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ORTHOGONAL PRIMITIVE IDEMPOTENTS
AND BANACH ALGEBRAS ISOMORPHIC WITH l2

TAQDIR HUSAIN

In this paper, a study of orthogonal primitive idempotents and
minimal ideals in topological algebras with orthogonal bases has been
made. Among other results, a structure theorem for Banach algebras with
orthogonal bases has been proved, similar to Ambrose's structure theo-
rem for 77*-algebras in the separable case. Furthermore, a necessary and
sufficient condition is given for Banach algebras with orthogonal bases to
be isomorphically homeomorphic with the Hilbert algebra /2.

1. Introduction. In our papers [5], [6], [7], we introduced the no-
tions of orthogonal and cyclic bases in topological algebras and studied a
number of properties of such algebras. For instance, we proved necessary
and sufficient conditions under which a topological algebra with an
orthogonal basis is isomorphically homeomorphic with the Frechet alge-
bra s of all complex sequences ([7], [6]). Similar characterization theorems
were proved for the Banach algebra lλ of all complex sequences with
absolutely convergent series [3] and the Banach algebra c0 of all complex
null sequences [4].

Here we are concerned with a study of orthogonal primitive idempo-
tents in topological algebras with orthogonal bases. As is well-known, the
existence of idempotents in semisimple rings or algebras enables one to
represent such rings or algebras as a direct sum of simple rings or
algebras. Such a consideration for Hilbert algebras has led us to doubly
orthogonal idempotents and to a structure theorem for such algebras. The
structure theorem for Banach algebras with orthogonal bases is stronger
than the similar result for i/*-algebras proved by Ambrose [1] but only in
the separable case.

Specifically, we prove general results regarding orthogonal primitive
idempotents in §3. For instance, we identify the maximal family of all
orthogonal primitive idempotents. In §4, we prove that there are lots of
closed minimal ideals (Theorem 4.4) in any topological algebra with an
orthogonal basis. This leads us to a structure theorem for such algebras.
Moreover, each Banach algebra, if it has an orthogonal basis, can be
expressed as a countable direct sum of simple Banach subalgebras, each of
which is isomorphically homeomorphic with the field of complex numbers
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(Theorem 4.7). In §5, we consider Hubert algebras. In this case, the
structure theorem can be strengthened by using doubly orthogonal
idempotents (Theorem 5.2 and Remark 5.3). Finally, in §6, we prove a
necessary and sufficient condition under which a Banach algebra with an
orthogonal basis is isomorphically homeomorphic with /2, the Hubert
algebra of all complex sequences with square absolutely summable series.

2. Preliminaries. Let J& be a Hausdorff topological algebra over
the complex field C (i.e. a complex algebra J/with a Hausdorff topology
in which the maps: (x, y) -> x + y, (λ, x) -> λx, (x, y) -> xy axe con-
tinuous, where x, y e j/and λ e C.) A countable set {x,} of j/ is said to
be its orthogonal basis if the following two axioms hold:

(i) x.Xj = 8iJxi for all i,j > 1. In other words, x(Xj = 0 for i Φ j and
xf = x, .

(ii) {jcf.} is a basis of s/ regarded as a topological vector space. In
other words, for each x ^sί there exists a unique sequence {λ,(x)} of
scalars such that

n oo

x= lim Σ M*)*/= Σ M 1 ) 1 ; '

(In the sequel we denote Σ*Lιλi(x)xi by Σ λ ^ x ^ unless otherwise
stated.) Since λ/s depend upon x, it is easily seen that each λ7 is a
multiplicative linear functional, often called a coordinate functional. In
general, each λ, need not be continuous. Whenever they are, the basis
{xz} is called a Schauder orthogonal basis. It is known [6] that each
orthogonal basis in a LMC (cf. [6]) algebra is a Schauder orthogonal basis.
Indeed, in particular for Frechet (i.e. complete metrizable LMC) and
Banach algebras, the same is true.

If {xy} is an orthogonal basis in a normed algebra J / , without any
loss of generality, we may assume that ||jcf-|| = 1 for all i > 1, in other
words, the basis can be normalized. Thus in this case if x = Σiλi(x)xi,
then

lim I M J C ) * , . ^ lim |λ,(x) |= 0 for all x G J / .
i —> oo i —* oo

Hence for each x G j / , the sequence {λ^x)} is in c0.
From x = Σiλi(x)xi in a topological algebra, we conclude that x = 0

iff λ,(x) = 0 for all i > 1. Furthermore, by the definition of basis, jci Φ 0
for all i > 1.

