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ON THE ATOMIC DECOMPOSITION
FOR HARDY SPACES

J. MICHAEL WILSON

We give an extremely easy proof of the atomic decomposition for
distributions in ϋP(R++1), 0 < p < 1. Our proof uses only properties of
the nontangential maximal function u*. We then adapt our argument
to give a "direct" proof of the Chang-Fefferman decomposition for
JF(R2

+XR2

+).

I. Introduction. Let Rw

+

+1 = {(x, y): x e R", y > 0}. For u(x, y)
harmonic on R++1 and A > 0 define

u*(x) = sup \u(t,y)\.
\x-t\<Ay

We say that u <= HP if w* e Lp

9 for any A, and set \\u\\HP = \\u*\\LP. If
u e Hp, 0 < p < oo, then/= lim^Q w( , y) exists (in^7 ') and is said to
be in Hp. We set | | / | | ^ = | | i ι | |^ (see [6]).

For 0 < p < 1, dip-atom is a function α( c) e L2(R") satisfying:
(α) supp a c g, g a cube.

N | 2 < | β | 1 / 2 " 1 / ; 7 ( | β | = the volume of β).
(x)jcαώc = 0 for all monomials xa with |α| < [nip'1 - 1)].

The following theorem is well known [4] [7] [10]:

THEOREM A. Let f e Hp

9 0 < p < 1. There exist p-atoms ak and
numbers \k such that

(1) /

The λ^ satisfy Σlλ^l^ < C(p, « ) | | / | | ^ P . Conversely, every sum (1) satisfies

Now let u be biharmonic on R+X R2

+. Define

«*(*i> xi) = S UP lw(^i? Λ»
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As before, we say that u e HP(R2

+X R2

+) if w* e L^(R2), and we set

\\U\\HP = \\u*\\Lp. Such u give rise to boundary distributions/, which are

said to be in Hp. (See [2].)

For 0 < p < 1, a Chang-Fefferman p-atom is a function α e L 2(R 2)

satisfying:

(a') supp α c ! ϊ , Ω open, |Ω| < oo.

(j80 |M| 2 ^lΩl 1 / 2 " 1 ^.
(γ r) β = Σ Λ λ Λ « Λ , where λR are numbers and the aR are functions

(called "elementary particles") satisfying:

(i) supp aR c R c Ω where R = I X J, I, J dyadic intervals, and R

denotes the triple of R.

(ϋ)

and
1

J\R\\J\L

for all L < [2/p - 1/2]

(iii)

ίa(x1,x2)x2dx2 = 0 and

for all (jq, x2) e R2 and all k < [2/p - 3/2]. And

If the "atoms" are Chang-Fefferman atoms, then Theorem A is true

for/e/F(R2

+xR2

+)[2][3].
Until now, proofs of the atomic decomposition have relied on show-

ing that w* e Lp implies that some auxiliary function (such as the

"grand" maximal function or the S-function) is in Lp. In this paper, we

give proofs which get the atoms directly from "w* e Lp".

REMARK. Our argument is somewhat like that of A. P. Calderόn in [1].
Calderόn's "w*" is the sum of two real-variable maximal functions. He

writes his reproducing formula (see below) in terms of one kernel, and

uses the other kernel to control the L°° size of his atoms. Our proof uses

Green's Theorem to get L2 bounds. This approach lets us adapt our proof

to the bidisc setting, where L00 atoms do not seem to be the "right" ones.

II. The case HP(R2

+). Let ψ e C°°(R) be real, radial, supp ψ c {\χ\

< 1}, ψ has the cancellation property γ), and

θ= - 1 .

Fory > 0, sety~\p(t/y) = ψ (t).
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Take f<ΞL2Γ)Hp,f real-valued, u = Py*f (the Poisson integral of
/ ) . By Fourier transforms

f = L τz(t,y)ty{x-t)dtdy iny.
R+ y

(This trick is due to A. P. Calderόn.) For k = 0, ± 1, ± 2,..., define
00

Ek= {w* > 2k] = \jlk

where the Ik are component intervals. For / an interval, let

i={(t,y)<ER\:(t-y,t+y)cLl}

be the " tent" region. Define Ek = U //, Tf = // \ Ek+1. Then

/= Σft j O, y)*,(χ - 0 dtdy - Lg; = 2>X,

where λ̂  = C2k\lf\ι/p and the α^ (we claim) are atoms. The ak inherit γ
from ψ, and obviously supp α* c /*. Note also that

