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TOPOLOGIES ON THE QUOTIENT FIELD
OF A DEDEKIND DOMAIN

Jo-ANN COHEN

It is well known that if D is a Dedekind domain with quotient field
K and if T is any Hausdorff nondiscrete field topology on K for which
the open D-submodules of K form a fundamental system of neighbor-
hoods of zero, then T is the supremum of a family of p-adic topologies.
We show that if the class number of K over D is finite and if 7 is any
Hausdorff nondiscrete field topology on K for which D is a bounded set,
then T is the supremum of a family of p-adic topologies. We then
investigate the problem of extending a locally bounded topology from D
to a locally bounded topology on K. The extendable topologies on D for
which there exists a nonzero topological nilpotent and for which D is a
bounded set are characterized. Moreover it is shown that the topology of
a locally compact principal ideal domain 4 extends to a ring topology on
the quotient field of A if and only if 4 is compact.

1. Introduction and basic definitions. Let R be a commutative ring
and let T be a ring topology on R, that is, T is a topology on R making
(x, y) = x — y and (x, y) = xy continuous from R X R to R. A subset 4
of R is bounded for T if given any neighborhood U of zero, there exists a
neighborhood V of zero such that AV C U. T is a locally bounded topology
on R if there exists a fundamental system of neighborhoods of zero for T
consisting of bounded sets. As every compact set is bounded [4, Exercise
12, p. 119}, if T is a ring topology on R and (R, T) is locally compact,
then 7 is a locally bounded topology on R.

Each norm N on a ring R defines a locally bounded topology T on R
in a natural way. Obviously, each norm-bounded subset of R is also
bounded for T. Furthermore, if N is a nontrivial norm on a field K, that
is, Ty is nondiscrete, then a subset 4 of K is bounded in norm if and only
if 4 is bounded for Ty.

Let D be a Dedekind domain that is not a field, let K be the quotient
field of D and let £ be the set of nonzero proper prime ideals of D. We
assume familiarity with the definitions and basic properties of the func-
tions n, defined on the set of nonzero fractionary ideals of K and the
valuations v, defined on K for each p in #. (See for example [3, pp.
25-26].) If F'is a field and x is a transcendental element over F, we denote
the valuation on F(x) defined by the prime ideal (x*) of F[x~!] by v,,.
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In [9], Correl proved that if T is any nondiscrete Hausdorff field
topology on the quotient field K of a principal ideal domain D for which
the open D-submodules of K form a fundamental system of neighbor-
hoods of zero, then T is the supremum of a family of p-adic topologies.
Jebli showed that this characterization also holds if D is a Dedekind
domain [14]. Heine and Warner gave a further generalization in [13]. In
§2, we show that if X is the quotient field of a Dedekind domain D such
that the class number of K over D is finite and if T is any nondiscrete
Hausdorff field topology on K for which D is a bounded set, then T is the
supremum of a family of p-adic topologies. This result also yields known
results concerning norms on algebraic function fields [6, Theorems 1, 2
and 18, Theorem 2.11].

The problem of extending ring topologies from an integral domain /
to its quotient field F has been widely considered. Gelbaum, Kalisch and
Olmsted gave sufficient conditions for which F possesses a field topology
whose restriction to I is weaker than the original topology [11]. These
results were extended by Endo in [10], but again the restriction to 7 of the
topology on F is in general weaker than the given topology. In [1],
Anthony gave necessary and sufficient conditions for the topology on 7 to
be the restriction of a certain topology defined on F. However, the
topology on F is not necessarily compatible with the ring structure of F.
Other general results on the extension problem can be found in [2].

In §3 of this paper, we give criteria for which there exists a locally
bounded topology on the quotient field K of a Dedekind domain D whose
restriction to D is a given locally bounded topology. We also characterize
all Hausdorff, nondiscrete, extendable locally bounded topologies on D
for which D is a bounded set and for which there exists a nonzero
topological nilpotent in D (that is, a nonzero element ¢ in D such that
¢” — 0) when the class number of K over D is finite. Then in §4 we
consider the problem of extending locally compact topologies from a
Dedekind domain to its quotient field.

2. Field topologies on the quotient field of a Dedekind domain.
Throughout this section let D be a Dedekind domain which is not a field,
let K be the quotient field of D, let # denote the set of nonzero proper
prime ideals of D and for each p in &, let T, denote the locally bounded
topology on K defined by the valuation v,.