We shall freely use the terms and results from [5]-[7]. For a general
reference on bases in Banach space, the reader may consult Day [2],
Singer [9] and for a general theory of Banach algebras, Zelazko's book
[10].
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3. Orthogonal and primitive idempotents. In this section, we de-

scribe the maximal family of all orthogonal primitive idempotents in a
topological algebra with an orthogonal basis.

Since a topological algebra with an orthogonal basis is commutative
[6], the commonly used terms "left", "right" and "two-sided" in noncom-
mutative cases are redundant. Hence the terms defined by Ambrose [1] for
noncommutative H* -algebras, which we are going to use here will not be
accompanied by the words "left", "right" and "two-sided".

According to Ambrose [1], an algebra A is said to be proper if for any
x & A, Ax = xA = {0} implies x = 0.

Throughout this section, si will stand for a Hausdorff topological
algebra with an orthogonal basis {x t}.

Now we have some elementary properties:

PROPOSITION 3.1. If for any X G J / , xxf = 0 for all i > 1, then x = 0.
Hence si is proper.

Proof. From x = Σiλi(x)xi9 we obtain xxi = λi(x)xi = 0 for all
i > 1. Since x. Φ 0, it follows that λz(jc) = 0 for all / > 1 and so x = 0.

PROPOSITION 3.2. For any x<^si, x Φ 0 iff xn Φ 0 for any integer

Proof. If x = ΣΛ(*)*/> then xn = Σ Λ ( * * ) * r Now \t(xn) =
O ) ] " Φ 0 for some i iff λ^x) Φ 0 for the same /.

PROPOSITION 3.3. If Jis an ideal of'sisuch that x^a Jfor some i,
then xt G J.

Proof. Since xtx e ./for all x E j / , i n particular when x = χ.9 we get
xf = !,£/.

PROPOSITION 3.4. si contains no proper (Φ {0}, si) nilpotent ideals.
(An ideal Jis called nilpotent ifJn = {0} for some integer n > 1.)

Proof. Suppose Jn = {0} for some ideal ./and some integer n > 1.
Then xn = 0 for all x G J. But then by Proposition 3.2, x = 0. Hence
J^= {0}.

DEFINITION 3.5. An element e of an algebra is called idempotent if
e2 = e Φ 0. A family {eα} of idempotents is said to be orthogonal if
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eaeβ = 0 for a Φ β. An element is said to be primitive [I] if it cannot be
expressed as a sum of two orthogonal idempotents.

Note that if an algebra has identity e (ex = xe = x) then it is an
idempotent, but not conversely.

It is a nontrivial matter to determine the collection of all idempotents
in an arbitrary algebra or ring. In our case, however, it turns out to be a
simple matter.

We note that by definition each member xt of an orthogonal basis is
an idempotent. Moreover, if σ is any finite subset of the set N of positive
integers, then

*σ = Σ *i
ieσ

is an idempotent. In general, let x be an idempotent of si. Then from
x = Σιλi(x)xi and x2 = x, we get [λ^x)]2 = λt(x) for all i > 1, i.e.
either λ,.(jc) = 0 or 1 for all i > 1. Let E be the subset of N such that
Xt(x) = 1 for all i e E. Then

x = Σ *,-

Hence the collection of all idempotents in j^is huge. In special cases, the
subset E above is always finite.

PROPOSITION 3.6. Let sibe a normed algebra with an orthogonal basis.
If x = Σiλi(x)xi is an idempotent ofs/, then \t{x) = Ofor all i but a finite
number of them where it is equal to 1. In other words, x is an idempotent of
s/iffx = Σi€ΞσXj, where σ is a finite subset ofN.

Proof. By the above remark, since x is an idempotent, there is a subset
E of N such that x = ΣιGExr Suppose E is infinite. Since the series is
convergent, there is i0 such that for all / > i'o, ||xf.|| < 1. By the orthogonal-
ity of basis, xt = jcf for all k > 1 and so ||jcf.|| = ||xf|| < H^H* -> 0 as
k -> oo for all / > i0. This shows that xt = 0 for all i > /0, which is ruled
out by the definition of basis. Hence E is finite.

