)(p)=h,(p) otherwise. Thus,
min{#j(p), h'(p)} = 0 for each p and i 7. We will construct B using
Lemma 2.4. This involves choosing an index k = k(p) and a p-adic
integer @ = a( p) for an appropriate collection of primes p.

First consider P, = {p|h(p) >0 and h,(p) =0 for all i}. Write
P, ={q(1), q(2),...} with g(i) <gq(i + 1). For each p = g(¢) € P,, let
k(p) = t, and let a( p) be an irrational p-adic integer such that p does not
divide r, — a( p)s, fori <1t.

Next consider P, = {p|0 <h,(p) <h(p) = oo for some (unique)
k = k(p)}. Assume gcd(s,, p) = 1 and choose an irrational p-adic integer
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a = o p) with p-height(r, — as,) = h}(p). (If p divides s,, then
ged(r,, p) = 1 and the roles of s and r may be reversed in the proof. For
example, « would be chosen so that p-height(ar, — s,) = hi(p).)

Denote P, = P, U P,. Forp € P;,letk = k(p), a = a( p), and let

A(p) = <Zx ® Zy U {a,/p’|p’ divides r, — as, and j < h(p)}>

By Lemma 2.4, h;’“’)(ai) < oo for each i. Moreover, if p € P, and
h4P(a,) > 0, then p divides r, — as,, and hence

(x) pdividess,(r, — as;) — s,(r, — as,) = s,r, — s,r, = det(i, k).

Define B = 2{A(p)|p € P;} + Z{B(p)|p & P;}. Then hl(a,) =
h7"X(a,) for each i and p € P;. By Lemma 2.2, OT(B) and o agree on P;,
and therefore OT(B) = 0. To see that type,(a,) = typeg(a;), first note
that if p = ¢(¢) is an element of P,, then for i <¢, hf(a,) = 0 by Lemma
2.4 and the choice of a( p). Thus type,(a;) and typeg(a,) agree on P,.
Next let p € P,. If i = k( p), then

h%(a;) = max{j|p’ divides r, — a(p)s, andj < h( p)}
=hi(p) =hi(p)

by Lemma 2.4 (since h, ,,(p) <h(p)). Moreover, as in the proof of
Theorem 2.5, h}(a;) = (p), so that h}(a;) = h;(a,) in this case. On the
other hand, if i # k(p) and h]f‘(a,.) >0, then p divides det(i, k( p)) as
shown above (*). By condition (b), this happens only if &( p) > i, since
0 <h;(,(p) <oo. Thus, i # k(p) and h}(a,) >0 can happen for at
most finitely many p € P,, and h}(a;) = h)(a,) for almost all p € P,. It
follows that type,(a;) = typeg(a;).

LEMMA 2.7 (Dubois [5]). Let T" = (7{, 75,...) be a type sequence with
type(Z) = inf{7/, 7/} whenever i # j. Assume that T has an infinite subse-
quence Ty with no snarls of Ty in T'. Then there is a type sequence
T = (7, Ty,...)and h; € 1, for each i such that T ~ T and

(@) If p; is the ith prime, then h ( p;) = 0 whenever j = 2i.

(b) If K = {k| for each p either h,(p) < oo or else h,(p) = oo and
there is no j < k with 0 <h;(p) <h,(p) = oo} then {k|7, € Iy} C K so
that K is infinite.

Proof. (a) Let T, be the subsequence of types in 7’ with an infinity at
some p and let T, be the complement of T, in 7". Order the elements of T
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so that if 7/ = [A}], 7/ = [h}] are elements of 7| and min{ p|h;(p) = o0}
< min{p|hj(p) = oo} then 7/ <1/ Let T be the type sequence defined
by:

7,, = ith element in 7, (if it exists)

T,,_; = ith element in T (if it exists)
If either T, or T, is finite, use the elements of the infinite sequence when
the elements of the finite sequence are exhausted and if both are finite, use
type(Z). By Lemma 2.1.a there is 4, € 7, for each i so that if 4,(p) >0
andj > i, then h(p) = 0 or oo. It follows that (a) is satisfied by 7'~ T".