LEMMA. Suppose the class number o of K over D is finite. Let
V1> Vas-+ - >Y, be nonzero elements of K, let p,, p,,...,p, be distinct elements



TOPOLOGIES ON THE QUOTIENT FIELD OF A DEDEKIND DOMAIN 53

of # and let M be any positive integer. If v,(y;) = M for all i in [1, n] and
all j in [1, a], then there exist nonzero elements a and b in D such that
VY2 ot Yo =a/bandv,(a),v,(b—1) = Mforall iin[l,n]

Proof. For each j in [1, a], let 4; and B; be nonzero ideals of D such
that Dy, = A,B7'and 4, + B, = D. Clearly n,(A4,) = M for all i in [1, n]
and alljin [1, a]. Let 4 = X%_; 4; and let B = N}_; B,. Then 4 and B are
nonzero ideals of D such that A + B = D. Indeed, suppose p in Zis such
that n,(4) > 1. Then n,(4;) > 1 for all j and hence n,(B;) = 0 for all ;.
Thus n,(B) =0 and so 4 + B = D. Therefore, A* + B* = D as well.
Since « is the class number of K over D, there exist nonzero elements ¢
and d in D such that A* = Dc and B* = Dd. We note that for all i in
(1, n}, v,(c) =n,(4%) = amin{n,(4,): 1 <j < a} > aM > M. In par-
ticular, ¢ is a nonunit of D. As A* + B* = D, there exist elements s and ¢
in D such that 1 = sc + td. By the above remarks, ¢t # 0 and v, (1d — 1) >
M for all i in [1, n]. Therefore in order to complete the proof of the
lemma, it suffices to show that there exists a nonzero element x in D such
that y,y, --- y, = xc/td.

By the definitions of A and B, 4, C 4 and B C B, for all j in [1, a].
Hence

Wr e va € (Ady - A)(BUB - BY) € 4B = D
So there exists a nonzero y in D with y,y, --- y, = yc/d. Theny,y, --- y,
= xc/td where x = ty.

THEOREM 1. Let D be a Dedekind domain which is not a field, let K be
the quotient field of D and let P be the set of nonzero proper prime ideals of
D. Suppose the class number o of K over D is finite. If T is a nondiscrete
Hausdorff field topology on K for which D is a bounded set, then T is the
supremum of a family of p-adic topologies.

Proof. For each p in 2, let B, = {y € K: uy,(y) > 0}. Let 4 be any
T-neighborhood of zero. We first show that there exists a nonzero proper
ideal I of D such that I C A and B, is a T-neighborhood of zero for each p
in £ with n,(I) > 0. As T is Hausdorff, we may assume that D is not a
subset of A. Furthermore, we may assume that A4 is a closed T-neighbor-
hood of zero. Let W = { y € K: yD ¢ A}. Clearly, W € 4 and WD C A.
Moreover as D is a T-bounded set, W is a T-neighborhood of zero. Since
T is nondiscrete, there exist nonzero elements a and b in D such that
a/b € W. By the above remarks, Da = Db(a/b) C A. As D is not a
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subset of A, a is a nonunit of D. Thus 4 contains a nonzero proper ideal /
of D which we may assume is closed for T. Let p,, p,,...,p, be distinct
elements of & and let a, a,,...,a, be positive integers such that I =
I17_, pi". Suppose that there exists an i such that B, is not a T-neighbor-
hood of zero. Without loss of generality, assume that i =1. As I is
T-closed, I =N{V + I: V is a T-neighborhood of zero}. Let V be any
T-neighborhood of zero and let V; = {y € K: yD C V'}. As before V] is
a T-neighborhood of zero, V; C V and DV, C V. By assumption, there
exist nonzero elements ¢ and d in D such that v, (¢/d) < 0and ¢/d € V.
Let x be a nonzero element of D such that v,(x) = —v,(c/d) and
v,(x) = —v,(c/d) for all p in £ with v,(c/d) < 0. (The existence of x is
guaranteed by [3, Proposition 9, p. 12].) Then xc/d is a nonzero ele-
ment of D, Dxc/dC V and v,(xc/d)=0. Hence n,(Dxc/d) = 0.
Consequently, if p € #\ {p,,...,p,}, then n,(Dxc/d + I) =
min{n,(Dxc/d), n,(I)} = 0. Moreover, if p € { p,,...,p,}, then 0 <
n,(Dxc/d + I) < n,(I). So Dxc/d + I =TI_, p# where 0 < B, <aq,
for i =2,3,...,n. Consequently for each T-neighborhood V of zero,
I, pfic V + I Then I1"_, p® € I =117, p{, a contradiction. There-
fore B, is a T-neighborhood of zero for each p in #such thatn (1) > 0.

Let 4 be any T-neighborhood of zero. We next show that there exist
P1> P3s---»P, in & and a neighborhood B of zero for sup, _,_, 7, such that
B C A and for all i in [1, n], B, is a T-neighborhood of zero. As T is a
field topology on K, there exists a 7-neighborhood V of zero such that
V(1 + V)~ ! C A. By the above, there exist distinct elements p,, p,,...,p,
of & and positive integers a;, @,,...,a, such that B, is a T-neighborhood
of zero for i =1,2,...,n and I17_; p® C V. Then IT, p/ C V where
M =max{a;: 1<i<n}. Let Bj={y€K: v,(y)>M for all i in
[1, n]} and let y;, y,,...,y,_; be fixed nonzero elements of B,. If y is any
nonzero element of B,, then by the preceding lemma, there exist nonzero
elements a and b in D such that y,y, --- y,_,y=a/banda, b—1¢€
[, pMcV.Soy,y, --+ yo_1¥ € V(1 + V)~ ! C 4 and hence

MYyt Ya1Bi C 4.

