ON THE ATOMIC DECOMPOSITION FOR HARDY SPACES

J. MICHAEL WILSON

We give an extremely easy proof of the atomic decomposition for distributions in $H^p(\mathbb{R}^{n+1}_+)$, $0 . Our proof uses only properties of the nontangential maximal function <math>u^*$. We then adapt our argument to give a "direct" proof of the Chang-Fefferman decomposition for $H^p(\mathbb{R}^2_+ \times \mathbb{R}^2_+)$.

I. Introduction. Let $\mathbf{R}_{+}^{n+1} = \{(x, y): x \in \mathbf{R}^{n}, y > 0\}$. For u(x, y) harmonic on \mathbf{R}_{+}^{n+1} and A > 0 define

$$u_A^*(x) = \sup_{|x-t| < Ay|} |u(t, y)|.$$

We say that $u \in H^p$ if $u_A^* \in L^p$, for any A, and set $||u||_{H^p} = ||u_1^*||_{L^p}$. If $u \in H^p$, $0 , then <math>f = \lim_{y \to 0} u(\cdot, y)$ exists (in \mathscr{S}') and is said to be in H^p . We set $||f||_{H^p} = ||u||_{H^p}$ (see [6]).

For 0 , a*p-atom* $is a function <math>a(x) \in L^2(\mathbf{R}^n)$ satisfying:

- (α) supp $a \subset Q$, Q a cube.
- $(\beta) \|a\|_2 \le |Q|^{1/2-1/p} (|Q| = \text{the volume of } Q).$
- $(\gamma) \int a(x) x^{\alpha} dx = 0$ for all monomials x^{α} with $|\alpha| \le [n(p^{-1} 1)]$.

The following theorem is well known [4] [7] [10]:

THEOREM A. Let $f \in H^p$, $0 . There exist p-atoms <math>a_k$ and numbers λ_k such that

$$(1) f = \sum \lambda_k a_k \quad in \mathcal{S}'.$$

The λ_k satisfy $\sum |\lambda_k|^p \le C(p, n) ||f||_{H^p}^p$. Conversely, every sum (1) satisfies

$$||f||_{H^p}^p \leq C(p,n) \sum |\lambda_k|^p$$
.

Now let u be biharmonic on $\mathbb{R}^2_+ \times \mathbb{R}^2_+$. Define

$$u_A^*(x_1, x_2) = \sup_{\substack{|x_i - t_i| < Ay_i \\ i = 1, 2}} |u(t_1, y_1, t_2, y_2)|.$$

As before, we say that $u \in H^p(\mathbb{R}^2_+ \times \mathbb{R}^2_+)$ if $u_A^* \in L^p(\mathbb{R}^2)$, and we set $||u||_{H^p} = ||u_1^*||_{L^p}$. Such u give rise to boundary distributions f, which are said to be in H^p . (See [2].)

For $0 , a Chang-Fefferman p-atom is a function <math>a \in L^2(\mathbb{R}^2)$ satisfying:

 (α') supp $a \subset \Omega$, Ω open, $|\Omega| < \infty$.

 $(\beta') \|a\|_2 \le |\Omega|^{1/2-1/p}$.

- (γ') $a = \sum_R \lambda_R a_R$, where λ_R are numbers and the a_R are functions (called "elementary particles") satisfying:
- (i) supp $a_R \subset \tilde{R} \subset \Omega$ where $R = I \times J$, I, J dyadic intervals, and \tilde{R} denotes the triple of R.

$$\left\| \frac{\partial^{L} a_{R}}{\partial x_{1}^{L}} \right\|_{\infty} \leq \frac{1}{\sqrt{|R|} |I|^{L}} \quad \text{and} \quad \left\| \frac{\partial^{L} a_{R}}{\partial x_{2}^{L}} \right\|_{\infty} \leq \frac{1}{\sqrt{|R|} |J|^{L}}$$

for all $L \le [2/p - 1/2]$

(iii)

$$\int a(\tilde{x}_1, x_2) x_2^k dx_2 = 0 \quad \text{and} \quad \int a(x_1, \tilde{x}_2) x_1^k dx_1 = 0$$

for all $(\tilde{x}_1, \tilde{x}_2) \in \mathbb{R}^2$ and all $k \leq \lfloor 2/p - 3/2 \rfloor$. And

$$\left(\sum_{R} \lambda_{R}^{2}\right)^{1/2} \leq \left|\Omega\right|^{1/2 - 1/p}.$$

If the "atoms" are Chang-Fefferman atoms, then Theorem A is true for $f \in H^p(\mathbb{R}^2_+ \times \mathbb{R}^2_+)$ [2] [3].

Until now, proofs of the atomic decomposition have relied on showing that $u^* \in L^p$ implies that some auxiliary function (such as the "grand" maximal function or the S-function) is in L^p . In this paper, we give proofs which get the atoms directly from " $u^* \in L^p$ ".

