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ON BASES IN STRICT INDUCTIVE AND PROJECTIVE
LIMITS OF LOCALLY CONVEX SPACES

KLAUS FLORET AND VINCENZO BRUNO MOSCATELLI

This note investigates, for certain locally convex spaces which have
bases and are strict inductive or projective limits, the structural property
of being a direct sum or a product. Our approach is based on a suitably
more general version of a decomposition lemma originally due to S.
Dineen and gives a better understanding of the non-existence of bases in
certain nuclear (F) and strict (LF)-spaces. Our method also allows us
to investigate the structure of various other non-nuclear spaces with
unconditional bases yielding, in particular, examples of spaces with no
such bases. In part, this also motivated us to include some rather general
remarks on the problem of when the strong dual of a homomorphism
between locally convex spaces is a homomorphism as well.

There are nuclear spaces of type (F) and proper strict (LF) which do
not admit bases. The first example of such a Frechet space is due to
Mitiagin and Zobin [18] in 1974. Later, in 1979, Dubinsky [6] constructed
a Frechet space (with a continuous norm) which does not even have the
bounded approximation property; a very simple construction of spaces of
this type was recently given by Vogt [23]. A totally different approach in
constructing nuclear Frechet spaces without bases was presented by the
second author [19] in 1980. A nuclear, proper, strict (LiΓ)-space without a
basis is exhibited in the paper [8] of the first author: this space has even
the property that all stepspaces are nuclear Frechet spaces with continu-
ous norms and without the bounded approximation property. All the
proofs have in common the fact that they show the non-existence of a
basis by checking that the space under consideration does not have a
property it should have if it had a basis, such as being countably normed
[6], [23], being a product space [19], or having a continuous norm [8].

It is one of the purposes of this note1 to contribute to a better
understanding of certain nuclear spaces of type (F) and (LF), with
respect to admitting or not a basis, by using the structural property of
being a product or a direct sum. At the same time, this approach will free
the construction in [19] from a somehow not quite natural use of Dubin-
sky's classification of perfect Frechet sequence spaces [5]. The key to our

of the results were already presented at the 17° Seminario de Analise [9].
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approach is a suitably more general version of a lemma due to Dineen ([4],
5.4.3).

Our method even allows us to investigate the structure of various
other non-nuclear spaces with unconditional bases. In order to do this, we
shall make, at the appropriate time (§5), some general remarks on the
problem of when the strong dual of a homomorphism is again a homo-
morphism.

1. Preliminaries.
1.1. The notation which we shall use is standard, e.g. as in [13]. In

particular, an (LF)-space (resp. an (LB)-space) is the (locally convex)
inductive limit of an increasing inductive sequence of Frechet spaces
(resp. of Banach spaces).

REMARK. Note that the inductive limit £ of a sequence of separated
(LF)-spaces Ek = indM^ Ekn is again an (LF)-space. Indeed, using
Grothendieck's factorization theorem ([11], IV, §1.5) one can "thin out"
the sequences to obtain the situation where Ekn embeds continuously into
Ek+ι n for all k, n £ N. But then it is clear that E = i n d ^ Ekk.

An inductive sequence (Ek) of locally convex spaces is called strict if
Ek is a topological subspace of Ek+1 for each H N . For the properties of
strict inductive sequences and their limits, see e.g. [10].

Aprojective sequence (Fk) of locally convex spaces is called strict if all
linking mappings Fk+ι -> Fk are open and onto. Of course, this is some-
how the dual notion to that of a strict inductive sequence (see §5).
Furthermore, a locally convex space is called twisted if it is not isomorphic
to a product of locally convex spaces with continuous norms. Strict
projective sequences of Banach and Frechet spaces with twisted limit
spaces were first constructed in [19] by the second author.

