
PACIFIC JOURNAL OF MATHEMATICS
Vol. 115, No. 2, 1984

ONE-DIMENSIONAL PERTURBATIONS OF

OPERATORS

JOSEPH G. STAMPFLI

The purpose of this note is three-fold. First, to show that certain
rank one operators of small norm will split off a unitary piece from the
shift; second, to apply this technique to the "Berg construction"; and,
third, to exhibit a normal operator whose eigenspace structure is drasti-
cally altered by the addition of a rank one operator.

Throughout this paper J£(3f) will denote the algebra of bounded
linear operators on a separable Hilbert space 3f.

1. We begin with a proposition which tells us which rank one
operators preserve an isometry.

PROPOSITION 1. Let S be any isometry. Let F = α( , g)h where \\g\\ =
= 1. Then S + F is isometric if and only if

(1) I for some θ real

S*:h -* eιθg

and

(2) 2 R e e " ^ = -\a\2.

Proof. To show S + F is isometric we must show

/ = (s + F)*(S + F) = I + S*F + F*S + F*F

or equivalent^ S*F + F*S + F*F = 0. Note that F* = a( , h)g. Iff e JίT
then

(*)S*Ff=aei$(f,g)g9

(b) F*Sf=ae-iθ(f,g)g, and
(c)F*Ff=\a\2(f,g)g.

Thus

(S*F + F*S + F*F)f = [(aeiθ + ae~iθ) + \a\2](f, g)g = 0

if (2) holds.
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To prove the necessity assume S + F is isometric whence S*F -f F*S

F*F = 0. The operator S*F is 1-dimensional and thus in some basis

and F*S =

a

β

0

o !
o !

11
1

0

0

a

0

0

0
0

0

But S*F -f F*S = -F*F < 0 and it is clear that S*F + F*S cannot be

negative unless β = 0. Hence

a n d S F ±

Set F = a(-,g)h so F* = a( ,h)g. Since F*S: { g } x -> 0 if f± g,

then f*S/ = a(Sf, h)g = 0, which implies Sf ± h. Thus S:{g}±^ {h}±

and since S is isometric it follows that Sg = e~iθh for some θ real. Hence

S*h = eιθS*Sg = e 'V To see that (2) is necessary we need only repeat the

argument from the first half of the proof.

Let S be the unilateral shift on H2(S: f(z) -> zf(z)) and assume M is

an invariant subspace for S. Then it is well known [2] that M = φH2 for

some inner function φ in H2. Fix φ for the moment and let P be the

self-adjoint projection of H2 onto M1-. Let Wf = PS/for/ G M 1 . It had

been observed by Ahern and Clark (see [4]) that there exists a one-dimen-

sional perturbation of W (regarded as an operator on Λί 1 ) which is

unitary. This was pointed out to me by Bernie Morrel. It had also been

observed earlier by Ron Douglas (see [3] Corollary 2.3 for example) that

one can split off unitary direct summands from the shift by compact

perturbations.

Our next result can be said to complement both these results by

accomplishing their task in an economical fashion. Thus in Clark's case

both the restriction and the perturbation are achieved simultaneously. We

denote unitary equivalence by = .

THEOREM 2. As above, let S denote the unilateral shift on H2. For any

inner function φ, there exists a one-dimensional operator F such that

S + F=U®V on(φH2)± ΘφH2

where U is unitary and V = S. Moreover, given ε > 0, we can choose a φε

such that S 4- Fε = U Θ Vand\\Fe\\ < ε.

Proof. Note first that M = φH2 is spanned by the orthonormal basis

{zkφ} for k = 0,1,.... Clearly S\Mis unitarily equivalent to S onH2. Set

g = (φ((ήφ - l)/\\φ{0)φ - 1||. Observe that g ± φ. (If φ(0) = 0 then 1 JL φ

which greatly facilitates matters, but leads to an uninteresting situation.)
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We define our one-dimensional operator F as follows:

F=(.,S*φ)(cg-φ)

where

\c + φ(0)/||φ(0)φ - 1|| | 2 = 1 + |φ(0)|2/||φ(0)φ - 1112.

Later in the proof we settle on one choice for c. However, we need this
more general formulation later on.

Several steps are needed to show F has the desired properties.
1. Claim: SΆ/^c M1- +{φ}. This follows immediately from the

observation that S is a contraction and S* is isometric on M θ φ. Or note
that 5*: M θ φ -> M.