REMARK. Our argument is somewhat like that of A. P. Calderón in [1]. Calderón's " u^* " is the sum of two real-variable maximal functions. He writes his reproducing formula (see below) in terms of one kernel, and uses the other kernel to control the L^{∞} size of his atoms. Our proof uses Green's Theorem to get L^2 bounds. This approach lets us adapt our proof to the bidisc setting, where L^{∞} atoms do not seem to be the "right" ones.

II. The case $H^p(\mathbb{R}^2_+)$. Let $\psi \in C^{\infty}(\mathbb{R})$ be real, radial, supp $\psi \subset \{|x| \le 1\}$, ψ has the cancellation property γ), and

$$\int_0^\infty e^{-\theta} \hat{\psi}(\theta) d\theta = -1.$$

For y > 0, set $y^{-1}\psi(t/y) = \psi_{\nu}(t)$.

Take $f \in L^2 \cap H^p$, f real-valued, $u = P_y * f$ (the Poisson integral of f). By Fourier transforms

$$f = \int_{\mathbf{R}_{-}^{2}} \frac{\partial u}{\partial y}(t, y) \psi_{y}(x - t) dt dy \quad \text{in } \mathcal{S}'.$$

(This trick is due to A. P. Calderón.) For $k = 0, \pm 1, \pm 2, \ldots$, define

$$E^{k} = \{u_{2}^{*} > 2^{k}\} = \bigcup_{j=1}^{\infty} I_{j}^{k}$$

where the I_j^k are component intervals. For I an interval, let

$$\hat{I} = \{(t, y) \in \mathbf{R}_{+}^{2} : (t - y, t + y) \subset I\}$$

be the "tent" region. Define $\hat{E}^k = \bigcup \hat{I}_i^k$, $T_i^k = \hat{I}_i^k \setminus \hat{E}^{k+1}$. Then

$$f = \sum_{k,j} \int_{T_j^k} \frac{\partial u}{\partial y}(t, y) \psi_y(x - t) dt dy = \sum_{k,j} g_j^k = \sum_{k,j} \lambda_j^k a_j^k,$$

where $\lambda_j^k = C2^k |I_j^k|^{1/p}$ and the a_j^k (we claim) are atoms. The a_j^k inherit γ from ψ , and obviously supp $a_j^k \subset \tilde{I}_j^k$. Note also that

$$\sum \left(\lambda_{j}^{k}\right)^{p} \leq C \int \left(u_{2}^{*}\right)^{p} dx \leq C \|u\|_{H^{p}}^{p}.$$

Thus, we are done if we can show

$$||g_i^k||_2 \le C2^k |I_i^k|^{1/2}$$
.

We do this by duality. Let $h \in L^2(\mathbf{R})$, $||h||_2 = 1$. Then

$$\left| \int h(x) g_{j}^{k}(x) dx \right| = \left| \int_{T_{k}} \frac{\partial u}{\partial y}(t, y) \left(h * \psi_{y}(t) \right) dt dy \right|$$

$$\leq \left(\int_{T_{j}^{k}} y |\nabla u|^{2} dt dy \right)^{1/2} \left(\int_{\mathbf{R}_{+}^{2}} \left| h * \psi_{y}(t) \right|^{2} \frac{dt dy}{y} \right)^{1/2}$$
(Plancherel)
$$\leq C \left(\int_{T_{j}^{k}} y |\nabla u|^{2} dt dy \right)^{1/2}$$

We estimate the last integral by Green's Theorem. It is bounded by

$$\left(\int_{\partial T_{i}^{k}} \left(|u|y \left| \frac{\partial u}{\partial \nu} \right| + \frac{1}{2} u^{2} \left| \frac{\partial y}{\partial \nu} \right| \right) ds \right)$$

 $(\partial/\partial \nu)$ is outward normal; ∂T_j^k is just smooth enough to let us use Green's Theorem). Because of the "2" (in u_2^*), both |u| and $y|\nabla u|$ are bounded by $C2^k$ on ∂T_j^k . Since $|\partial y/\partial \nu| \le 1$ and $|\partial T_j^k| \le C|I_j^k|$, the last term is no larger than $C2^k|I_j^k|^{1/2}$.

III. The case $H^p(\mathbb{R}^{n+1}_+)$. Let ψ be as in II, except now $\psi \in C^{\infty}(\mathbb{R}^n)$. Let $f \in H^p \cap L^2$ and u be as before. Define

$$E^{k} = \left\{ u_{10^{n}}^{*} > 2^{k} \right\} = \bigcup_{j=1}^{\infty} \Omega_{j}^{k};$$

where the Ω_j^k are Whitney cubes (for the definition see [9], p. 167). For Ω a cube in \mathbb{R}^n , define

$$\hat{\Omega} = \{(t, y) : t \in \Omega, 0 < y < l(\Omega)\}$$

where $l(\Omega)$ = sidelength of Ω . Define

$$\hat{E}^k = \bigcup \hat{\Omega}_j^k, \qquad T_j^k = \hat{\Omega}_j^k \setminus \hat{E}^{k+1}.$$

With these modifications, the preceding argument goes over practically verbatim; the details are left to the reader.