1.2. A basis (en) of a locally convex space E (always assumed to have
continuous coefficient functionals φM, which is automatically true in (F)-
and separated, locally complete (LF)-spaces, [13], 14.3.4) is called uncon-
ditional if for every x e E the net

( Σ (φn9x)en:DcN finite)

converges or, equivalently, if
00

n = l

for all permutations ΊT of N.
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We shall use the following results:
(a) If (en) is an unconditional basis of a complete space E, then all

subseries of the series expansions of elements in E converge.
(b) In barrelled spaces (such as (F)- and separated (ZJ^-spaces)

which are nuclear, every basis is absolute, in particular, unconditional.
This follows from the theorems of Banach-Steinhaus and Dynin-Mitiagin
([13], 21.10.1). Also, in nuclear (F)- or complete (ZλF)-spaces the se-
quence of coefficient functionals is an absolute basis for the strong dual.

(c) A basis (en) is unconditional if and only if (^ ( Λ ) ) is a basis for all
permutations TΓ of N. (For a proof, use the biorthogonality of the
coefficient functionals.)

1.3. For the purpose of this paper, a pair (©, 9ΐ) of classes 2) (for
domain) and 9i (for range) of separated locally convex spaces is called a
closed-graph pair if it satisfies the following conditions:

(i) If E ^ Φ and F e 9ΐ, then every linear bijection E -> F with
closed graph is continuous.

(ii) ?H is closed under the formation of closed subspaces and (locally
convex) countable direct sums.

EXAMPLES.

(a) Φ = ultrabornological spaces
9ΐ = webbed spaces

(b) Φ = separated inductive limits of Baire spaces
$ϊ = webbed spaces

(c) 3D = ultrabornological spaces
3t = Souslin spaces,

(For a proof that the above pairs are closed-graph pairs, see e.g.
De Wilde's monograph [3].)

2. A general decomposition theorem.

2.1. The following central result is Dineen's lemma ([4], 5.4.3) ex-
tended to its natural limits of validity.

THEOREM. Let (©, 9ί) be a closed-graph pair and let (Ek)k<ΞN be a

strict inductive sequence of complete spaces Ek e 9ΐ such that i n d ^ Ek =:

E e φ . If E has an unconditional basis, then there are complemented

subspaces Gk c Ek with unconditional bases such that

algebraically and topologically.
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Proof. For (en) an unconditional basis of E and T the topology of E
define, with Eo := {0},

Gk:= span{en:n ^Nk},

where the closure is taken in ( £ , T). Then Gk is a closed subspace of Ek

and it is easy to check that:

(1) {en: n ^ Nk) is an unconditional basis of Gk,

(2) GkΠ Gj= {0} ίoτkΦj

and, since strict inductive sequences of complete spaces are sequentially

retractive, i.e. every convergent sequence in E converges in some Ek9

(3) E = ®™=ιGk algebraically.

Obviously, the identity map

k=\

is continuous and

((*,'),
k = l

Therefore, (3) holds also topologically. Finally, since now each subspace
Gk is complemented in E, it is complemented in Ek as well. D

2.2. Each one of the three examples of closed-graph pairs in §1

implies the following

COROLLARY. Let (Ek)kfΞN be a strict inductive sequence of separated,

complete (LF)-spaces. Then E = i n d ^ Ek has an unconditional basis (if

and) only if there are complemented subspaces Gk c Ek with unconditional

bases such that

as locally convex spaces.

In general, subspaces of (jLF)-spaces need not be (Li7)-spaces, but
here the Gks are complemented and, therefore, (ZJ7 )-subspaces. Applying
the corollary to the case when the spaces Ek are nuclear Frechet, we
recover Dineen's original result.

3. Bases in strict inductive limits.

3.1. As a first application to the existence problem for bases we look

at the strict (ZJί)-spaces constructed in [19], §1: by Lemma 3 of that

paper they are not isomorphic to a direct sum of Banach spaces, whence
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(by Corollary 2.2) cannot have an unconditional basis and we obtain

PROPOSITION. Strict (LB)-spaces that are not isomorphic to a direct

sum of Banach spaces (in particular, the spaces tf/[19], §1) do not have an

unconditional basis.