(b) It suffices to assume that for each j, {p|0 <h,(p) <h,(p) = 0
for some 7, € T7} is empty, since 7, is not a snarl of 7 and setting
h,(p) = 0 for only finitely many p with & ,(p) < oo does not change the
type of &,. Consequently, {k |7/ € T5} C K and K is infinite. Note that (a)
is still satisfied.

LEMMA 2.8. Suppose that (r, s,), (13, 83),...,(,, S,) are distinct ele-
ments of U; q,, 3, - - ,q,, distinct primes with each q, > n and det (i, 1) = 0
for q=gq,, 1si#l=n,and 1 =j=mj e e,,...,e, non-negative in-
tegers; and {i, i5,...,i,} C{1,2,...,n}. Then there are infinitely many
(r,s) in U such that

(5) if1<j=<mandq=q,then hl(rs, — r;s) =0 for 1 <i
#i,<n and hl(rs,—rs)=e fori=1i,

Proof. The proof is by induction on m. Suppose that m = 1. Let
i=1i, q=gq, and e =e,. First assume that e = 0. For each i with
1 < i < n, there is at most one ¢ with 1 < ¢ < g such that g divides s, — r,.
Indeed, if ¢ divides ts; — r, and q divides ¢’s, — r;, then g divides (¢ — t)s,
so that 1 = ¢’ or ¢ divides s,. The latter case is impossible since ged(7,, s,)
= 1. Since n < g, there must exist some 1 =t < g, such that hf( s, —r,)
= 0 for each i. In this case (r, s) = (¢,1) € U satisfies (). Next assume
that e > 0. Choose (r, s) € U with rs;, — r,s = g¢°. Then hqz(rs, —rns)=20
whenever 1 <i # [ <n, otherwise det (i, ) = hZ(r,s, — r;5,) > 0, which
is impossible. Hence (r, s) satisfies (x). Given (r, s) € U satisfying () let
x'=r+aqt,y =s+bg°',d=ged(x, y), x =x'/dand y = y'/d.
Then (x, y) € U and there are infinitely many such (x, y) which satisfy
(*).

Now assume inductively that (7, s’) € U satisfies (*) for 1 =j < m.
Leti=1i,,q=4,, e=e,, and let 7 be the product of {¢// |1 <j=m
— 1, n(j) = e, + 1}. Assume that e = 0. Since n < g there is ] =1 =g
such that hqz((r’ + tm)s,— s'r;)) =0 for each 1 =/ =n (as above). Let
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r=(r'+1tm)/d, s=s'/d, where d = gcd(r’ + tm,s’). Then (r,s) € U
satisfies (*) since if p = g, # g then

RZ((r + tm)s, — s'r,) = hZ(r’s;— s'r)) foreach 1 <! =<n.

Next assume that e 0. Choose a, b € Z with ar, + bs, = 1. By the
Chinese Remainder Theorem there is x =0, y in Z with x = r’ (mod 7),
x =bge +r,(mod ¢g°*') and y =5’ (mod 7), y = —aq® + s, (mod g *").
Then hZ(xs, — r,y) = e, hZ(xs, — r,y) = 0if | % i, and if p = g, # q then
hZ(xs,— r;y) = hZ(r's;— r;s"). Consequently, (r,s) € U satisfies (),
where r = x/d,s = y/d and d = ged(x, y).

Ifx"=r+ung®',y’ =s +omg*"',d = ged(x’, y'), ¥’ = x’/d, and
s" =y’/d then (r’,s’) € U and there are infinitely many such (7', s")
satisfying (*). By induction on m, the proof is complete.

A type 7 is very large if h € 7 implies that { p|h( p) = oo} is infinite.

THEOREM 2.9. Suppose that T = (71, T,,...) is a type sequence having
an infinite subsequence Tj, with no snarls in T and that type(Z) = inf{r,, 7;}
whenever i 7 j.