IV. The case $H^p(\mathbb{R}^2_+ \times \mathbb{R}^2_+)$. We first show that the proof in II yields a Chang-Fefferman decomposition for \mathbb{R}^2_+ . For $I \subset \mathbb{R}$ a dyadic interval, let

$$I^{+} = \{(t, y) : t \in I, |I|/2 < y \le |I|\}.$$

Define

$$\begin{split} \mathscr{I}_{j}^{k} &= \left\{ Q = I^{+} \cap T_{j}^{k} \right\}, \\ g_{Q} &= \int_{Q} \frac{\partial u}{\partial y} (t, y) \psi_{y} (x - t) \, dt \, dy = \lambda_{j}^{k} \lambda_{Q} a_{Q} \quad \text{for } Q \in \mathscr{I}_{j}^{k}, \end{split}$$

where we set

$$\lambda_Q = C(\lambda_j^k)^{-1} \left(\int_Q y |\nabla u|^2 dt dy \right)^{1/2}.$$

Then it is easily verified that the a_Q have the right cancellation, support and smoothness properties for elementary particles. And obviously

$$\begin{split} a_j^k &= \sum_{Q \in \mathcal{I}_j^k} \lambda_Q a_Q, \\ &\left(\sum_{Q \in \mathcal{I}_k^k} \lambda_Q^2\right)^{1/2} \leq \left|\tilde{I}_j^k\right|^{1/2 - 1/p}. \end{split}$$

In order to do our proof in $\mathbb{R}^2_+ \times \mathbb{R}^2_+$, we need tents, and we need a way to do Green's Theorem. For these, we need some notation.

For $(t, y) = (t_1, y_1, t_2, y_2) \in (\mathbf{R}_+^2)^2$, let $R_{t,y}$ be the rectangle with sides parallel to the coordinate axes, centered at $(t_1, t_2) \in \mathbf{R}^2$, and with dimensions $2y_1 \times 2y_2$.

Take $f \in L^2 \cap H^p$, $u = P_{y_1} \cdot P_{y_2} * f$ (the double Poisson integral of f). Let ψ be as in II but with cancellation corresponding to (iii). Then

$$f = \int_{(\mathbf{R}_+^2)^2} \frac{\partial^2 u}{\partial y_1 \partial y_2}(t, y) \psi_{y_1}(x_1 - t_1) \psi_{y_2}(x_2 - t_2) dt dy \quad \text{in } \mathcal{S}'.$$

Let M be the strong maximal function. Let $\varepsilon > 0$ be small, to be chosen later. Define

$$E^{k} = \{u_{100}^{*} > 2^{k}\}, \qquad F^{k} = \{M\chi_{E^{k}} > \epsilon\}.$$

It is a fact that $|F^k| \leq C_{\varepsilon} |E^k|$. Set

$$\hat{F}^k = \big\{ (t, y) : R_{t, y} \subset F^k \big\},\,$$

$$T^k = \hat{F}^k \setminus \hat{F}^{k+1},$$

$$g^{k} = \int_{T^{k}} \frac{\partial^{2} u}{\partial y_{1} \partial y_{2}} (t, y) \psi_{y_{1}} (x_{1} - t_{1}) \psi_{y_{2}} (x_{2} - t_{2}) dt dy = \lambda_{k} a_{k},$$

where we set $\lambda_k = C2^k |E^k|^{1/p}$.

For $R = I \times J$, I, J dyadic intervals, let $R^+ = I^+ \times J^+ \subset R_+^2 \times R_+^2$. Set

$$\begin{split} \mathscr{I}_k &= \big\{ Q = R^+ \cap T^k \big\}, \\ g_Q &= \int_Q \frac{\partial^2 u}{\partial y_1 \partial y_2} (t, y) \psi_{y_1} (x_1 - t_1) \psi_{y_2} (x_2 - t_2) \, dt \, dy \\ &= \lambda_k \lambda_O a_O \qquad \big(Q \in \mathscr{I}^k \big), \end{split}$$

where we set

$$\lambda_Q = C(\lambda_k^{-1}) \left(\int_O y_1 y_2 |\nabla_1 \nabla_2 u|^2 dt dy \right)^{1/2}$$

with

$$\left|\nabla_{1}\nabla_{2}u\right|^{2} = \left|\frac{\partial^{2}u}{\partial x_{1}\partial x_{2}}\right|^{2} + \left|\frac{\partial^{2}u}{\partial x_{1}\partial y_{2}}\right|^{2} + \left|\frac{\partial^{2}u}{\partial y_{1},\partial x_{2}}\right|^{2} + \left|\frac{\partial^{2}u}{\partial y_{1}\partial y_{2}}\right|^{2}.$$

Then, in exact analogy to case II, everything will be done once we show

(2)
$$\int_{T^k} y_1 y_2 |\nabla_1 \nabla_2 u|^2 dt dy \leq C 2^{2k} |E^k|.$$

For this we need a lemma of Merryfield. The lemma requires a little more notation.