3.2. There are reflexive Banach spaces X with uncomplemented sub-

spaces y, both having unconditional bases. For an example, take X =

Lp(0,1) and (according to [14]) a subspace Y c X isomorphic to lq, with

1 < p Φ q < 2. If 7 were complemented in X, then it would contain a

subspace isomorphic to lp (by [15], Corollary 3, p. 168) and this is not

possible by a classical result of Banach ([1], Ch. XII, Theoreme 7), saying

that lp is not a subspace of lq. For examples of uncomplemented sub-

spaces of lp with unconditional bases, see [17], p. 91. Now, using a pair

(X, Y) of this kind in the construction of [19], §1, it is straightforward to

check that each space (X Θ • • • θ l θ 7 θ 7 θ ' * * )/2 has an uncondi-

tional basis and hence we have the

COROLLARY. There is a strict inductive sequence of reflexive Banach

spaces with unconditional bases the limit of which has no unconditional basis.

3.3. In the setting of (jLF)-spaces, part of the following was already

used in [8]:

PROPOSITION. If (Ek) is a strict inductive sequence of separated and

complete (LF)-spaces with continuous norms and E:= i n d ^ Ek has no

continuous norm (a sequence of nuclear Frechet spaces Ek of this kind was

first constructed in [8], §5), then E has no unconditional basis and hence no

basis at all if E is nuclear.

Proof. If E had an unconditional basis then, by Corollary 2.2, it

would be the direct sum of subspaces Gk of Ek, each having a continuous

norm pk: but then Σf=ϊpk would be a continuous norm on ®™=ιGk =

E. D

4. Bases in nuclear Frechet spaces.

4.1. Concerning the structure of certain nuclear Frechet spaces, the

following result holds:

PROPOSITION. Let F be a Frechet space which is the limit of a strict

projective sequence (Fk) of nuclear Frechet spaces. Then F has a basis (if

and) only if it is isomorphic to the product of a sequence of complemented

subspaces Hk of Fk with a basis.
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Proof. Since F is a reflexive Frechet space, its strong dual Fβ is
bornological, hence Fβ = i n d ^ (Fk)β and this inductive limit is strict, as
well known (see also the next section). If F has a basis, then also Fβ' has a
basis and Corollary 2.2 gives that Fβ is a direct sum of complemented
subspaces of (Fk)β with basis. Dualizing this, we obtain the conclusion. D

4.2. The above immediately implies the

COROLLARY. The twisted, nuclear Frechet spaces of [19], §2 do not
admit a basis.

Originally this result was proved in [19] by using Dubinsky's classifi-
cation of perfect Frechet sequence spaces [5].

4.3. In the light of Proposition 4.1 and Corollary 2.2, it is very natural
to construct bases in nuclear spaces that are strict projective or inductive
limits (such as @(Ω) and 25(Ω)) via representations as products or direct
sums (see Vogt's paper [22]). Note that, by results of Valdivia [21], all the
spaces ©(Ω) are isomorphic and the same is true for all the spaces ®(Ω).
Moreover, once bases are known, the present results yield representations
in terms of explicit subspaces.

5. Strong duals of homomorphisms.

5.1. In order to extend Corollary 4.2 to a more general setting, we
need to investigate the question of when the strong dual Tβ: Fβ -> Eβ of a
homomoφhism T: E -> F between locally convex spaces is again a
homomoφhism (a homomorphism is a continuous map which is open onto
its image). On this question there are many results around, some of them
folklore, but it still seems worthy to make some other systematic state-
ments than those made in [16], §§32 and 33. Indeed, despite their extreme
simplicity, our statements yield results which are suφrisingly much more
general than many published so far.

Since every homomoφhism T of E into F factors in a obvious way:

E -> E/kerT^>T(E) -> F,

we shall treat the cases of T being 1-1 and onto separately, since they are
totally different in character.

5.2. The case of T being 1-1 amounts, of course, to checking when the
strong dual of a subspace of a locally convex space carries the quotient
topology of the strong dual of the space. This question was investigated in
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[7]: if U£(0) is a basis of neighbourhoods of zero in£, then the inductive

topology ί of Er is defined by

E;= ind [t/°],
ί/eU£(0)

where I t / 0 ] is the Banach space spanned by U° and normed by the

Minkowski functional of U°. Then the results and proofs of [7] yield the

PROPOSITION. (1) For every locally convex space E the following asser-

tions are equivalent:

(a) E; = E£.
(b) For every isomorphism T of E into any locally convex space G,

the dual Tβ is a homomorphism.

