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COBORDISM OBSTRUCTIONS TO FIBERING
MANIFOLDS OVER SPHERES

STEVEN M. KAHN

We consider here the problem introduced by Conner and Floyd of
determining necessary and sufficient conditions for a manifold M to be
cobordant to a bundle over a given sphere Sk. Two recent studies by
D. F. X. O'Reilly [7] and A. Didierjean [4] presented obstructions to
fibering manifolds over spheres in terms of the "top" Stiefel-Whitney
classes of M. While these conditions were shown by Conner and Floyd
[3] and R. L. W. Brown [2] to be sufficient when restricted to the cases of
fiberings over S] and S2, they are not at all sufficient for guaranteeing
the fibering of a cobordism class over a sphere of any higher dimension.
This is shown in O'Reilly's study of fiberings over the 4-sphere.

In this paper we exhibit an obstruction to fibering a manifold over a
sphere that extends the obstructions mentioned above. We then essen-
tially answer all open questions but one regarding the problem of which
cobordism classes can be represented by a bundle over S4.

1. Introduction. In [3], Conner and Floyd introduced the problem
of determining which cobordism classes in 9?* could be represented by a
manifold fibered (smoothly) over a given sphere. They showed that if
wt{M) denotes the ith Stief el-Whitney class of a manifold M, then a class
ω E $ln fibers over Sι (i.e. ω contains a representative that fibers over S])
if and only if the Stief el-Whitney number wn(ω) = 0. Extending the study,
R. L. W.Brown [2] showed that a class ω E %ln fibers over S2 if and only
if the Stief el-Whitney number wn(ω) = 0 if n is even and w2ww_2(co) = 0 if
n is odd. Subsequent investigations have considered fiberings over a
variety of manifolds, yielding complete solutions in a number of cases.
But R. E. Stong [8] observed that spheres, aside from having a natural
importance, actually play a key role here. He showed

(1.1) If a class ω E %ln fibers over Sk

9 then ω fibers over any manifold
Nq with q < k.

At present, for fiberings over spheres of any higher dimension than
two, there are only partial results. In solving the S2 problem, Brown
exhibited a general necessary condition [2, Prop. 2.1] for a manifold to
fiber over a sphere Sk that is based on the Brown-Peterson relations
among characteristic classes. Using it, he derived the Stiefel-Whitney
number obstructions mentioned above. D. F. X. O'Reilly [7] (see also A.
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Didierjean [4]) generalized those obstructions as follows:

(1.2) If Mn fibers over S2k, then all Stiefel-Whitney numbers divisible
by

\wn,wn-ι, ..,wn-2k+\ forw even

\w»,wn-ι, ..,wn-2k for « odd

are zero.

What is significant, is that although these conditions turn out to be
sufficient for a cobordism class to fiber over S2, they are far from
sufficient for guaranteeing the fibering of a class over a sphere of any
higher dimension. This is made clear in O'Reilly's study of fiberings over
the 4-sphere. The conditions given by (1.2) are shown to leave the fibering
status of a good number of classes unaccounted for.

The purpose of this paper is to somewhat expand Brown's condition
(involving the Brown-Peterson relations) and then more importantly,
demonstrate its use; not as a device for obtaining obstructions in terms of
Stiefel-Whitney numbers but actually as an obstruction itself to fibering
cobordism classes over spheres. With this point of view we are able to
extend the results of O'Reilly and Didierjean, essentially answering all
open questions but one, regarding the problem of which cobordism classes
fiber over S4.

Throughout this paper we will use no notation to differentiate be-
tween a manifold and its cobordism class. Also all cohomology will be
with Z 2 coefficients.

2. Main results. Given a (smooth, closed) manifold Mn, let
τM\ Mn -» BO classify the stable tangent bundle of Mn and let the (mod 2)
Steenrod algebra & act on the right of H*(BO) and 7/*(M) as in [1].
Before stating our results we briefly recall the Brown-Peterson relations
for reference [1].