Let $\eta \in C^{\infty}(\mathbf{R})$, $\eta \geq 0$, supp $\eta \subset [-1,1]$, $\eta \geq \frac{1}{2}$ on $[-\frac{1}{2},\frac{1}{2}]$ and $\int \eta = 1$. Define

$$\Phi_{y_1,y_2}(t_1,t_2) = \eta_{y_1}(t_1) \cdot \eta_{y_2}(t_2).$$

For $E \subset \mathbb{R}^2$, set

$$V_E(t, y) = \Phi_y * \chi_E(t), \qquad (t, y) \in (\mathbf{R}_+^2)^2.$$

Now, $V_E(t, y)$ is essentially the density of E in $R_{t,y}$. In particular, if this density is greater than $1 - \epsilon$, ϵ small, then $V_E(t, y) > 10^{-6}$.

Merryfield's lemma is [8]:

LEMMA. Let $u \in H^p(\mathbb{R}^2_+ \times \mathbb{R}^2_+)$, p < 2, and let $u_{100}^* \le \lambda$ on $E \subset \mathbb{R}^2$. Then

$$\int_{(\mathbf{R}_{+}^{2})^{2}} y_{1}y_{2} |\nabla_{1}\nabla_{2}u|^{2} V_{E}^{2}(t, y) dt dy \leq C\lambda^{2} |E|.$$

(Note: Merryfield states this for E open, but openness, as his proof shows, is not required.)

Let us set $G^k = F^k \setminus E^{k+1}$. Merryfield's lemma says that

$$\int_{\mathbf{R}_{-k}^2} y_1 y_2 |\nabla_1 \nabla_2 u|^2 V_{G^k}^2(t, y) dt dy \le C 2^{2k} |G^k| \le C 2^{2k} |E^k|.$$

Therefore, we will have (2) (and be done) if we can show

$$V_{G^k} > 10^{-6}$$
 on T^k .

Take $(t, y) \in T^k$. Then $R_{t,y} \subset F^k$ but $R_{t,y} \not\subset F^{k+1}$. So there is an $x \in R_{t,y} \cap (F^k \setminus F^{k+1})$. Since $x \notin F^{k+1}$, $M\chi_{E_1^{k+1}}(x) \leq \varepsilon$. From the definition of M, this implies

$$\left|R_{t,y}\cap E^{k+1}\right|/\left|R_{t,y}\right|\leq \varepsilon.$$

Since $R_{t,y} \subset F^k$,

$$|R_{t,y}\cap (F^k\setminus E^{k+1})|/|R_{t,y}|\geq 1-\varepsilon.$$

But $F^k \setminus E^{k+1} = G^k$, and this implies that $V_{G^k}(t, y) > 10^{-6}$, for ε small.

REFERENCES

- [1] A. P. Calderón, An atomic decomposition of distributions in parabolic H^p spaces, Adv. in Math., 25 (1977), 216-225.
- [2] S.-Y. Chang and R. Fefferman, A continuous version of duality of H¹ with BMO on the bidisc, Ann. of Math., 112 (1980), 179-201.
- [3] _____, The Calderón-Zygmund decomposition on product domains, preprint.
- [4] R. R. Coifman, A real variable characterization of H^p, Studia Math., 51 (1974), 269-74.
- [5] R. Coifman, Y. Meyer and E. M. Stein, Un nouvel espace fonctionnel adapté à l'étude des opérateurs définie par des intégrales singulieres, preprint.
- [6] C. Fefferman and E. M. Stein, H^p spaces of several variables, Acta Math., 129 (1972), 137–193.
- [7] R. H. Latter, A characterization of $H^p(\mathbb{R}^p)$ in terms of atoms, Studia Math., 62 (1978), 93-101.
- [8] K. G. Merryfield, H^p spaces in poly-half spaces, Ph.D. Thesis, University of Chicago, 1980.
- [9] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.
- [10] J. M. Wilson, A simple proof of the atomic decomposition for $H^p(\mathbb{R}^n)$, 0 , Studia Math., 74 (1982), 25–33.

Received April 26, 1983 and in revised form July 8, 1983. Partially supported under NSF Grant MCS 8203319.

University of Chicago Chicago, IL 60637