Therefore the elements p,, p,,...,p, of # and the set B defined by,
B =y,y, --- y,_,B,, satisfy the desired properties.

Now let S = { p € #: B, is a T-neighborhood of zero}. By the above
remarks, T C sup,cs 7,. Moreover sup,.g¢ 7T, € T. Indeed, if
{ P1> P2s---5P,} € S and M is any nonnegative integer, then N_, Bp’? isa
T-neighborhood of zero contained in {y € K: v,(y) =M for i=

1,2,...,n}.
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COROLLARY. Let A be a principal ideal domain which is not a field and
let K be the quotient field of A. If T is a nondiscrete Hausdorff field topology
on K for which A is bounded, then T is the supremum of a family of p-adic
topologies.

COROLLARY 2 (Correl [9]). Let D be a Dedekind domain which is not a
field and let K be the quotient field of D. Suppose that the class number of K
over D is finite. If T is any nondiscrete Hausdorff field topology on K for
which the open D-submodules of K form a fundamental system of neighbor-
hoods of zero, then T is the supremum of a family of p-adic topologies.

THEOREM 2. Let D be a Dedekind domain which is not a field, let K be
the quotient field of D and let P be the set of nonzero proper prime ideals of
D. Suppose that the class number of K over D is finite. If T is a Hausdorff
ring topology on K, then the following are equivalent.

1° T is a field topology on K, D is a bounded set for T and there exists a
nonzero topological nilpotent for T.

2° There exists a finite subset { py, P5,...,P,} Of P such that T =
SUP) << I,

3° T s a locally bounded topology on K, there exists a nonzero topological
nilpotent for T and D is a bounded set for T.

4° D is a bounded set for T and there exists a nontrivial norm on K which
defines T.

Proof. Suppose T is a field topology on K, D is a bounded set for T
and y is a nonzero topological nilpotent for 7. By Theorem 1 there exists a
nonempty subset S of Z such that T = sup,. ¢ T,. If S is infinite, letp € S
be such that v,(y) = 0. Then {z € K: v,(z) > 0} is a T-neighborhood of
zero but y™ & {z € K: v,(z) > 0} for any m, a contradiction. Hence S is
finite and so 1° = 2°. Clearly 2° = 3°. By [8, Theorem 6.1], 3° = 4°,
The proof that 4° = 1° is the same as that for normed algebras found on
page 75 of [5].

COROLLARY 1. Let F be a field, let x be a transcendental element over F
and let T be a Hausdorff locally bounded topology on F(x) for which F is a
bounded set. If there exists a nonzero topological nilpotent f(x) in F[x], then
T is the supremum of a finite family of p-adic topologies.

Proof. By [8, Theorem 6.1], there exists a nontrivial norm N on F(x)
such that T = T). As F is a T-bounded set, there exists M’ > 0 such that
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N(a) < M’ for all a in F. We note that as 7T is Hausdorff and F is a
T-bounded set, f(x) & F. Let m > 0 be such that N(f”) <1 and let
g = f™. By the above remarks, N(g) < 1, g &€ F and there exists M > 0
such that N(h) < M forallhin {¢t € F[x]: t = 0ordegt < degg}. Fory
in F[x], let y,, »;,- ..., be elements of F[x] such that y = ¥"_, y,g" and
for all i, y, = 0 or deg y; < deg g. Then

n i 1
N(y)< ) N(y;)N <M ——F-—.
(») EO (y)N(g) TN (z)
Hence F[x] is bounded in norm and so the corollary follows from
Theorem 2.

COROLLARY 2 [6, 18]. Let F be a field and let x be a transcendental
element over F. If T is a Hausdorff locally bounded topology on F(x) for
which F is bounded and for which there exists a nonzero topological nilpotent,
then there exists a finite subset { p,, p,,...,p,} of U {0} such that
T = sup; <, 7;;,-

Proof. As before, there exists a nontrivial norm N on K such that
T = Ty. Let y be a nonzero element of F(x) such that N(y) < 1. As Fisa
T-bounded set, y € F. So y is a transcendental element over F, F(x) is a
finite algebraic extension of F(y) and T|g,, is defined by N|g,.
Consequently, F is a bounded subset for T'| . So by Corollary 1, there
exist nontrivial valuations v,, v,,...,v, on F(y), each of which is trivial on
F, and corresponding valuation topologies 7,, T, ,...,T, on F(y) such
that T'|p,, = sup, .;., T, - Let K, be a maximal subfield of F(x) contain-
ing F(y) such that there exist nontrivial valuations v, v5,...,0; on K,
each of which is trivial on F, with T|, = sup,_,., 7, By Theorem 5 of
[21], K, = K, where K, = {z € F(x): z is separable over K,}. If char F
= 0, then F(x) = K,. We may therefore assume that char F = p # 0 and
F(x) is a purely inseparable extension of K. So there exists m > 0 such
that x?” € K,. By Theorem 4 of [21] and its proof, for each i, 1 <i < ¢,
there exists a Hausdorff locally bounded topology 7; on F(x) such that
T),, = T, and T = sup, _,_, T,. Consequently for each i, there exists a
nonzero topological nilpotent for 7;. Thus each T, normable [8, Theorem
6.1]. As each nontrivial valuation on F(x) which is trivial on F is
equivalent to v, for some s in Z U {0} [3, Corollary 2, p. 94], it suffices to
show that each T; is the supremum of finitely many nondiscrete valuation
topologies, each of which is discrete on F.