(2.1) (Brown-Peterson): ΠM«kerτ* = ΣHs(BO)Sq\ 2t>n-s.

Now, using Didierjean's notation let

lξ(Mn) = {a £Hk(BO)\iΐk<n,τ*(a β) = 0 VjS (EHn~k(BO)}.

Noting that /*(Mn) depends only on the cobordism class ω of Mn let
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THEOREM 1. // ω E $ln fibers over Sk, then [Sqr(#s(£O)Sq')] = 0
E A%(ω) and [(Σ Hs(BO)Sqt)2] = 0 G A*(ω) for It > n - k ~ s and
r>s + t - k.

Proof. Let p: Mn -» Sk be a fibration with fiber /"*"* and with Mn

representing the cobordism class ω. That [Sqr(Hs(BO)Sqt)] = 0 is essen-
tially Brown's condition [2, Prop. 2.1]. That [(ΣHs(BO)Sqt)2] = 0 will
follow from the same reasoning. As in [2], we consider the exact sequence

(2.2) -> H*(M, F) CH*(M) l^H

and note that by excision

H*(M, F) = i/*(M, F X ^ ) = #*(F XDk,FX Sk~ι)

where D^ is the Λ>ball. Then

(2.3) i/*(M, F) = H*~k(F) O ̂ ( / > Λ , S*-1).

Now

/*τy*7/ί(5O)Sq/ = τ*Hs(BO)Sqt = 0 for 2ί > Λ - k ~ s

by (2.1). Let u9 v E Σ ̂ (ΛOJSq', 2t>n- k~s. Then by (2.2) and
(2.3), τ^u=j*(x^>a) and η£ι; =j*(y ® α) for some x, y E H*(F),
a E Hk(Dk, Sk~ι) being the generator. Hence τ^(wt ) = τ^w τ^ϋ = 0
since a2 = 0 and so [(Σ Hs(BO)Sq')2] = 0 E ̂ *(ω). G

Interestingly, having added to Brown's original condition, we now
show that in practice Theorem 1 can actually be simplified back again.

PROPOSITION 2.4. For any class ω E % n and k<n,

[Sq'(#'(2K>)Sq')] = 0 EΛ*(ω) ~[(ΣHs(BO)Sq')2] - 0 E^*(ω)

for 2t > n - k - s and r> s + t - k.

Proof. Let M" represent ω.
(«=) Let u E HS{BO). By definition of the right action of & on

#*(M), we have for any β E

(2.5) ( ^ ( ^ ^ ^ ( ^ ^ ^

Now since /• > s + t — k, we get that 2r > n — k — {n — r — s — t) and
so βSqr G Σ Hs(BO)Sq' for 2ί > « - k - s. Therefore by (2.5),

= 0 =*[Sq'(H>(BO)Sq')] = 0.
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(=>) Now suppose [Sqr(Hs(BO)Sqt)] = 0. Let x = uSqJ G
HI(BO)SqJ a n d 7 = t ; S q m E Hι(BO)Sqm w i t h 2j>n~ k- i a n d 2 m >
n-k- /(i.e. JC, j G Σ /F(50)Sq', It > n - k - s). To show that [JC y]
= 0 G Λ*(co), let γ G Hn~{l+J+l+m\BO). Since Σ Hs(BO)Sq\ It > n -
k - s is an ideal (see (2.1)), we have that γ υ Sqm G Σ /Γ(£0)Sq r, 2ί >
n-k-s. Thus τ£(γ υ Sqm uSqj) = τ£(i8Sqr u$qj) for some

r G Hn~r-i-J(BO)Sqr with 2r > π - k - (n - r - i - j). By (2.5)

and since r > / + j — k the result follows. D

The fact that the conditions given by Theorem 1 prove to be sufficient
for a class in %* to fiber over Sx or S2 can be expressed as follows. All
characteristic number obstructions to fibering a manifold over S] or S2

come from those characteristic classes of the total space that by the
Brown-Peterson relations restrict to zero on the fiber. In [5] however, it
was observed that all obstructions to fibering a complex manifold over S3