(a) There is a rank-2 group A with 1T(A) = type(Z) and T, =
(7{, 7)5...), where T/ = 7, for each i and if h, € 7/, h; € 7, then hi(p) =
iffh(p) = oo.

(b) If {7;|7; very large} has no snarls in T then A may be chosen with
T,~T.

Proof. (a) By Lemmas 2.7 and 2.1 it suffices to assume that there is
h, € 7, for each i such that if j <k then inf(h (p), h,(p)} = O unless
h(p) = o0; {k|1, € T} C K= {k]| for each p either i, (p) < oo or else
h,(p) = oo and there is no j with 0 <k ,(p) <h,(p) = oo}; and &,(p,)
= 0 whenever j = 2i and p, is the i th prime.

To construct an indexing of U, via Lemma 2.8, let », = (1,0) and
uy = (0,1).

If k=3 and kK € K choose u, = (ry,s,) € U with max{r,|s,|}
minimal among the elements of U not already chosen.

If k=3, k € K, and 7, is not very large let {q,, ¢5,...,9,,} = {p]|
h(p)=o}; e, =h(q;) and i,=11f 0 <h/q;); e,=0 and i, =/ for
some arbitrary | <k if h(g;) =0 for all 1 =i <k; and let n, be the
largest integer less than k such that g, > n, and det 1) =0 whenever
l=i#/=<n,and 1 =j<m. By Lemma 2.8, there is u,-= (r,, s,) € U,
not already chosen, such that A,(p) = det,(k, i) whenever p €
{9:,95,...,9,yand 1 <i=<n,.
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If k=3, k€ K, and 7, is very large let {q,, 45,...,4,,} = {pP|0<
h,(p) <hy(p) = oo for somej < k}; e =h(q;)andi;=1if 0 <h/q,);
and let n, be the largest integer less than k such that g, >n; and
detq/(i, /) =0 whenever 1 <i#/=<n, and 1 <j<m. By Lemma 2.8
there is u, = (r, s,) € U, not already chosen, such that A,p)=
det(k, i) wheneverp € {q,, q5,...,9,,} and 1l Si=<n,.

Since K is infinite, every element of U is chosen. Moreover, if k € K
then max{r,,|s,|} =k, since only kK — 1 elements of U have previously
been chosen.

For each j define 7/ = [A]], where h’( p) = det(k, j) whenever 0 =
h,(p) <det,(k, j) <h,(p) = o for some j < k & K with 7, very large,
and define h)( p) = h;( p) otherwise. Note that 7/ =7 and h/( p) = oo iff
h,(p) = oo.

By Theorem 2.5, it is sufficient to prove that 7" = (7], 75,...) is
admissible relative to the chosen ordering of U. Fix j and let m =
max{r;,|s;|}.

Let Py = {p|0 = h)(p) < det,(k, j) < hi(p) = o forsomek € K}.
If p=p, € P, then p, divides det(k, j) while det(k, j) =< 2mk < 4mi,
since kK € K and h,(p,) = oo implies that kK <2i. By Lemma 0.l.b,
p,; > 4mi for sufficiently large i, so that P, is finite.

Nextlet P, = { p|h( p) # det(j, k) < h}(p) = oo, 7, not very large,
Jj <k & K}. By the choice of u, = (r,, s,) € U, j > n, for each such k.
Assume that P, is infinite. Then there are infinitely many j < k & K with
j=>n,,inf{ p|h,(p) = o} >j (noting that for each p there is at most one
i with h,(p) = o), and h(p) # det(j, k) <h,(p) = o for some p €
P,. For each such k, there is 1 =i # /= with 0 <det (i, /) <h(p) =
oo for some p, otherwise j < n, by the definition of u,. But

{pldet,(i,1) >0 for some 1 <i# 1<}

1s finite, which is a contradiction.

Finally, P, = { p|h}(p) # det,(J, k) < hi(p) = oo for somej <k &
K, 7, very large} is empty by the definition of 4}. Thus P, U P, U Py is
finite so that 7" is admissible.