Let 1 < i < ¢. Since v; may be extended to a valuation on F(x) [3,
Proposition 5, p. 105], we may assume that v; = v, for some s in
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P U {o0}. Suppose s € Z. Then s = (g(x)) for some monic prime poly-
nomial ¢q of F[x]. As x”" € K, q*" € K, and so v}(¢*") = v,(¢”") > 0.
Therefore there exists a nonzero T-topological nilpotent contained in
F[x]. Moreover, F is a T-bounded set. Indeed, if B is any T-bounded
neighborhood of zero, then there exists k > 0 such that g*F € B N K as
F is bounded for 7,,. Then F C g *B, a T-bounded set. Thus by Corollary
1, 7, is the supremum of a finite family of valuation topologies, each of
which is discrete on F.

Suppose s = oco. The above argument with g replaced by x ! yields
that 7, is a Hausdorff, locally bounded topology on F(x~!) for which
there exists a nonzero topological nilpotent fin F[x '] and for which F is
a T-bounded set. Therefore 7, is the supremum of a finite family of

1

valuation topologies having the desired properties.

COROLLARY 3. Let F be a field, let x be a transcendental element over F
and let L be a separable finite algebraic extension of F(x). If T is a
Hausdorff locally bounded topology on L for which F is a bounded set and for
which there exists a nonzero topological nilpotent, then there exists a finite
family {vy, v,,...,v,} of nontrivial valuations on L, each of which is trivial
on F, such that T = sup, ., T,.

Proof. Let y be a nonzero topological nilpotent for 7. By Lemma 3 of
[7], y is a transcendental element over F and hence L is a finite algebraic
extension of F(y). The proof of Corollary 2 yields that there exists a
nonzero 7T-topological nilpotent contained in F(x). Indeed, with the
terminology of that proof, let K, be a maximal subfield of L containing
F(y) such that T'|; has the desired properties and for each i, 1 <i < ¢,
let v, be a nontrivial valuation on L such that )|, =T, |,.. Then v,z ,,is a
nontrivial valuation [3, Corollary 2, p. 140] and so there exists a nonzero z
in F(x) such thatv,(z) > 1 fori = 1,2,...,2. If m > 0 is any integer such
that x?” € K, then z?" € K, and z”" is a T-topological nilpotent for
each i. Consequently z?" is a T-topological nilpotent. Hence by Corollary
2, T| g, is the supremum of finitely many valuation topologies, each of
which is discrete on F. Corollary 3 then follows from Theorem 5 of [21].

We note that Corollaries 2 and 3 also follow from a result of Weber
[27, Folgerung 4.4].

COROLLARY 4. Let F, be a finite field, let x be a transcendental element
over F, and let L be a finite algebraic extension of F.(x). If T is a Hausdorff
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locally bounded topology on L for which there exists a nonzero topological
nilpotent, then T is the supremum of a finite family of valuation topologies.

Proof. By Theorem 31:9 of [20], there exists a transcendental element
y over F, such that L is a finite separable extension of F (y). The corollary
then follows from Corollary 3.

3. Extensions of topologies. Throughout this section, if p is a
nonzero proper prime ideal of a Dedekind domain D, we denote the
locally bounded topologies defined on D and on the quotient field K of D
(by the p-adic valuation) by 7, and f;, respectively.

THEOREM 3. Let D be a Dedekind domain with quotient field K. Let T
be a Hausdorff locally bounded topology on D for which there exists a
nonzero topological nilpotent x in D satisfying:

1. For each neighborhood V of zero, xV is a neighborhood of zero.

2. If y is any nonzero element of D with Dx + Dy = D and V is any
T-neighborhood of zero, then there exists a z in D such that yz — 1 € V.
Then there exists a Hausdorff locally bounded topology T on K such that
T|, = T. Moreover if T' is any Hausdorff locally bounded topology on K for
which T'|, € T, then T’ C T.

Proof. By [25, Theorem 4], there exists a nontrivial norm N on D with
T =Ty. Foreache > 0,let B, = { y € D: N(y) < &}. By induction on n,
x"B, is a T-neighborhood of zero for all n» > 0. Replacing x by x™ if
necessary, we may assume that N(x) < 1.