(or S4), with the exception of a signature condition, actually arise simply
from Wu classes vi pulling back to zero on the fiber. Indeed, this is really
the case with the Conner-Floyd and Brown results as well. Noting that
w2n(M2n) = Sqnvn(M2n) and w2n_ι(M2n+ι) = Sqn~ιvn(M2n+ι) by the
Wu formula, we see that consideration of the full range of Brown-Peterson
relations is unnecessary in the Sι and S2 cases. The Wu classes alone
produce all sufficient fibering conditions. Conceivably, for any ω G $ln

a n d k<n9 [Sqr(Hs(BO)Sqί)] = 0 G Aftω) for I t >n- k- s9 r > s +
t - k if and only if [Sqrυ,] = 0 G A%{ω) for It > n - k, r > t - k. (Note
that υt = (l)Sq' G //°(£0)Sq'.)

Turning to the problem of fiberings over S4, the key role is again
played by the Wu classes.

Let X4, X5 and X6 be indecomposables in 9Ϊ* of dimensions 4, 5 and 6
respectively.

T H E O R E M 2. (i) A class ω G ̂ 2 r t + , fibers over S4 if and only if

[Sqrvt] = 0 e Aftω) fort = n,n-l,r>t-4.

(ii) If ω E $l2n is such that [Sqr vt] = 0 G A%(ω) for t = n9n- 1,
T > t - 4, then ω = Y + aVLP{2)n~\XAX6 + X^) where Y fibers over S4

and a G Z 2 .

REMARK. For co = X4X6 + Xl G 9110, [Sqrί;r] = 0 6 ^*(<o) for
/ = 4,5, T > t - 4. In fact, [Sq r(#'(50))Sq'] = 0 G Λ*(co). It is still
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unknown however whether or not there exists a representative of ω that
fibers over S4.

The proof of Theorem 2 essentially takes up the remainder of the
paper. The key to the proof is in §3 where Theorem 1 is applied. Specific
obstructions, going beyond those given in [7] and [4], are exhibited and are
shown to account for a number of families of classes in 9ΐ* not fibering
over S4. In §4 we tie up the loose ends through actual construction of
fibrations and formally complete the proof. In §5 we present a result
about fiberings over S3.

3. Obstructions. We begin this section by recalling results of Brown
and O'Reilly.

PROPOSITION 3.1 (Brown).
(i) There exist indecomposables Xi E 9ΐ, fibered over S2, i Φ 2s — 1,

and i Φ 2,5.

(ii) // co E %ln fibers over S2, then ω2 fibers over S4.

PROPOSITION 3.2 (O'Reilly).
(i) There exist indecomposables Xt E 9ΪZ fiber ed over S4, i φ 2s — 1,

andi:=^ 2,4,5,6,11.
(ii) The class X4X5X6 + X? fibers over S4.

Throughout the rest of this paper we will let X. E 5ft f denote O'Reilly's
indecomposables for / Φ 2,4,5,6,11 while denoting Brown's indecom-
posables (fibered over S2) for i = 4,6 and 11.

O'Reilly showed that no indecomposable Xu could fiber over S4 and
proved the same thing for the classes X4X6 and X2. He conjectured that
X2X\\, X^M a n d X5 also do not fiber over S4 even though all obstruc-
tions given by (1.2) vanish on these classes. The following two proposi-
tions prove these conjectures while extending O'Reilly's results in general.

PROPOSITION 3.3. For any non-zero linear combination

ω = axXZ~2X5 + a2X%~4XAX5 + a3X^'5X5X6 + a4Xζ~5Xu

+ a5X
n

2~
ΊX,X5X6 + a6XΓΊXh a, E Z 2 ,

in 9?2*+i> with the exception of ω = Xζ"\X4X5X6 + X?), [Sq'υJ for
t = n, n — 1, r > t — 4 is non-zero in A*(ω). And no such combination
fibers over S4.