(b) Note that T;, U {;|; very large} generates an infinite subsequence
of T with no snarls in 7. Now apply the constructions of (a), noting that if
k & K then 7, is not very large so that 4} = h; for each j.

COROLLARY 2.10. Let S be a set of types with inf{7, 7'} = type(Z)
whenever T, 7" € S with T # 1’. Assume that {1 € S| is very large} has no
snarls in S.
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(a) There is a rank-2 group A with typeset(A) = S iff either type(Z) €
S or else S has an infinite subset with no snarls in S.

(b) There is a completely anisotropic rank-2 A with typeset(A4) = S iff
S has an infinite subset with no snarls in S.

Proof. (a) (=) Let T, = (7, 7,...). By Theorem 1.4, T, has an
infinite subsequence with no snarls in 7. If S = {7,]i = 1} = typeset(A)
does not have an infinite subset with no snarls in S then some 7, must be
repeated in 7. But IT(A4) = type(Z) is the only type in 7, that may be
repeated so that type(Z) € S.

(<) If S has an infinite subset with no snarls in § define 7T =
(7, Ty,...) where § = {1,|i = 1}. Otherwise type(Z) € S, and in this case

define T = (1), 7,,...) where 7, |, =1, 7, = type(Z) for i=1if § is
infinite. If § = {7, 7,,...,7,} is finite define 7;, = type(Z), 7,,_, = 7, for
l1<i<n and 77 =1, , = type(Z) for i >n. For each of the above

cases, T has an infinite subset with no snarls in 7. By Theorem 2.9 there is
a rank-2 group 4 with 7, = T so that typeset(4) = S.

(b) is a consequence of (a) and the fact that 4 is completely aniso-
tropic iff 7, has no repetitions.

COROLLARY 2.11. Let S| = {7, 7y,...} be a set of types with inf{7, 7,}
= type(Z) whenever i # j, and assume that {7;|7, is very large} has no
snarls in S,. Let S, = (0,,0,,...) be another set of types. Then there is a
rank-2 group A with typeset(A) = S, and cotypeset(A4) = S, if and only if

(@) There is a type o, such that 6, = sup{o,, 0} for i # J;

(b) 7, =< g, for each i;

(c) o, = o, — T, for each i; and

(d) Either type(Z) € S, or else S| has an infinite subset with no snarls
in S,.

Proof. (=) Apply Proposition 1.1 and Corollary 2.10.

(=) In view of (d), Theorem 2.9 can be applied to obtain a group B
such that typeset(B) = S,. Furthermore, B can be assumed to satisfy
OT(B) =0, by (b) and Lemma 2.2. By Theorem 2.6, there is a rank-2
group A such that typeset(A4) = typeset(B) and OT(A4) = ¢,. By (c) and
Proposition 1.1(e), cotypeset(A4) = {0,,0,,...} = S,.

ExXAMPLE 2.12. Let 7, for i =1 be defined as in Example 1.5. Let
S={rli=1} U {type(Z)}. Then there is a rank-2 group A4 with
typeset(4) = S, by Corollary 2.10.a. On the other hand, by Corollary
2.10.b there is no completely anisotropic rank-2 group A with typeset(4)
= S (compare Example 1.5).
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ExampLE 2.13. (Ito [9].) Let 7, 7,,... be given by 7, = [h,], where
h, =(0,1,0,1,0,1,...); h, =(00,0,0,...); h; =(0,00,0,...); hy, =
(0,0, 00,...);... . Let S={7]i=1}. Then {7,,|i =1} is an infinite
subset of S with no snarls in S. By Corollary 2.10(b), there is a completely
anisotropic rank-2 group A with typeset(A4) = S. Similarly, there is a
completely anisotropic rank-2 group A with typeset(4) = S U {type(Z)}.

COROLLARY 2.14. Let S = {7,|i=1} be a set of types with 1, =
inf{, 7.} whenever i # j.

(a) (Beaumont-Pierce [3]) If S is finite and 7, € S then there is a rank-2
group A with typeset(A) = S.