For each ¢ > 0, let f?e = { y € K: there exist a and b in D with a,
b —Al € B, and y = a/b}. Clearly, 0 € B, —Ef = B, and Emin{s,s) c B,
N Bg for all €, 8 > 0. So in order to show that { B,: ¢ > 0} is a fundamen-
tal system of neighborhoods of zero for a ring topology 7 on K, it suffices
to show that given ¢ > 0 and y € K, there exist positive numbers 8, n and
v such that B; + B; c B,, l?,,f?n C B, and y]??y C B, [4, p. 75].

Let ¢ > 0 and let § > 0 be such that (B; + 1)B; + (B; + 1)B; + B;
cB.If a,b,c,d€ D with b,d+ 0 and a,c,b —1,d — 1 € B;, then
bd—1=b(d—1)+(b—1) € (Bs;+ 1)Bs + B; C B,. Furthermore, ad
+ bc € By(By+ 1)+ (By+ 1)B;C B,. So a/b+ c¢/d <€ B, and hence
B, + B, c B,

Let ¢ > 0 and choose § > 0 such that B;B; + (B; + 1)B; + B; C B,.
If a/b, c/d € i38 where a,c, b — 1,d — 1 € By, then by the above argu-
ment, bd — 1 € B,. Moreover, ac € ByB; C B,. Hence B;B; c B..
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Finally let ¢ > 0 and let f/g € K where f,g€ D and g # 0. It
suffices to show that for f # 0 and 0 < & < 1, there exists § > 0 such that
(f/g)BS C fBe. Choose n > 0 such that nv,(x) — v,(g) = 0 for all p in &
with v,(x), v,(g) > 0. Let ¢ be a nonzero element of D such that
v,(c) =0 for all nonzero proper prime ideals which divide Dx and
v,(c) 2 v,(g) for all p in Z with v,(x"/g) < 0. (The existence of c is
guaranteed by [3, Proposition 9, p. 12].) Clearly Dc + Dx = D. Further-
more ¢x"/g € D. Indeed, if v,(x) > 0 or if v,(g) = 0, then v,(cx"/g) =
v,(¢) +v,(x"/g) 2 0. Moreover, if v,(x) =0 and v,(g) > 0, then
v,(cx"/g) = v,(¢) —v,(g) = 0. So cx" = gd for some nonzero d in D. As
Dc + Dx = D, there exists a nonzero z in D with cz— 1€ B, ,. Let
M = n be such that x"fzd € B, and let 8 > 0 be such that Bs(B, ,, + 1)
C B, and B; C x*MB,. Let a and b be elements of D such that b # 0
and a, b — 1 € B;. Then a = x?>Mp, for some b, € B, and so

fa_x*Mb fzd  x™x°b,fzd

gb gbzd bzc

for some s > 0. As N(x°h;) <1, x™x*b, fzd € B,. Furthermore by a
previous argument, bzc — 1 € B, as well. Thus ( f/8)B; c B.. Conse-
quently, { B: & > 0} is a fundamental system of neighborhoods of zero for
a ring topology ‘T on K.

In order to show that 7 is a locally bounded topology on K, it suffices
to show that B, nisa T-bounded set. First observe that if d is any element
of D withd — 1 € B, , then Dd + Dx = D. Indeed, suppose that v,(d),
v,(x) > 0 for some p in #. Then v,(d — 1) = 0. But d — 1 is a T-topo-
logical nilpotent of D and so (d — 1) € xB; for some m > 0. Hence
v,(d — 1) > 0, a contradiction. Therefore, Dd + Dx = D. Now let 0 < ¢
< 1 and let § > 0 be such that (B, , + 1)B; C B, ,, and Bs(Byq..»)
B. Let a,b,c,d € D where b and d are nonzero, a, b — 1 € B; and
¢,d — 1 € B, ,,. By the above remark, there exists a nonzero y in D with
yd — 1€ B, ,. Hence, N(y) < N(1 — d)N(y) + N(yd) < 3N(y) +
(NQ) + &/2) and so N(y) < 2(N(1) + ¢/2). Consequently acy €
Bs(Byay+es2) S B, Moreover, bdy — 1 = (dy)(b—1) + (dy — 1) €
(B,,,+ 1)B;+ B, ,, C B,. So ac/bd€ B, and hence B, is a T-
bounded neighborhood of zero.