382 STEVEN M. KAHN

w

Proof. If ax = 1, Brown's S2 result shows that w2

w2n-\(ω) ^ 0 Since
_x(M2n+ι) = Sq""1 ϋπ(Af2n+1), the result follows. Thus we need only

look at the case where ax — 0. Consider the following chart obtained via
the product formulas for the Stiefel-Whitney and Wu classes:

2n

wlSq"-Aυn_x

w6Sq"-4υn_{

*2 4 *4*5

n

n

1
1

yn-Λ2

n

(n

'5XsX6

+ 1

2~2)
1
0

γn-5γ
Λ2 Λ\\

1

0

0
0

yn
Λ2

— 7y3

0

1

0
0

Clearly the above matrix is non-singular. Furthermore, since X4X5X6 +
fibers over S4, Theorem 1 implies that

[so,] = o e A*{xrΊ{x4x5X6 +

and so we need not consider a column for X2

 ΊX4X
follows.

PROPOSITION 3.4. For any non-zero linear combination

5. The result
D

in 9^2 w, with the exception ofω = Xζ'5(X4X6 + X2), [Sq Γ ϋJ, t = n,n- I,
r > t ~ 4 is non-zero in ̂ 4o(ω) And no such combination fibers over S4.

Proof Stong [8, Prop. 7.2] showed that the classes XI, X2~~2X4 and
X2 ~

3X6 are distinguished by characteristic numbers involving the Stiefel-
Whitney classes w2n, w2n_l5 w2n_2 and wln_3. By the Wu formula,

w2n(M2«) - Sq" vn(M2«), w2n_{(M2") = Sq""1

^ - 2 ( M 2 " ) = S q - 2 vn + Sqn'ιvn(
2

and

V2n _3(M2«) - Sq 3

Thus for any class ω, if [Sq rt>J = 0 for t — n,n — 1, r > t — 4, then
[ w 2 j = [w 2 l I_!] = [w 2 Λ _ 2 ] = [w 2 r t_ 3] = 0 E i4J(ω). Since all numbers in-
volving w2n, w2n-\9 Wjn-i a n d w2n-3 vanish for both X2~

5X4X6 and
X2 we see that the only combination we must account for isX2~

5X2
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ω = a4X2~5X4X6 + a5X£~5Xs. An easy calculation using the product

formula for the Stiefel-Whitney and Wu classes shows that

(3.5) ^ S q " - 3 ^ , ^ - 5 ^ ) - w 4 Sq"- 3

U n _,(xr 5 *5 2 ) ^ 0

and so if a4 φ a5, then [Sq'ϋ,] t — n, n — 1, r > t — 4 is non-zero in

A*(a4XZ~5X4X6 + a5X%-5X*). The result follows. D

4. Some fibrations over S4. Since the classes in 9?* which fiber

over S4 form an ideal, the results of §3 combined with Propositions 3.1

and 3.2 leave only a few classes still unaccounted for. In this section we

show that the classes X4X$9 X^XU, X^X^ X$X\\ a n d Xβ^w aU fiber over

S4. First some preliminaries.

Let £ be an ^-dimensional vector bundle over a manifold B. The real

projective bundle RP( | ) is the manifold consisting of all lines in the fibers

of ξ. RP(ξ) fibers over B, say p: RP(ξ) -> B (with fiber RP(n - 1)), and

supports a canonical line bundle η.

Let c = wx(η) G H\RP(ξ)). Then H*(RP(ξ)) is a free H*(B) mod>

ule on generators 1, c,... ,cΛ~ ! with the relation

(4.1) 2Cp*{wH-,(ξ)) = 0.
ί = 0

The tangent bundle of RP(£) is given by

(4.2) τ(RP(|)) θ ^ ] = p*τ{B) θ (/?*{ ® η)

where 01 denotes the trivial line bundle.