(b) (Ito [9)) If there is h, € 7, for i = 0 with hy = inf{h,, h;} for each
i # ] then there is a rank-2 group A with typeset(A) = S and OT(A) =
[sup{h,|i = 1))

Proof. By Lemma 1.3, it suffices to assume that 1, = type(Z). In
either case S has no snarls in S. Now apply Corollary 2.10 to get a rank-2
group A with typeset(A4) = S. This group is constructed via Theorem 2.9
so that OT(A) < [sup{h,|i = 1}]. By Theorem 2.6, A may be chosen with
OT(A4) = sup[{h;]|i = 1}].

The next example shows that the hypothesis of Corollary 2.10 that
{7 € S|7is very large} has no snarls in S is not necessary.

ExaMpLE 2.15. There is a rank-2 group A4 such that IT(A4) = type(Z)
and {7|7 € typeset(A4) and 7 very large} is infinite with infinitely many
snarls in typeset(A4).

Proof. Let S = {7;|i = 1} where 7, = [h;] and &, is defined by:

h,=(1,1,1,...,00, 0, ,...,0,0,0,...,0,0,0,...,0,0,0,...)

hy, = (00,0,0,...,0,0,0,...,1,1,1,...,00, 0, 0,...,0,0,0,...)

hy = (0, ,0,...,0,0,0,...,0,0,0,...,0,0,0,...,1,1,1,...), etc.
Apply Theorem 2.9(a) to obtain a rank-2 group 4 with typeset(A4) = {7/|i
=1}, 7/ =, for each i, and {7|7 € typeset(4) and 7 very large} is
infinite with infinitely many snarls in typeset(A4).

3. Realization of cotypesets.

THEOREM 3.1 (Vinsonhaler-Wickless [12]). Let S = {0}, 0,,...} be a

set of types with oy = sup{o,, 6,} for each i # j and o, € S if S is finite.
(@) There is s; € o, for i = 0 such that s, = max{s;, s,} ifi # j.



RANK-2 TYPESETS AND COTYPESETS 17

(b) There is a rank-2 group A with cotypeset(A) = S, OT(4) = o,
IT(A) = [inf{s,|i = 1}], and typeset(A4) = {0, — o, + IT(A)|i = 1}.

Proof. The following proof is a simplification of the arguments given
in Vinsonhaler-Wickless [12].

(a) Given s, §,...,5,_, wWith 5, €0, for 0 =i=n—1 and s, =
max{s;, s;} for 1 =i#j=<n — 1 choose s, € o, with s, = sup{s,, s,} for
l=i=n—1

(b) Define ¢; = min{s,|i =1}, 7y = [¢;], and y,= ¢, — 75 for i = 0.
Note that y, = [s, — ;] for each i = 0. Now I' = {y,, v,,...} with y, =
sup{y;, v;} if i #j and vy, € I'if I is finite. Define 7, = y, — v, for i = 0.

The next step is to show that there is a rank-2 group B with
typeset(B) = {7,|i = 1} and cotypeset(B) = I'. For each i, let t, = (s, —
ty) — (s, — ty) € 1, = v, — v,. Note that:

(1) if 7,(p) = oo then sy( p) = o0, 15( p) < 00, and s,( p) < o0.

(1) if 0 <t,(p) < oo then sy( p) < o0.

(iii) £,( p) = 5o(p) = 5, P).

(iv) inf{z,, 7} = O whenever i # j.

By (iv) and Corollary 2.14.b there is a rank-2 group B with typeset( B)
= {r|i= 1}, OT(B) = [sup{¢,|]i = 1}], and IT(B) = 1, = type(Z). By
(i11), sup{¢;|i = 1} = s, — ¢t so that OT(B) = y,. Therefore, cotypeset(B)
= {y, — 7;|i = 1} by Proposition 1.1.e.

Furthermore, y, — 7, = v, for each i = 0. To see this, note that y, — 7,
= [(so — t) — (5o — s,)], by (iii), and y, = [s, — #;]. The only non-trivial
case is 15( p) = s5,(p) < s¢(p) = oo, in which case 5,(p) = so( p) forj #i
(by (a)), 1o(p) =s.(p), and (so(p) — 15(p)) — (so(p) = 5(p)) =0 =
5,(p) — t5( p). Consequently, cotypeset(B) = {y,|i = 1}.