Thus, we are done if we can show

We do this by duality. Let h e L2(R), \\h\\2 = 1. Then

jh(x)gk(x)dx-

dtdyΫ/2

y

(Plancherel)
C\ f k

\
dt dy

We estimate the last integral by Green's Theorem. It is bounded by

ΘM

dv

(d/dv is outward normal; dTf is just smooth enough to let us use Green's
Theorem). Because of the "2" (in «*), both \u\ andy\Vu\ are bounded by
C2k on 37}*. Since |3^/3iΊ < 1 and |37}*| < C\Ik\, the last term is no
larger than C2 f c |//|1 / 2. D
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III. The case /P(R",+1). Let ψ be as in II, except now ψ e C°°(Rn).
Let/ ^ if77 Π L2 and u be as before. Define

where the Ω* are Whitney cubes (for the definition see [9], p. 167). For Ω a
cube in R", define

Ω = {(*, y): t e Ω, 0 < j> < /(Ω)}

where /(Ω) = sidelength of Ω. Define

With these modifications, the preceding argument goes over practi-
cally verbatim; the details are left to the reader.

ΓV. The case HP(R2

+X R2

+). We first show that the proof in II
yields a Chang-Fefferman decomposition for R+. For / c R a dyadic
interval, let

I+={(t,y):teI,\I\/2<y<l\I\}.

Define

l
where we set

Then it is easily verified that the aQ have the right cancellation,
support and smoothness properties for elementary particles. And obvi-
ously

<ή= Σ λ g α e ,

1/2
y o. \ . ΐleV2-i/P

In order to do our proof in R^X R+, we need tents, and we need a
way to do Green's Theorem. For these, we need some notation.
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For (/, y) = (tl9 yl912, y2) e (R 2) 2, let Rty be the rectangle with
sides parallel to the coordinate axes, centered at (tl912) ^ R2, and with
dimensions 2yλ X 2y2.

Take/ e L2 Π / F , w = PΛ PΛ * /(the double Poisson integral of/).
Let ψ be as in II but with cancellation corresponding to (iii). Then

(R2,)2 ̂ 1 %

Let M be the strong maximal function. Let ε > 0 be small, to be
chosen later. Define

Ek={u*ω>2k), Fk={MχEk>e).

It is a fact that \Fk\ < Cε\Ek\. Set

i - 'i)ΨΛ(*2 - h) dtdy = λkak,

Tk = Fk\Fk+\

8 J k d 9 (*'

where we set λ^ = C2k\Ek\1/p.

For R = / X /, /, / dyadic intervals, let i?+= 7+X / + c i?2 x R2

+.
Set

where we set

with

1 ) ! / y1y2\vιv2u\1dtdy\

92w
9xx 9x2

2 2

9>Ί, 3x2

2

+
92«

dyιdy2

Then, in exact analogy to case II, everything will be done once we
show

(2) (
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For this we need a lemma of Merryfield. The lemma requires a little
more notation.

Let η e C°°(R), η > 0, suppη c [-1,1], η > \ on [- ϋ ] and fη
= 1. Define

For £ c R2, set

Now, F£(/, y) is essentially the density of E in i?, r In particular, if
this density is greater than 1 — ε, ε small, then VE(t, y) > 10 ~6.

Merryfield's lemma is [8]:

LEMMA. Let u e HP(R2

+X R2

+), p < 2, α«J to wf00

(Note: Merryfield states this for E open, but openness, as his proof
shows, is not required.)

Let us set Gk = Fk\Ek+1. Merryfield's lemma says that

ί ΛΛlViV^lVoM*, y) dtdy < C22k\Gk\ < C22k\Ek\.

Therefore, we will have (2) (and be done) if we can show

VGk > 10"6 on Tk.

Take (t,y)e Tk. Then Rty c Fk but Rty <£ Fk+1. So there is an
x e Rty n (Fk\Fk+1). Since x <£ Fk+\ MχEt+(x) < ε. From the defi-
nition of M, this implies

\Rt,yKEk+1\/\Rj<e.

Since Rty c Fk,

Rtyyn(Fk\Ek+1)\/\RtJ>l-ε.

But Fk \ Ek+1 = G*, and this imphes that VGk(t, y) > 10~6, for ε small.D
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