For convenience, we will from now on omit the "/?*" from our

notation and will let η once and for all denote the appropriate canonical

line bundle over whatever projective bundle we may be dealing with. We

let γ denote the quaternionic line bundle over S 4 = H?(l) (γ is a real

4-bundle) and we let θn denote the trivial ^-bundle.

Finally, we recall some facts (see [6]) about the so-called s numbers of

a manifold. If the total Stiefel-Whitney class w of a bundle E over M is

given by w(E) = (1 + /,)(! + t2) (1 + tk) for tt G H\M\ then for

any partition / = /}, z'2,... ,/r of k, the polynomial sr in the Stiefel-Whit-

ney classes of E is defined by

(4.3) sr(wl9...9wk) = 2t\l'"Kr

t h e s u m r a n g i n g over all p e r m u t a t i o n s of ί l 5 . . . ,tk. F o r a n y m a n i f o l d Λf,

Sj{M) = SJ(Ύ{M)). We also note

(4.4) Sl(Ex®E2)= 2 Sj(Eλ)Sκ(E2)
jκ=r
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and for any indecomposables Xt E -ft,-, / -φ 2s — 1,

(4.5) s^X^X^ Xir) = 0 if /is not a refinement of / = /,,... ,/r.

End of preliminaries.

The following lemmas are needed for future calculations.

LEMMA 4.6. For Brown's indecomposables X4 = RP(λ θ 01) <wer S2

and X6 = RP(λ θ 03) <wer S2, λ feemg ίΛe canonical complex line bundle
over S2 = CP(1), ̂ 2 (X 4 ) - 1 and s24(X6) = siχ2{X,) = 0.

Proof. By (4.2), w(X4) = ((1 + c)2 + ά){\ + c) while w(X6) =
((1 + c)2 + a){\ + c)3 where a E H\S2) is the generator and c =
Wjίη) E H\RP(λ θ ^ j)) (resp. /ί^RPίλ θ ί3))). Now, s22(X4) =
w2(X4) = 1 (using (4.1)). Similarly,

= (wxw2 + w3)
2(X6) = 0

while

W * 6 ) =sϊΛΛ(X6) = wi(X6) = 0. D

LEMMA 4.7. For the indecomposable Xl0 = RP(γ θ θ3) over S4,

By (4.2), w(Xl0) = ((1 + c)4 + a)(l + c3) where c =
and α E H4(S4) is the generator. Since the only non-zero Stiefel-Whitney
class of γ ® η is w4(γ ® η) = c4 + α, any 5-class of γ ® η with dimension
not a multiple of 4 vanishes. By (4.4) then, ^ 5 ( ^ 0 ) = ^5,5(^3 ® η) But
s55(θ3 ® η) = cfc| + cfcf + c^c3

5. The result follows from (4.1). D

LEMMA 4.8. For the indecomposable Xu — RP(λ θ τRP(4)) over
S2 X RP(4), λ being the canonical complex line bundle over S2 = CP(1),

/. By (4.2), w(Xu) = (1 + α)5((l + c)2 + έi)(l + c + a)5 where
α and a are the puUbacks of the generators of H\RP(4)) and H2(S2)
respectively and c = wt(η). Write ((1 + c)2 + a) = (1 + ̂ ( 1 + /2) and
note that ί, = r2 and tλt2 — c2 + a. The rest of the proof is a routine
calculation using (4.3) and (4.1). D

LEMMA 4.9. For the indecomposable Xλ2 — RP(γ ® 05) over S4,



COBORDISM OBSTRUCTIONS 385

Proof. By (4.2), w(Xl2) = ((1 + c)4 + a){\ + c)5. Since the only

non-zero Stiefel-Whitney class of γ ® η is w4(γ ® η) = c4 + α, any s-class

with dimension not a multiple of 4 vanishes. Furthermore w4(γ ® TJ) = c1 2

+ c8<2 = 0 by (4.1), so any s-class of dimension 12 vanishes as well. Then

by (4.4), s]02(X]2) = s]0a(θ5 ® η) and s5^2(Xn) = s5,52(θ5 ® η). The re-

sult follows from (4.3) and (4.1). G

We now turn to the main results of the section.