(2) If we can show ((S + F)f9 φ) = 0 for / e M x then S + F is
clearly £/ θ K o n M x θ M , where ί/is as yet unspecified. But

((S + F)f, φ) = (Sis φ) + (/, S*φ)((cg - φ), Φ)

(3) Claim: S + F\M^ is unitary. To show this we will prove S + jFis
isometric. The conclusion then follows since

-1 = index(S + F) = index £/ + index F = index U + (-1)

whence index U = 0. Hence ί/ must be onto and thus is unitary.
(4) S + F is isometric on M-1. Let P be the self-adjoint projection of

H2 onto Mθg. Then for/ e M-1,

+ ^ ) / , g ) | 2 + \\P(S + F)f | |2

, g ) + ( / , S * φ ) ( c g - φ , g ) | 2 + \\PSf\\2

S*φ)φ(O)||φ(O)φ - 111"1 + c(/, S*φ)|2 + \\PSf\\2

S*φ)|2(l + |φ(0)|2 | |φ(0)φ - 1|Γ2) 4- | |PS/| | 2

', Φ)\2 + \(sf, g ) l 2 + \\PSf\\2 = \\sf\\2 = I I / I I 2 .

(5) Finally we show that we can choose φ so that the associated F has
small norm. One can specify the dimension of Mx in advance and still
achieve this goal as will become obvious in a moment. If φ is a singular
inner function then

φ(z) = exp fZ + e dμ(θ)
J z — eι

and conversely any singular measure μ generates such an inner function. It
is well known that for such φ's, the associated space (φH2)1 is infinite
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dimensional. Let us consider this case first. Choose μ such that μ(3D) = /.
Then φ(0) = e~*. It is at this point, we must exercise some care in the
choice of c. The most efficient choice (in terms of size) requires that

argc = argφ(O)

and

\c\ = {1 + |φ(0)|2 | |φ(0)φ - l |Γ2}~1 / 2 - |φ(0)| ||φ(0)φ - 111"1

The latter equality follows from the fact that IIφ(0)φ - l | | 2 = (1 - |φ(0)|2).
Note that with this choice, \c\ < 1. Hence

Thus for suitably chosen t, it follows that \\F \\ < ε. To handle finite-di-
mensional (φH2)1, choose φ to be a finite Blaschke product where |φ(0)|
is close to 1.

REMARK. Although one-dimensional perturbations can achieve some-
what surprising results they are limited in certain respects. While it follows
from [3] that a compact perturbation of the shift can have the form S θ / ,
no one-dimensional perturbation can accomplish this feat as we shall
show.

LEMMA. Let T e <£{$?) and let Fo be an n-dimensional operator. Then

dimker(Γ + Fo - λ) < n 4- dimker(Γ - λ)

for each λ e C.

Proof. Since Fo is «-dimensional it can be written as FQ =
Σ"= 1( , gn)hn. Let G = clm{ gy. j = 1,...,Λ}. Fix A E C and assume
dimker(Γ + FQ — λ) > n + dimker(Γ - λ). It follows from an easy
argument that there exists a non-zero vector / e ker(Γ + Fo — λ) where
/ ± G and/ ± ker(Γ - λ). Thus

0 = ( T + Fo - λ)f= ( T - λ ) / + Σ(f> gj)hj =(T- λ)f

which is a contradiction.

COROLLARY. There exists no finite dimensional operator F such that

S + F= ί/θ V
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where U is a unitary operator on an infinite-dimensional space and o(U) is a

finte set. In particular S + F cannot be unitarily equivalent to I Θ S.

Proof. Assume such a U exists with o(U) = {λ l 9... ,λk}. Then

dimker(£/— λ y ) must be infinite for some λ,, which contradicts the

previous lemma.

EXAMPLE. Since we have shown above that no rank one perturbation

of S produces a unitary with singleton spectrum it is interesting to see just

what sort of a U is obtained by using the simplest possible singular inner

function. So let us take φ(z) = e(
z+l)A*-i)m We now compute the spec-

trum of U by using Theorem 3.2 from [4], assuming we choose c so that

arg c = arg φ(0).