By Lemma 1.3, there is a rank-2 group 4 with typeset(A4) = {1, + 77 |i
= 1}, IT(A4) = 15, cotypeset(A4) = {y, + 7y|i =1} = S, and OT(A4) = vy,
+ 7y = o,. Finally, 7, + 77 = 0, — 0, + 7 by (iii).

COROLLARY 3.2. Let S = {0,,0,,...} be a set of types. There is a
rank-2 group A with cotypeset(A) = S iff there is o, = sup{o,, 0,} whenever
i #jand oy, € S if S is finite.

REMARK. Vinsonhaler-Wickless [12] have given necessary and suffi-
cient conditions for a set of types to be the cotypeset of a finite rank
torsion free group, with Corollary 3.2 as a special case.

4. Locally completely decomposable groups. A finite rank torsion
free group A is locally completely decomposable if A, = Z,®, A is the
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direct sum of a free Z,-module and a divisible Z,-module for each prime
p, where Z, is the localization of Z at p.

Let 4 be a finite rank torsion free group. Recall that typeset(A) =
{type(X)|X is a pure rank-1 subgroup of A4} and cotypeset(A) =
{type(Y)| Y is a rank-1 torsion free quotient of A}.

THEOREM 4.1. Assume that A is a finite rank torsion free group.

(a) There is a finite rank torsion free locally completely decomposable
group B with B C A, A /B torsion, and typeset( B) = typeset(A4).

(b) (Vinsonhaler-Wickless [12]). There is a finite rank torsion free
locally completely decomposable group B with A C B, B/A torsion, and
cotypeset(A) = cotypeset(B).

(c) Further assume that tank(A) = 2, typeset(4) = {r,|i = 1}, h, E 1,
for each i and s, € OT(A). Then A is locally completely decomposable iff
whenever sy( p) = oo then h,(p) = o for some i.

Proof. (a) Let 4;, A,,... be a listing of the pure rank-1 subgroups of
A, let p, be the ith prime and choose a free subgroup F of 4 with 4/F
torsion.

Define B, = F, +d(4,) + (4,), + -+ +(4,), where d(4,) is the
maximal divisible Z,-submodule of A,. Define B = N »B,- Then
F=MN,F,CBCA=,4,and A/B is torsion. Let X = 4,. Then X,
C B, for almost all p. If X, = Q then X, Cd(4,) C B, Otherwise,
X,/(X, N B,) is finite. Hence X/X N B is finite since (X/X N B), =
X,/X, N B, =0 for almost all p and X,/(X, N B,) is finite otherwise.
Consequently, X =X N B and so typeset(A) = typeset(B). Finally, B
is locally completely decomposable since for each p, B,/d(B,) is a finitely
generated free Z,-module.

(b) The following is a rank-2 version of the proof in Vinsonhaler-
Wickless [13]. Define

B= (N {f'f(A)|f € Hom(Q4,Q)} C 04 = 0 ®, 4

where 4 is regarded as a subgroup of Q4. Then 4 C B C QA4 and B/A is
torsion. Suppose that g(4) = Y C Q forsome g: 4 — Q. Then g: 04 - Q
and g(A4) C g(B) C g(g™ 'g(A4)) = g(A4). Conversely, if g(B) =Y C Q
for some g: B — Q then g: Q4 — Q since Q4 = QB and g(A4) C g(B) C
g(g 7 'g(A)) = g(A). Consequently, cotypeset(A4) = cotypeset(B), noting
that each rank-1 torsion free group is isomorphic to a subgroup of Q.