THEOREM 3.7. {x j is the maximal orthogonal family of idempotents of
a topological algebra si with an orthogonal basis { xj,).

Proof. Clearly by the definition of orthogonal basis, {xt} is an
orthogonal family of idempotents. To show it is maximal, let x e si be
such that x2 = x Φ 0 and xxt, = 0 for all / > 1. But then by Proposition
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3.1, x = 0 which is contrary to the definition of idempotent. Hence there
are no other idempotents orthogonal to { xt}.

REMARK 3.8. Note that if a topological algebra with an orthogonal
basis has identity e, then e cannot belong to the maximal orthogonal
family of idempotents.

THEOREM 3.9. Each xt is a primitive idempotent of sf and {xt} is the
maximal family of all orthogonal primitive idempotents of si.

Proof. Suppose, if possible, x t = y + z where y, z are orthogonal
idempotents, i.e,. y2 = y Φ 0, z2 = z Φ 0 and yz = 0. Since y, z are
idempotents, there are subsets (possibly infinite) of N such that x =
Σ,JeEXj9 y = Σj(=FXj. Furthermore, yz = 0 implies E Π F = 0. Then
xέ = ΣJ<ΞEUFXJ. But this contradicts the uniqueness of the representation
of an element in series by the definition of basis, unless E U F = {i}.
Hence each xi is primitive. Since there are no other orthogonal (Theorem
3.7) idempotents than {A;,}, it follows that {x,} is the maximal family of
all orthogonal primitive idempotents.

4. Minimal closed ideals and structure theorems. In this section, we
identify all closed minimal ideals with a view to establishing a structure
theorem for topological algebras (in particular, Banach algebras) possess-
ing an orthogonal basis.

DEFINITION 4.1. An ideal in a commutative ring (or algebra) is said to
be minimal if it does not contain any nonzero proper ideal of the ring (or
algbebra). An algebra or ring which does not contain any nonzero proper
ideals is called simple.

Again throughout this section, si denotes a Hausdorff topological
algebra with an orthogonal basis {x ι).

PROPOSITION 4.2. For each i, xts/ is an ideal of si and xtsiC\ XjS/=
{0}foriΦj\

Proof. It is, indeed, easy to verify that jczj/is an ideal. If x e χ.s/π
Xjs/for i Φ j \ then x = xty = XjZ for some j , z e i , From the expan-
sions of y and z, we derive x = xj = λi(y)Xi = λj(z)xj = XjZ. Now
multiplying this equation by xi9 we get

Since xi Φ 0, we conclude that λ,(y) = 0 and so x = 0.
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THEOREM 4.3. Each x^ (i > 1) is a closed minimal ideal and
x. e X jtf for alii > 1.

Proof. First we show that each xij/is a minimal ideal. Let / be fixed.
Then by Proposition 4.2, jc,.j/is an ideal. For minimality, suppose*/is an
ideal of J ^ such that 0 Φ J<z xts/. We show that </ = xέs/. We consider
three cases:

Case (a). Suppose Xj £ J for all j > 1. Then for any x e J, x Φ 0
from x = Σyλy(jc)xy we have xx} = λy(jc)xy. e Jίoτ ally > 1. Since x Φ 0
implies there is somey such that λy(;c) Φ 0 and so (λy(jc))~1(λy(x)xy) =
Xj G / , a contradiction.

(b). Suppose there is Xj (j Φ i) such that Xj e J, But then for all
x G j / , xx j G: */and so J/X7 C / C JS/JC . By Proposition 4.2, sίxi Π j/x y

= {0} for / Φ j and we conclude thats/xj = {0} fory Φ i. But this means
that xj = Xj = 0, which is ruled out. Hence ̂ /contains no xJ9j Φ i.

Case (c). Thus */must contain jcf. Since J is an ideal, for all x e J / ,
Λ Λ:̂  e ^ and we have J/JCZ C >. Since ^ c xtsf, we have proved that
xis/= Sand xt e xfj/.

To complete the proof, we must show that xzj^is closed. Letj> G χts/
(α)

(closure). There is a net {xαXι) c xyj/such that (xαx,) -> y. Since the

multiplication in s/ is continuous, we have

(XαXi)Xi = (^^/) "* yXi^s/Xj.

Since J ^ is Hausdorff,^ = yxt e j /χ . and sos/xi is closed for each i.

Now we prove a structure theorem.