Caution: Clark's notation varies from ours. We have used S to denote

the unilateral shift while Clark uses S to denote the restriction of the shift

to a star invariant subspace. Thus his S and ours do not even act on the

same space. Also, because of a slight variation in notation, his w in

Theorem 3.2 is equal to -eaτg c when we choose c with arg c = arg φ(0).

Continuing, we see that for φ(z) = exp((z + l )/(z - 1)) the resulting

U has spectrum equal to

{1} U{-[1 +(2& + l ) τ π ] / [ l -(2k + l )τπ] :& = 0, ± 1 , . . . } .

By the lemma above, each spectral point different from 1 is an eigenvalue

of multiplicity one. Clark actually exhibits the associated eigenvectors.

COROLLARY. Let Q be isometric but not purely unitary. Then there

exists a one-dimensional operator F such that

Q + F= ί / θ Q'

where Qf is unitarily equivalent to Q, U is unitary and F has arbitrarily small

norm.

Proof. Use the Wold decomposition.

2. An application: the Berg process. In Theorem 1 of [1], Berg

shows how to pull a unitary piece out of the middle of a unilateral shift

while leaving the shift "intact". (Trevor West has christened this process

the "Seagull Construction".) Our approach also enables us to do this in a

simple geometric fashion. In particular, we require only a rank one

perturbation of arbitrarily small norm.

Rather than stating a theorem, we shall simply describe the process

and its end result. Let S be our shift on H2. Choose a finite Blaschke
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product φ with n factors. We will later specify φ(0). We define our first
perturbation to be

Thus S + Fλ splits as

(Also see the matrix at the end of this section.) Of course S + Fλ is no
longer isometric. We select a second Blaschke product ψ of m factors. We
set

Thus S + Fλ + F2 has the representation

We define F3 = ( , S*φ)φψ. With this choice of F3> it should be clear by
construction that S + Fλ + F2 + F3 is the unilateral shift on (φH2)±

θφψ/f2 and leaves φH2 θ φψH2 invariant as indicated below:

F l + F 2 + F 3
( φ H 2 )

1 φH2 θ φψH2 φψH2

Finally we wish to modify our operator to be unitary on φH2 θ φ-φH2.
To this end define g == φ(ψ(0)ψ - l)/||Φ(ψ(0)ψ - l)| |. Note that g G
φH2 θ φψH2 and ||φ(ψ(0)ψ - 1)||2 = 1 - |ψ(0)|2.

Set F4 = ( , 5*φψ)cg where

(a) \c + ψ(0)||φ(ψ(0)ψ - l)! !" 1 ! 2 = 1 + |ψ(0)|2 | |φ(ψ(0)ψ - l ) |Γ 2 .

It is easy to see, by repeating the argument in Theorem 2, that S + i^ +
F2 + F3 -1- F4, which is reduced by φH2 θ φxpH2, is unitary on that
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subspace if and only if (a) is satisfied. Our operator S + Fλ + F2 + F3 +
F4 can now be represented as

It is this final result which we view as the Berg construction.
However we are far from finished. Certainly Fλ + F2 + F3 + F4 does

not seem to be a rank one operator. Let us group the terms as

and

Clearly F = F1 + F2 4- F3 + F4 will be a rank one operator if and only if
(φψ — φ) equals (eg — φψ) modulo the scalars. Performing the obvious
arithmetic we see that F is rank one if and only if

(β) c = ||φ(ψ(0)ψ-l)||(ψ(0)-lΓ1.

At this point we would like to satisfy (α) and (β) simultaneously.
Remarkably enough (β) => (a). Indeed if we observe that

then substituting in the left-hand side of (a) we obtain

|(1 - |ψ(0)|2)1/2(ψ(0) - I)"1 + ψ(0)(l - |Ψ(0)| 2Γ 1 / 2 | 2

= (1 - |ψ(0)|2Γ2 = 1 + |ψ(0)|2||φ(ψ(0)ψ - 1)|Γ2.