PROPOSITION 4.10. The class X4X] fibers over S4.

Proof. Let

), ®θ5)

1

RP(y®θ2)

i

S4

Since M14 fibers over S4, Theorem 1 guarantees that all characteristic

numbers of Mdivisible by Sqr υt, / = 6,7, r > t — 4 are zero in v4*(XAX^).

Therefore, applying Propositions 3.1, 3.2 and 3.4, we have that the

cobordism class of M 1 4 is given by

where Y fibers over S4. Now by (4.2),

w a){\ + c ) 2 ( l +d+c){\ +d)5

where c = ^\(V\) and d — w1(η2) (η2 being the canonical line bundle over

Ri>(?]1 θ ^ 5 )) . As in the proof of Lemma 4.9, any s-class of γ ® rj, with

dimension not a multiple of 4 or with dimension 12 vanishes. In addition,

for any b u n d l e E , s4(E) = wf(E) and s22(E) = w2{E), so s4(y ® TJ,) and

^ 2 2 ( γ ® Tjj) vanish as well. Applying (4.4) and (4.3) as in the previous

proofs, we arrive at the following s-numbers for M: sl4 = 0, 5 1 0 4 = 1,

s95 = 0, s554 = 0, sl022 = 1 and s5^2t2 ~ 0 By (4.5) and Lemmas 4.6, 4.7

and 4.9, it must be that

M 1 4 = 1 X4Xl + 0 ^ 2

2(^ 4X 6 + Xl) + 7

and so by adding Y to both sides we get that X4X] fibers over S4. D

PROPOSITION 4.11. The class X4XU fibers over S4.
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Proof. Let

i

RP(γθλθ^)

I

where λ is the pullback of the canonical line bundle over Sι. Noting that
[Sqr υt] = 0 E A%{XAXU) (for t = 6,7 r > t - 4), we invoke the results of
section 3, as in the proof of Proposition 4.10, to see that M15 — aX4Xu +
Y where Y fibers over S4. Now by (4.2)

where a is the pullback of the generator of H\Sι). Again as in the
previous proofs we can ignore any contribution from γ ® ij,, obtaining
sl5(M15) = 0 and s 4 1 1(M 1 5) = 1. Then M 1 5 = 1 X 4ZΠ + 7 and so
X4XU fibers over S4. D

PROPOSITION 4.12. The classes X$X6 and X5XU fiber over S4.

Proof. Let

M/6 = Ri>(η1 θ θ3) and let M2

16 = RP(η 1 θ ̂ 5)

i i
RP(γθλθ03) R^γθλθί1)

1 i

S4 X RP(2) 5 4 X RP(2)

where λ is the pullback of the canonical line bundle over RP(2). As
before, we see that

M/6 = anXiX6 + ai2XsXu + aι3Xl{X4X6 + X*) + Yi9 i = 1,2,

where Yέ fibers over S4 and atj G Z 2 . By (4.2)

J6) = (1 + α)3((l + c)4 + fl)(l + c + α)(l + c)
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where a is the puUback of the generator of H\RP(2)). N o w by techniques

d e m o n s t r a t e d earlier, we obta in the following chart of s-numbers:

M/ 6

M 2

1 6

0

0

^5,11

0
1

J10,6

0
1

^2,14

0

0

^5,5,6

1

0

•̂ 2,5,9

0

0

^2,4,10

0

0

^5,5,2,4

0

0

S 10,2,2,2

0

0

ss,saa,2

0
0

Then by (4.5) and Lemmas 4.6-4.9, M/6 = X*X6 + Yλ and M2

16 =

+ X5XU + Y2. The result follows by addition.

PROPOSITION 4.13. The class X6Xn fibers over S4.