THEOREM 4.4. Each Hausdorff topological algebra s/with an orthogonal
basis {Xj} can be written as a countable direct sum of closed minimal ideals

Proof. Since for each x E i there is a unique sequence {λz(x)} of
scalars such that x = Σiλi(x)xi9 from this we obtain: xxt = λi(x)xi for
all i > 1. Hence x = ΣXxx,). Since xxt E Λ | for all / > 1 and
Xjjt/= {0} for i Φ j (Proposition 4.2), we conclude that J / =
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a direct sum in which each s/xt is a closed minimal ideal of si by
Theorem 4.3.

We know ([6], Corollary 1.5) that if the basis of a topological algebra
is a Schauder basis, then the algebra is semisimple. Since every basis in a
Frechet and, in particular, Banach algebra is a Schauder basis, it follows
that every Frechet as well as Banach algebra with an orthogonal basis is
semisimple. We can improve Theorem 4.4 for Banach algebras.

First assume that siis a Hausdorff topological algebra with a Schauder
orthogonal basis {xz}. Then each associated coordinate functional λz(x)
= λ, is a continuous multiplicative linear functional on si. Hence its
kernel

UT,. = {x ej/:λ,.(jc) = 0}

is a closed maximal ideal of <£/for each i > 1. Moreover, these are all the
closed maximal ideals of si (cf. [6], Theorem 2.1). Thus the quotient si/Jίi

is a Hausdorff topological algebra in the quotient topology.

Now we have:

PROPOSITION 4.5. Let sibe a Hausdorff topological algebra with an
orthogonal Schauder basis {.*;}. Then there exists a continuous isomorphism
ofsi/Jίt onto s&fxi for each fixed / > 1.

Proof. For each x e si/Jί^ set ψ(x) = xx,, where x = x + Jtt is a
coset in si/Jίt. First we check that ψ is a well-defined map. For this, let
x = x + Jίt = y + Jt^ then x — j G ̂  and so λz(x — >>) = 0. Whence
λi(x)xi = λ.(j>)χ. and so xxt = λi(x)xi = λ ^ ) * , . = yx(. It is easy to
verify that ψ is linear. Further

because x? = xr This proves that ψ is an algebra homomorphism oίstf/Jίt

into s/xt. ψ is one-one: suppose xxt = 0, then \i{x)xi = 0 imphes Xz(x)
= 0 because JC, ^ 0. Thus x ^ ^ / ? which proves that ψ is injective. Now if
JCX/ is an arbitrary element oίs/xi for some x &s/9 then xx- = \.(x)χ. =
λ, (Jc + >?)x/ for ally G ^ and so ψ(jc) = xxz shows that ψ is an isomor-
phism of sί/Jίi onto sίxt.

We endow J ^ ^ ^ with the quotient topology and s/xt with the
induced Hausdorff topology from si\ To prove the continuity of ψ, first
we denote the quotient map: s/-* si/Jίi by φ and the map: x -» xxt by g.
Then ψ(φ(x)) = g(x) for all X G J / . Clearly φ, being the quotient map, is
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continuous and open, whereas g, being the multiplication map in the
topological algebra, is also continuous. Thus for any neighbourhood U of
0 in s/xi (note s#xι being an ideal of s/ is an algebra), g~ι(U) is a
neighbourhood of 0 in j/by the continuity of g and hence φ(g~\U)) is a
neighbourhood of 0 in sί/Jii by the openness of <p. Since

we have proved the continuity of ψ.
Now in the case where s/ is a Banach algebra with an orthogonal

basis, we can describe the nature of closed minimal idealss/xim

THEOREM 4.6. Lets/be a Banach algebra with an orthogonal basis {xιf}.
Then each closed minimal ideals/xi (i > 1) is isomorphically homeomorphic
with the field C of all complex numbers.

Proof. Since s/xt is a closed ideal of the Banach algebra J / , it is itself
a Banach algebra under the induced norm topology. Furthermore, s/xi has
identity, viz. JC,-. Hence the algebra st/Jt^ being isomorphic to s/xi

(Proposition 4.5) also has identity. Since Jίt is a closed maximal ideal of
s/, sί/Jίi is a Banach division algebra and hence by the Gelfand-Mazur
theorem, sf/Jli is isomorphic and homeomorphic with the field of com-
plex numbers. But the continuous isomorphism ψ (Proposition 4.5) of the
Banach algebra sί/Jίi onto the Banach algebra s/xt is open by the open
mapping theorem and so ψ is an isomorphism and homeomorphism. Since
sί/Jti has been shown to be isomorphically homeomorphic with the field
of complex numbers, the same holds for each s/x^ This completes the
proof.