We next show that 7’|, = T. Obviously for any ¢ >0, B,C B,N D
and so T'|, C T. To prove the reverse inclusion, let ¢ > 0, let § > 0 be
such that 8§ < min{e/2,1/2) and let a/b € B; N\ D wherea, b — 1 € B;.
Denote a/b by a,. As a; = a;(1 — b) + a, N(a;) < N(a,)8 + 8§ < 3N(a,)
+ 8. Consequently, N(a,) < 28 < ¢. Therefore B; N\ D C B, and hence
Tl p = T.(We note that as T is Hausdorff, T is Hausdorff as well.)
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Finally let 7" be any Hausdorff locally bounded topology on K for
which 7’|, € T. Then x"” — 0 for 7" and hence by [8, Theorem 6.1], T” is
normable. Therefore the mapping y — y ! is continuous on K* for 7.
(The proof of this assertion is the same as that for normed algebras found
on p. 75 of [5].) Let V be any T’-neighborhood of zero. As (y, z) = y !z
is continuous at (1,0) for 77, there exists a 7”-neighborhood U of zero
such that —1 & Uand (1 + U) " 'U C V. Let § > 0 be such that B; C U
N D. Ifa/bEl}swherea,b——l € B;, thena€ Uand b€ U + 1. So
a/be Vandhence T’ C T.

We note that the topology 7" defined in Theorem 3 is normable as
x" — 0 for T and consequently 7"is compatible with the field structure of
K.

COROLLARY. Let A be a principal ideal domain with quotient field K and
let T be a Hausdorff locally bounded topology on A for which A is a bounded
set. If there exists a nonzero topological nilpotent x in A such that xV is a
T-neighborhood of zero whenever V is a T-neighborhood of zero, then there
exists a locally bounded topology T on K with T 4=T.

Proof. Let y be any nonzero element of 4 such that Ay + Ax = A4, let
V be any T-neighborhood of zero and let n > O be such that Ax” C V.
Then Ay + Ax" = A and so there exists gin 4 with gy — 1 € Ax" C V.
The corollary then follows from Theorem 3.

THEOREM 4. Let D be a Dedekind domain with quotient field K such
that the class number of K over D is finite and K+ D. Let T be a
Hausdorff, nondiscrete, locally bounded topology on D. The following are
equivalent.

1° D is a T-bounded set and there exists a nonzero topological nilpotent x
in D such that xV is a T-neighborhood of zero for each T-neighborhood

V of zero.
2° There exists a sequence p,, p,,. . .,p, of nonzero proper prime ideals of
D such that T = sup, _, ., T,.
3° D is a T-bounded set, there exists a nonzero topological nilpotent x in
D and there exists a locally bounded topology T on K such that

T|,=T.
4° There exists a normable topology T on K such that T|, = T and D is

a T-bounded set.
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Proof. 1° = 2°. First notice that as T is Hausdorff and as D is a
T-bounded set, x is a nonunit of D. So Dx = [17_, p® where p,, p,,...,p,
are nonzero proper prime ideals of D and a; > 1 for i € [1, n]. As before,
an inductive argument establishes that Dx™ is a T-neighborhood of zero
for m > 0. Consequently, { Dx™: m > 0} is a fundamental system of
neighborhoods of zero for T and for sup, _,_, 7,

2° = 3° is obvious.

3° = 4°. As T is Hausdorff, T is Hausdorff as well. Also, since
x" = 0 for T, x" — 0 for T and so T is normable [8, Theorem 6.1]. Let ¥
be any T-bounded neighborhood of zero and let n > 0 be such that
x"D C V' N D. Then D C x~ "V, a T-bounded set. Thus D is a T-bounded
set.

4° = 1°. By Theorem 2, T =sup,_,.,7, for some sequence
P1> Pas---»P, Of nonzero proper prime ideals of D. Clearly, D is a T-
bounded set. As the class number of K over D is finite, there exists a
nonzero element x in D with v, (x) > 0 for iA= 1,2,...,nand v,(x) =0
for p in @\ { py, Py,-.-,P,}- Then x is a T-topological nilpotent and
hence a T-topological nilpotent. Moreover for any m > 0, x({ y € K:
v,(y) = m for'i € [l,n]}ND) 2 {y€D: v,(y) = m+ v,(x) for
i € [1, n]}. So xV is a T-neighborhood of zero for each T-neighborhood
V of zero.

COROLLARY 1. If A is a principal ideal domain which is not a field and
if T is a nondiscrete normable topology on A for which A is a bounded set,
then there exists a locally bounded topology on the quotient field of A whose
restriction to A is T if and only if T is the supremum of a finite family of
p-adic topologies.

In [7] we characterized the nondiscrete normable topologies on the
ring of integers Z as follows. For any prime ideal p and for any positive
integer n, { p"} is a fundamental system of neighborhoods of zero for a
locally bounded topology 7,» on Z. If T is a nondiscrete normable
topology on Z, then there exist disjoint finite subsets #, and %, of # and
positive integers n(p) for each p in &, such that T = sup(sup,cq 7T,
Sup, e, Tr»). (See also [17] and [19].) The analogous characterization of
the nondiscrete normable topologies on the polynomial ring F[x] for

which F is bounded was also given in [7]. The next two corollaries describe
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the extendable nondiscrete normable topologies on Z and on F[x] for
which F is bounded.

COROLLARY 2. If N is a nontrivial norm on Z and T is the topology
defined by N, then there exists a locally bounded topology T on the rational
field with T|Z = T if and only if T is the supremum of a finite family of
p-adic topologies.