To show that B is locally completely decomposable suppose that
B, = X ® Y where X has no rank-1 summands and Y is the direct sum of
a free and a divisible Z,-module. Let 0 # f € Hom(Q4, Q). If f(X) # 0,
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then f(X) = Q = f(B,), since otherwise f( X) = Z, and X has no rank-1
summands. But Ker f is divisible so B, C f~ £( B,) = Ker f ® H where
f(H) = f(B,) = Q. Thus H is divisible so that f~'f(B,) =f'f(4,) =
QA D QX in this case. Now assume that f( X) = 0. Then QX C Ker f C
f7'f(A4,). Thus, QX C f~'f(A4,) for all f € Hom(QA4, Q). But

B,=( M {f'f(4)|f € Hom(04, 0)}),
= N {77'/(4,)|f € Hom(04, Q)} 2 0X

so that QX = X is divisible. Since X has no rank-1 summands, X = 0 as
desired.

(©) (=) Let 4, = X; ® X,. Then there are pure rank-1 subgroups 4,
of 4 with (4,), = X;. If so(p) = oo then (4/4,), = Q for some i, say
i =1 But(4/4,),=4,/(4,), = X, so that X, = Q and 4, is p-divisible.
Therefore, for some k, 7, = typeset(A,) and if h, € 7, then h (p) = .

(=) Assume that sqo( p) < oo and that 4, is a pure rank-1 subgroup of
A.Then0 - (4,), - 4, > (A4/4;), > 0is exact with (4/4,), = Z, since
type(A/A4,) = OT(A). Thus 4, =~ Z, ® (4,), is completely decomposa-
ble. Now assume that so(p) = oo = h,(p). Let A, be a pure rank-1
subgroup of 4 with 7, = type(4,). Then (4,), = Q so that 4,~Q &
(A/A,;), is completely decomposable as desired.

REMARK. In view of Theorem 4.1(c), each rank-2 group constructed in
Theorem 2.5 is locally completely decomposable, noting that the 4, € 7, in
this construction are chosen to satisfy (a) of Lemma 2.1.

COROLLARY 4.2. Let S| = {7, 7,,...} be a set of types with inf{T,, 7}
= type(Z) whenever i 7 j and assume that {7;|7; very large} has no snarls
in S,. Let S, = {0,,0,,...} be another set of types. Then there is a rank-2
locally complete decomposable group A with typeset(A) = S, and
cotypeset(A4) = S, iff

(@) There is a type o, such that 6, = sup{o,, 0,} for i # j;

(b) 7, = o, for each i;

(¢) 0, = 6y — 7, for each i,

(d) Either type(Z) € S, or else S, has an infinite subset with no snarls
inS,;

(e) If sy € 0y, h; € 7, for each i, and s,( p) = o then h,(p) = oo for
some i.

Proof. A consequence of Corollary 2.11, Theorem 4.1(c), and the
preceding remark.
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5. Open questions.

(5.1) Is it true that Corollaries 2.10 and 2.11 are true without the
hypothesis that {7 € S| 7 is very large} has no snarls in S?

As noted earlier, Example 2.15 shows that this hypothesis is not
necessary. In fact, it is unknown whether or not the set S of types in
Example 2.15 may be realized as the typeset of a rank-2 group.

The construction of Theorem 2.9 uses Lemma 2.8. Consequently,
some strengthened, possibly infinite, version of Lemma 2.8 would be
needed to make the construction of Theorem 2.9 work without the
hypothesis that { ;| 7, very large} has no snarls in 7.

(5.2) Are the results of the paper true for modules over an arbitrary
principal ideal domain?

The results of this paper use a version of the prime number theorem
(Lemma 0.1(b)) which is not applicable for arbitrary principal ideal
domains. De Munter-Kuyl [4], claims that Ito’s Theorem (Corollary
2.14(b)) is true for arbitrary principal ideal domains. However, the con-
struction is incorrect, even in the case of groups. For example, the
construction fails for a set of types = {7,|i =1} where 7, = [h,] and
h, = (0,0,...), h, =(0,,0,...), h; =(0,0,c0,...),..., even though
Ito’s theorem is true for groups.

The answer to (5.2) may depend on:

(5.3) Can the results of this paper be proved without appealing to
some version of the prime number theorem?
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