Now we prove a structure theorem for Banach algebras with an
orthogonal basis which is similar to, but stronger than, Ambrose's struc-
ture theorem [1] for #*-algebras in the separable case.

THEOREM 4.7. Every Banach algebra s/with an orthogonal basis can be
expressed as a countable direct sum of simple Banach subalgebras s/xt

(i > 1), each of which is isomorphically homeomorphic with the field of
complex numbers.

Proof. It follows from Theorems 4.4 and 4.6.

5. Doubly orthogonal idempotents and Hubert algebras. In this
section we consider those topological algebras with orthogonal bases
whose topology is given by a norm which in turn is induced by an inner
product functional.



ORTHOGONAL PRIMITIVE IDEMPOTENTS 321

Let H denote a Banach algebra such that its norm is given by:

\\x\\ = + yj{x, x) , where ( , ) is the inner product functional. In other

words, H is a Hubert space as well as a Banach algebra in the norm

induced by ( , ). Such algebras are called Hubert algebras.

It is well-known that each separable Hubert space H contains a

sequence {w,} of orthonormal vectors (i.e. (w, , wy) = δ/y) which forms a

basis of H. More explicitly, one has:

(i) x = Σ / J C , ut)ut for each x G H,

(ii) (x,y) = Σ (x>u){y9u)9

(iii) | |x | | 2 = Σ4\(x9 x)\2 (Parsevals' equality).

Thus from (iii) and other known results it follows that each separable

Hubert space is isometric with /2, the Hubert space of all complex

sequences {at} withΣ f |flf |
2 < oo.

DEFINITION 5.1. A collection {ea} of elements in a Hubert algebra is

said to be doubly orthogonal if ( e α , eβ) = 0 and eaeβ = 0 for a Φ β.

Since each separable Hubert space H has a sequence {«,} of ortho-

normal vectors as pointed out above, it is interesting to ask if there exists

a Hubert algebra structure on H such that the sequence {ut} is doubly

orthogonal. We answer this question below, in the affirmative.

It is clear that the canonical basis {et}, where ei = {δ/y}y>i, / =

1,2,..., of 12 is unconditional i.e. the series x = Σi(x,ei)ei for each

x e l2 is unconditionally convergent [2]. Hence an orthonormal basis of

any separable Hubert space, being isometric with /2, is also unconditional.

With these remarks, we have:

THEOREM 5.2. Let J?'be a separable Hubert space with an orthonormal

basis { JC7}. Then there exists a multiplication on 3^and an equivalent norm

making 2? a Hubert algebra with {jcf.} as its doubly orthogonal basis.

Proof. First we define a multiplication on «^as follows: for x =

Σ,(x, xt)xi9y = Σt{y, xt)xl9 we define

x*y= Σ(x9x,)(y9xt)xi.
i

The series is convergent in 3^ because the basis {x t} is unconditional as

remarked above. Thus for all JC, y G 3/F, X * y <E Jf. It is easy to check

that 3^ with this multiplication is an algebra. Further, we define another

norm on J f by: ||JC||' = yΣ z | (x, x z ) | 2 . Clearly this is the transported norm
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from 12 and so || ||' is equivalent to the initial norm on^fby isometry. We
see that

- IWI'lbf
Hence Jί? is a Banach algebra with the equivalent norm and the product
*. Since the new norm is induced from an inner product functional

(the series is convergent by the Cauchy-Schwarz inequality), it follows that
is a Hubert algebra. Clearly

(xj,xk)'= Σ(xj,xt)(xk>Xi) = 0

and Xj * xk = 0 if j Φ k. Thus {xf.} is doubly orthogonal.

REMARK 5.3. Now in the case of a separable Hubert spaced, one can
always regard it as a Hubert algebra and therefore it can be expressed as a
countable direct sum of closed minimal ideals {Jίfx^ in which each xi is
doubly orthogonal and each Jίf?xi is isomorphically homeomorphic with
the field of complex numbers, in view of Theorems 4.7 and 5.2.

6. Banach algebras isomorphic with /2. In this section, among other

results, a necessary and sufficient condition for a Banach algebra with an
orthogonal basis to be isomorphically homeomorphic with /2, is given.