Thus if we choose c to satisfy (β) then our operator F is rank one, and
S + F has the required form. To complete matters we need only show that
F has any preassigned norm. Note that \\Fλ\\ = ||S*φ|| = (1 - |Φ(0)|2)1 / 2.
Thus the norm of Fx is small for |φ(0)| close to 1, and F2 and F3 can be
handled in similar fashion. Since

and c = (1 — |ψ(0)|2)1/2(ψ(0) — I)" 1 , to handle this case we simply choose
ψ(0) to be negative or imaginary and close to 1 in absolute value. Note
that dim(φH2)± = n and dim(φH2 - ΦψH2) = m so we may specify the
size of the pieces if we wish.
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S =
o n ( φ H ) Θ ( φ H θ φ ψ H )

3. In this section we will construct a one-dimensional perturbation
of arbitrarily small norm of a diagonal normal operator D which has no
eigenvalues. The spectrum of D will be the unit square. This answers a
question raised by Hong W. Kim.

Let {en}^ι be an orthonormal basis for the Hubert space Jίf. The
operator D is defined by

Dβj = λjβj for w = 1,2,. . . .

We designate our one-dimensional operator by F where Ff = (/, g)h for
all / e Jίf. The vectors g, h can be expressed as Σaiei and Σbiei respec-
tively. We will now define the λ/s and b^s in stages.

Consider the unit square s with sides on Re z = ± \ and Im z = ± \,
At stage 1 we divide it as follows and assign λ l 9... ,λ4 as indicated.

λ3

Λ

• A4

At the second step we subdivide each of the boxes in the last subdivision
thus obtaining
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The next 16 λ/s are taken to be the midpoints of the indicated squares.
We continue in this fashion.

Thus at the nth stage we have
(a) 2n subintervals per side
(b) length of a subinterval is 2~n

(c) there are 2ln boxes in the subdivision
(d) we set the next 22n fe/s equal to l/n2n at this stage.
First observe that h = Σbiei ^ Jίf since

1
= Σ Σ

stages vector in n th stage

= Σ Λ 00.

stages

(The penultimate step follows from the observation that there are 22n

vectors in the nth stage.)
We do not define the α/s for the moment but observe that ai Φ 0 for

/ = 1,2, Assume that (λ - D - F)f = 0 for λ e S9 the unit square.
Then (λ - D)f = (/, g)h. To rule out the case (/, g) = 0, observe that it
would then follow that / = eJo whence (/, g) = ajQ Φ 0, a contradic-
tion. Set / = Σμ,^-. Then Σ(λ - λi)μiei = (/, g)Σbiei and hence μ; =
(6,/(λ - λ,.))(/, g) for ι = l,2,.... Without loss of generality we
may take (/, g) = 1. We claim that / £ Jίfίor λ e 5. In our computa-
tion of the norm of /, it makes a slight difference where λ is located in S\
For clarity take λ as indicated.

We evaluate ΣlfylVlλ. - λ7 |
2 in stages again. Within a given stage, we

group the λy's into disjoint sets Lk as indicated in the picture.

Then we estimate l/|λ - λ | in each L in the same way. Thus

2 _ = Σ
|Λ Kj\ stages vectors in nth stage I ^

* Σ Σ
stages k = 1 vectors in n th stage
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(The term l/22nn2 is just \bj\2 and 2n/k minimizes the distance from λ to
λ/sinthe&thL.)

2 - 1

Σn~2Σl
k = l

n-2\og2n~ι>Σ\= +00.

stages

stages

Note that this estimate is valid for any placement of λ e S. Thus D + F
has no eigenvalues for A G S .

To handle the case λ ί Swe note that if (λ — D)f = Ff then / must
be a scalar multiple of (λ - D)~ιh. Thus we set fλ = (λ - D)~ιh =
Σbjej/(λ — λj). Then λ ί 5 is an eigenvalue of (2) + F) if and only if
(Λ> #) = l We let g = Σaiei where αJ. > 0 and choose the α/s so small
that 0 < Σ Λ , . V R e i V 2 ~ λ/) < l B u t

for Re λ > ^, hence there are no eigenvalues in that half plane.
On the other hand Re(/λ, g) < 0 for Re λ < -1/2 so there are no

eigenvalues there either.
For Im λ > 1/2 we see that Im(/λ, g) > 0 and for Im λ < -1/2 we

have Im(/λ, g) < 0 so there are no eigenvalues in those regions. We have
exhausted S". Thus D + F has no eigenvalues. As constructed,

Thus we may make ||JF || as small as desired by simply choosing the tf/s to
be sufficiently small.

REMARK. By a similar construction we can define a self-adjoint
diagonal operator S whose spectrum is [0,1], and a one-dimensional
self-adjoint operator F such that S + F has no eigenvalues. We omit the
details.
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