Proof Let

D

1

η1 Θ 0 3 )

I

RP(γ)

1

s4

Routine calculation shows that slΊ(MXΊ) = 1 and s6 u(MlΊ) — 0,

while for the indecomposable ΛΓ17, sl7(XlΊ) = 1 and s6U(Xl7) = 1. As in

the previous proofs, we see that M 1 7 = X6XU + Γ where Y fibers over S'4.

Thus X6 Xλ x fibers over S\ D

Combining the above results with those of §3 reduces the proof of

Theorem 2 to the following:

Proof of Theorem 2.

(i) (=>) Trivial by Theorem 1.

(*=) By Propositions 3.1, 3.2 and 4.10-4.13, (and the fact that the

classes fibered over S4 form an ideal), any class in 9 i 2 w + 1 is of the form

ω — a + β where a fibers over S4 and β is of the form given in Proposi-

tion 3.3. Now suppose [Sqrt)J = 0 G ̂ 4*(ω) for f = π, π — 1, r > ί — 4.

By Theorem 1 [Sq't J = 0 E A%(a) for t = π, n - 1, r > t - 4 as well.

Thus [Sqrt;J = 0 E ΛS(β) for t = n,n- 1, r > / - 4 and hence by Pro-

position 3.3 β = 0. Therefore ω fibers over S4.

(ii) By Propositions 3.1, 3.2 and 4.10-4.13, any class in SSl2n is of the

form ω = a + β where α fibers over S4 and β is of the form given in
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Proposition 3.4. As in (i) we get that [Sqr vt] = 0 E A%(β) for t = n9 n - 1,

r > t — 4 and hence by Proposition 3.4 and the remark following it,

β = tfX"~5(^4^6 + X*). The result follows. D

5. A note on fiberings over S 3 . In [5], it was shown that a complex

cobordism class ω E Ω£ fibers over S3 if and only if it fibers over S4.

Here we offer the following

Conjecture 5.1. A class ω E 312n fibers over *S3 if and only if it fibers

over S4.

We note that by Stong's result (1.1), one direction above is trivial.

With regards to the other direction, we have

THEOREM 3. Ifω E 312n fibers over S3, then

ω= Y + aRP(2)n~5(X4X6 + Xi)

where Y fibers over S4 and a E Z 2 .

Proof. By Propositions 3.1, 3.2 and 4.10-4.13, any class in 31 ln is of

the form

(5.2) ω = 7 + axXζ + a2X^2X4 + a3

where Y fibers over S4. Now, if ω fibers over S3, then by Theorem 1 and

the Wu formula we have that all the Stiefel-Whitney numbers of ω

divisible byw 2 r t,w 2 w_ ] and w2n_2 must be zero.

Claim. All numbers divisible by w2n_3 must be zero as well.

Proof.

(i)

W\W2n-3(ω) = W( S q"~ 3 Vn + S c Γ ~ 2 Vn-\)(ω) bY t h e W u formula

= H>!3 Sq"" 3 vn(ω) by Theorem 1

= wf Sq1 Sq"~3 vn(ω) since w\ = wf Sq1

= 0 by the Adem relations

and Theorem 1.

(ii) Similarly,

w3w2n_3(ω) = 0 since w3 = w2Sq1.
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(iii)

2w2n-M = wxw2 Sq"~3 vn(ω) as in (i)

λw2
= Sq3 Sq"~3 vn(ω) since wλw2

ΓO n = 4k+l9

q" »M> n = 4k + 3, b y t h e A d e m r e i a t i o n s

Sq' l""1Sq1ϋ/ I(ω), n even,
1=1 0 by Theorem 1.

This completes the proof of the claim.

Now as in the proof of Proposition 3.4, we apply Stong's result and
get that in (5.2) ax— a2 — a3 — 0. Finally we note that if ω fibers over S3

or S4 then w4 Sq"~3 vn_{(ω) - 0 by Theorem 1. Invoking (3.5), we get that
α 4 = a5 and the result follows. G
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