We have already shown when such Banach algebras are isomorphi-
cally homeomorphic with lλ and c0 (cf. [3], [4]).

First of all, we note that if a = {at) e l2 then a* = {#,} e /2, where
at is the complex conjugate of the complex number ar Furthermore,

In other words, the involution: x -> x* in l2 is norm preserving.
We recall that /2 has a Schauder basis {et} satisfying:
(i) The basis is unconditional.

(ii) {e7} is doubly orthogonal, i.e., (e t, e) = eiej = 0 for / Φ j .
(iii) {ez} is an orthonormal family, i.e., (en ey ) = 8fJ as well as orthog-

onal e^j = Sijβj for all /, j .
(iv) The basis {ei} is boundedly complete and shrinking (cf. for ins-

tance [2] for definition). (For, l2 is reflexive and so the James
Theorem [2] applies.)
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With these remarks, first we show that each topological algebra with
an orthogonal unconditional basis carries a natural involution.

PROPOSITION 6.1. Let s/be a topological algebra with an unconditional
orthogonal basis {.*,}. Then for each x = Σiλi(x)xi e s/,

defines an involution (henceforth called natural involution) on sf. Further-
more, for each x e j / , x Φ 0 iffx* Φ 0 and also xx* Φ 0 iff x Φ 0.

Proof. Since the basis {xt} is unconditional, the series defining x* is
convergent in si'. Moreover, it is easy to check that x** = x, (x + y)* =

χ* _|_ y*^ (μx)* = μx* and (xy)* = Jt*j>* = j;*x*. For the rest, we ob-
serve that λ (x*) = Xt(x) and λ^xx*) = |X,.(;c)|2. Hence Xt(x*) = 0 or
Xt(xx*) = Oiffλz(x) = 0.

PROPOSITION 6.2. If si is a normed algebra with an unconditional
orthogonal basis {*,}, then for all x = Σ.λ^x)^, ^ si,

for all i > 1.

Proof. Since xxt = λf (jc)xy, for all i > 1 we have

PROPOSITION 6.3. Let si be a Banach algebra with an orthogonal basis
{Xj}. Then for any sequence {at} e /2, the sequences {yny*} and {\yn\

2}
converge in si, whereyn = Σ^^^^y* = Σ " = 1

Proof. As before, without any loss of generality, we may normalize
the basis {xt} and so assume \\xt\\ = 1 for all / > 1. Since {xt} is
orthogonal, we have

n
j , I | 2 Y-1 I ι2 ^

y y * = \y \ = / \a \ X .

For n > m,
i

v I — Iv

Σ l«, l xf Σ kl2-o
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as m, n -» oo. So the sequences {yny*}, {\yn\
2} being Cauchy sequences

in the Banach algebra^, are convergent.
Incidently, the existence of a (an) (orthogonal) basis {x i} in a Banach

space (algebra) s/ implies that there exists an inner product topology
which is coarser than the initial one. Specifically, if x = Σiλi(x)xi,
y = Σιλι(y)xι,thQn

defines an inner product. However, this inner product topology need not
be equivalent to the initial one.

Now we give a necessary and sufficient condition under which a
Banach algebra with an orthogonal basis is isomorphically homeomorphic
with /2.

THEOREM 6.4. Let si be a Banach algebra with an unconditional
orthogonal basis {xt}. Then si is isomorphically homeomorphic with l2 iff

(i) For allx,y e j / , Σjλ (xy)| < oo.
(ii) For all x e si and some a > 0,

ΣM*)|2>«||*||2.

Proof. If ψ is an isomorphic homeomorphism of si onto /2, then
{Ψ(*ι)} becomes an orthogonal basis of l2 and so in view of Theorem 1.8
[6], we may identify {ψ( X/)} with the canonical basis {et) of /2. Hence by
BesseΓs inequality, which is valid in /2, (i) and (ii) follow from the fact
that ψ is a homeomorphism.