Proof. If N is a nontrivial norm on Z, then there exists m > 1 such
that N(m) < 1. Let M = max{ N(i): —m <i <m} and let x € Z. Then
x =X ,a,m' where —m < a, < mfori € [0, n]. Hence

n o0
‘ _ 1
N ! N "= M.
Therefore Z-is bounded in norm and so the corollary follows from
Corollary 1.

COROLLARY 3. Let F be a field and let x be a transcendental element
over F. If N is a nontrivial norm on F[x] for which F is norm-bounded, then
there exists a locally bounded topology T on F(x) whose restriction to F[x) is
the topology T defined by N if and only if T is the supremum of a finite
family of p-adic topologies.

Proof. We observe that as T is Hausdorff and F is bounded in norm,
for each nonzero y in F[x] with N(y) < 1, deg y > 1. Corollary 3 follows
from this observation and an argument similar to the one used in the
proof of Corollary 2.

We conclude this section by observing that an appropriate modifica-
tion of the proof of Theorem 3 yields the following result.

THEOREM 5. Let I be a unique factorization domain and let K be the
quotient field of I. Let T be a Hausdorff, locally bounded topology on I for
which there exists a nonzero topological nilpotent x in 1 satisfying:

1. For each neighborhood V of zero, xV is a neighborhood of zero.

2. If y is any nonzero element of I with (x,y)=1 and V is any
neighborhood of zero, then there existsa z in I withyz — 1 € V.

Then there exists a Hausdorff, locally bounded topology T on K whose
restrictionto I is T.

4. Locally compact Dedekind domains. In [23] Warner raised the
question of whether the topology of a compact integral domain 7 can be
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extended to the quotient field of 1. In [22] he showed that a compact
Dedekind domain D is a local principal ideal domain for which {m":
n > 0} is a fundamental system of neighborhoods of zero where m is the
unique maximal ideal of D (Theorems 1 and 3). Thus a compact Dedekind
domain D is a locally compact bounded ring whose given topology is the
restriction to D of the m-adic topology defined on the quotient field of D.
We show conversely that if D is a locally compact bounded Dedekind
domain and if there exists a ring topology on the quotient field of D
whose restriction to D is the given topology, then D is a compact principal
ideal domain. Moreover, if D is a Dedekind domain with quotient field K
such that the class number of K over D is finite, then D is locally compact
and its given topology extends to a ring topology on K if and only if D is a
compact principal ideal domain.

THEOREM 6. Let D be a Dedekind domain which is not a field, let K be
the quotient field of D and let T be a nondiscrete Hausdorff ring topology on
D. The following are equivalent.

1° (D, T) is locally compact, there exists a nonzero proper prime ideal p

of D such that p" is a T-neighborhood of zero for all n > 0 and
there exists a ring topology Ton KwithT|,=T.

2° D is a compact principal ideal domain.

Proof. by the previous remarks, it suffices to show that 1° implies 2°.
As D is not a field, D is totally disconnected [24, Theorem 2] and hence
there exists a compact open subring B of D such that Rad B is a compact
open subring of D contained in p [16, Lemma 4 and 24, Theorem 3]. As
Ne_,p"=(0), {BNp™ n=0} is a fundamental system of neighbor-
hoods of zero for a Hausdorff topology T’ on B weaker than T'|,. Hence
T'=T|zand so { BN p™: n > 0} is a fundamental system of neighbor-
hoods of zero for T.

Let a be a nonzero element of Rad B. Then Da = p®[]_, p® where
P1> P3s--- D, are nonzero proper prime ideals of D and «,, o, ...,a, are
positive integers. We first show that pI1"_, p; is a T-topologically nil ideal
of D, that is, if b € pI1’_, p;, then b — 0 for T.

Let b € pIl/_, p;, let m = 1 be such that b"/a € D and let t > 1 be
such that (b”/a)(B N p*) € B. Then (b™/a)(B N p’) C BN p' and so
for all s > 1, (b™/a)*(B N p*) € B N p’. In particular, b™" = (b"/a)'a’
€ B N p'. Consequently for any N, > 1 and any N > N,, (b™)" € BN
p™™ € B N p™. Therefore, b™ is a T-topological nilpotent. As {b": 1 < r
< mt} is a T-bounded set, it follows that b is a T-topological nilpotent. So
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pI'1"_ | p; is a T-topologically nil ideal of D. By [15, Corollary to Theorem
12}, pI'1; p, € Rad D. Hence if g is any nonzero proper prime ideal of
D, then pIl’_,p,C q and so q € { p, py,...,p,}. Therefore, D is a
principal ideal domain [28, Theorem 16, p. 278]. As p" is a T-neighbor-
hood of zero for all n > 0, the proof of Theorem 6 of [24] yields that D
has only one maximal ideal Dc, all the nonzero ideals of D are T-open and
Dc is a T-topologically nil ideal.