For the converse, assume (i) and (ii) hold. For each x E i w e have a
unique representation of x by x = Σiλi(x)x. Now by replacingy by x* in
(i), we obtain

for all x = Σιλi(x)xi e si. If we set

φ(x)={λi(x)},

then the last equation says that φ(x) e l2 for all X G J / . Since the
operations in l2 are pointwise, it is easy to see that φ is an algebra
homomorphism of s/into /2. By the definition of basis, φ is injective. To
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prove that φ maps si onto /2, let a = {at} e /2. Consider the sequence
{yn } of partiax sums:

First, for x = Σ/λ^.*;).*., j> = Σiλ(y)xi, we define

Clearly by (i), the series in the last equation being absolutely convergent is
convergent. Hence (x, y)' is defined for all x,y & A and defines an inner
product and hence a norm:

By (ii), we have:

(•) IWI^
for all x e si. Now clearly for m < n,

n

II y - y |p2 r r z / v - y γ - γ Y = V U J 2 -» 0

as ra, « -> oo because {α,} ^ /2. Hence from (*) it follows that {yn} is a
Cauchy sequence in J / . Since si is complete, there is x e j / with

In other words, λ^x) = at for all / > 1, i.e. φ(x) = a. This shows that φ is
an isomorphism of si onto /2. Hence φ"1: /2 -^ j/ i s also an isomoφhism.
By (*), we also have

\$-\a)\ * «-1/2||«ll
for all a ^ IP

2. This shows that φ"1 is continuous. By an application of the
Banach open mapping theorem, φ"1 is open and therefore φ is an isomor-
phic homeomoφhism.

REMARK 6.5. (a) Theorem 6.4 establishes only an isomorphic homeomor-
phism of si onto l2 but not an isometry. The latter can be obtained if we
modify conditions (i) and (ii) as follows:

(i)' For allx,y e j / , Σt\\t{xy)\ < \\xy\\.
(ii)' For all x^sί, Σ|λ,(x)|2 > ||JC||2.

For, (i)' and (ii)' imply

(b) Since the basis {et} of l2 is boundedly complete and shrinking,
Theorem 6.4 implies that an unconditional orthogonal basis of a Banach
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algebra sisatisfying (i) and (ii) of Theorem 6.4, is also boundedly complete

and shrinking. Hence such a Banach algebra must be reflexive by James'

Theorem ([2]).

(c) Banach algebras with unconditional orthogonal bases satisfying (i)

and (ii) of Theorem 6.4 are isomorphically homeomorphic with their duals

because l2 is.

In view of Remark 6.5 (c), it is possible to recover the Riesz representa-

tion theorem as follows:

THEOREM 6.6. Let si be a Banach algebra with an unconditional

orthogonal basis { JCZ} satisfying conditions (i) and (ii) of Theorem 6.4. Then

fory ^s/9

i

defines a bounded linear functional on siand the map: y —»fy of si onto sir is

an isometry.

Proof. By Theorem 6.4, j / i s isomorphically homeomorphic with /2.
Since the absolute convergence of the series implies its convergence, for
eachj Gj/,

defines a linear functional on si. Moreover,

shows that/^ is bounded. Hence fy G J ^ ' for each>> G J / . TO show that the
map: y -> fy is one-to-one, suppose /^ = /^ for some yv y2 G J^ . Then
/^(x) = fyi(x) for all x^si. Iΐ yλ ^ y2, then there is A, such that
λ , ( J i ) ^ λ, (y2) in the expansions ̂  = ΣfλiίΛ)*,* 72 = Σz

 λi(J>2)*, B u t

then fyi(Xi) = ^i(yι) =£ λ ^ ^ ) = fy2(
xi) contradicts the supposition. To

see that the map: y -> fy is also onto and isometric, we denote by φ:
x —> {λ (x)} the map of si onto l2 as considered in Theorem 6.4. Then
the conjugate map φ': l2 -> sir as well as its inverse φ'~x: si-* Γ2 are
isomorphisms and homeomorphisms. Now let / G si''. Then Φ / - 1(/) G /̂
and so there exists a = {αz} ^ l2 by the Riesz representation theorem for
/2 such that

1 ( ) ( ) = ( « ^ > for all α = {αf} e / 2
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By the isomorphism of φ, for each « = {«,} e l2 there is x e s i with
λ^x) = αz i.e. φ(x) = a and aj>0 e si with λ,(j0) = at for i > 1. Thus for
all χ E j / , w e have

Hence/ = f . Furthermore,

= sup \(x, yo)'\
| |x| |<l

= sup \fyo(x)\ = | | / J ,
I W I 1

= sup

where as usual ||x||' = ^Σ/lλ^x)!2 and {x, y)' = Σi\i(x)\i(y). This
completes the proof.
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