We next show that if ¥ is any T-neighborhood of zero, then cV'is a
T-neighborhood of zero. As p = Dc is a T-neighborhood of zero, we may
assume that ¥ C p. Let ¥ and W be T-neighborhoods of zero with
VA DcVand WU cW C V. Suppose y € W and ¢y € D. Then ¢y €
VnbDc P and so vp(cyA) > 1. Hence v,(y) > 0, that is, y € D. Conse-
quently (¢cW) N D C ¢(W N D) C cV. Therefore cV is a T-neighborhood
of zero whenever V is a T-neighborhood of zero. It follows by induction
that for any » > 0 and any T-neighborhood V of zero, ¢"V is a T-neigh-
borhood of zero.

Now let a be any nonzero element of D and let V' be any T-neighbor-
hood of zero. Then a = b¢” for some n > 0 and some unit b of D. By the
above remarks, aV = bc"V is a T-neighborhood of zero. Hence by [16,
Theorems 8 and 23, Theorems 5 and 7], D is a compact ring.

THEOREM 7. Let D be a Dedekind domain which is not a field, let K be
the quotient field of D and let T be a nondiscrete Hausdorff ring topology on
D. If (D, T) is locally compact, then the following are equivalent.

1° D is a T-bounded set and there exists a locally bounded ring topology T
on K such that T|, = T.
2° D is a T-bounded set and there exists a field topology T on K such that

T|,=T.
3° D is a T-bounded set and there exists a ring topology T on K such that
T|,=T.

4° D is a compact principal ideal domain.

Proof. Clearly 2° implies 3° and as before, 4° implies 1° follows from
Theorems 1 and 3 of [22]. By [15, Theorem 14], if B is any compact open
subring of D, then Rad B is a T-topologically nil ideal of B and hence is a
T-topologically nil ideal of B for any ring topology 7" on K with T| p=T.
Thus if 1° holds, then 7 is normable [8, Theorem 6.1]. Consequently 7'is a
field topology on K. So 1° implies 2°.

By Theorem 6, in order to show that 3° implies 4°, it suffices to show
that there exists a nonzero proper prime ideal p of D such that p” is a
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T-neighborhood of zero for all n > 0. By [12, Lemma 4.5], D contains a
proper T-open ideal and hence a nonzero, proper, T-open prime ideal p.

First observe that D is a T-bounded set. Indeed, if B is any compact
T-open subring of D, then there exists a nonzero b in B such that Db C B.
As T|, = T, Bb™'is a T-compact subset of K. Therefore D is a T-bounded
subset of K. Now let ¥ and W be T-neighborhoods of zero such that
V' N D c p and DW C V. Suppose there exists a y in W with v »(¥) <O0.
Let x be a nonzero element of D such that xy € D and v,(x) = —v,(y).
Thenxye VN DCpbuto »(xy) = 0, a contradiction. Thus for all yin
W, v ,(¥) = 0. Consequently if ¢ is any nonzero element of D with
v,(c) = 1, then (¢"W)N D c p”for all n > 0. So p” is a T-neighborhood
of zero for all n > 0.

THEOREM 8. Let D be a Dedekind domain which is not a field, let K be
the quotient field of D and let T be a Hausdorff, nondiscrete ring topology on
D such that (D, T) is locally compact. If the class number o of K over D if
finite, then the following statements are equivalent.

1° There exists a locally bounded ring topology T on K such that
T|,=T.

2° There exists a field topology T on K such that T|, = T

3° There exists a ring topology T on K such that T| p=T.

4° D is a compact principal ideal domain.

Proof. We show that 3° implies 4°. Let p be a nonzero, proper,
T-open, prime ideal of D and let ¢ be a nonzero element of D with
p® = Dc. We first show that cV is a T-neighborhood of zero for any
T-neighborhood ¥ of zero. As before, we may assume that ¥ C p. Let V,
W and U be T-neighborhoods of zero such that ¥ N D c V, WU (W)«
C V and ¢cU c W. Suppose y € W U and ¢y € D. Then for all ¢ in
P\{pr}, v,(y) 2 0. Suppose that y & D, that is, v,(y) < 0. As ¢y € D,
a =uv,(c)= —v,(y)+n for some n > 0. Then ¢ ”P(” = (cp) " %Pyn
e (W)"‘ c V. Furthermore as v,(c7%Wy*) =0, ¢ (”y € D. So

4 (Y)y evVnDcp, a contradlctlon Therefore ¢(W N U)ND
g c(WnUn D) C c(VND)cC cVand so ¢V is a T-neighborhood
of zero. Consequently for all n > 0, p” contains Dc”, a T-neighborhood of
zero. Thus by Theorem 6, 3° implies 4°.

In [24], Warner proved that there exists a locally compact principal
ideal domain which is not compact (Theorems 15 and 21). Thus by
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Theorem 8, there exists a locally compact prinicpal ideal domain 4 whose
given topology does not extend to a ring topology on the quotient field of

A.
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