(c) The strong dual of the embedding map of E into any canonical

product of Banach spaces (relative to a neighbourhood basis of

zero) is a homomorphism.

(2) // in E' every strong null-sequence is equicontinuous, then (a)-(c)

are equivalent to:

(d) Eβ is bornological.

(3) If E is a metrizable space, then (a)-(d) are equivalent to

(e) E is distinguished.

(f) The same as (b) with G a Frechet space.

In particular, if E is a (giλF)-space, then (a)-(c) hold by (2). Of

course, the assumption of (2) is satisfied if E is quasi-barrelled. But note

that if E is a Montel space (hence barrelled and distinguished) which is

not complete, then Eβ is not bornological and, therefore, (lc) is violated,

which, by the way, contradicts a statement at the end of [11], Ch. IV, §2.4.

(engl. edition p. 164).

5.3. Since the Mackey topology respects quotients, the following is

obvious.

PROPOSITION. The strong dual of any isomorphism of a locally convex

space into a semi-reflexive locally convex space with a closed range is a

homomorphism.

5.4. For the onto case, the general situation is much simpler; indeed, a

straightforward use of polarity arguments yields the well-known (see e.g.

[16] p. 11):

PROPOSITION. Let T: E -> F be continuous. Then Tβ is an isomorphism

(into) if and only if every bounded subset B c F can be T-lifted to a bounded

set C c £ , i.e. T(C) D B.
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Note that T has dense range, necessarily.

The lifting property implies that T is nearly open if F is quasi-barelled.

Ptak's open mapping theorem has, therefore, the following consequence.

COROLLARY. Let E be B-complete, let F be quasi-barrelled and let T:

E -> F be continuous. If Tβ' is an isomorphism (into), then T is open, in

particular, onto.

This generalizes a classical result of Dieudonne and Schwartz for

Frechet spaces E and F (see e.g. [12], p. 310).

5.5. The results in §§5.2-5.4 imply the

THEOREM. IfT:E-*F is a homomorphism such that:

(a) every bounded set in E/ker T can be lifted (with respect to the

quotient map).

(b) (i?/ker T) [ = (E/ker T)βθr: F is semi-reflexive and has closed

range,

then Tβ is a homomorphism.

Some special cases when this theorem applies are collected in the

following

COROLLARY. The strong dual of a homomorphism T: E -> F is a

homomorphism in each of the following cases:

(1) E Frechet and every bounded set in F is precompact;

(2) E Frechet-Schwartz, F an arbitrary locally convex space;

(3) E a (gDF)-space, F an arbitrary locally convex space;

(4) E a separated (LF)-space, F the inductive limit of a regular

sequence of Frechet-Montel spaces and T with closed range;

(5) E = 2 ) ^ ) , F = ®(Ω 2) and T with closed range.

Proof. (1) and (2) follow from the facts that compact sets in quotients

of Frechet spaces can be compactly lifted and that reflexive Frechet

spaces are distinguished. Also, since quotients of (gZλF)-spaces are (gDF)

and bounded sets can be lifted ([13], p. 261), case (3) follows from

Proposition 5.2.(2). To see (4), note first that F is reflexive. So it remains

to show that every bounded set in E/keτ T can be lifted. Take inductive

sequences (En) of Frechet spaces and (Fn) of Frechet-Montel spaces

defining E and F respectively. By the closed graph theorem for (LF)~

spaces, it is easily seen that

Γ = inάEn/[En Π kerΓ] ^ i n d [ i ^ Π T(E)\
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holds topologically. If B c £/ker T is bounded, then T{ B) is compact in

some FmΠ T(E). It follows from Grothendieck's factorization theorem

([11], IV, §1.5) that

continuously for some w, so that B is relatively compact in En/En Π ker T

and can be lifted to En and hence to E. Finally (5) is a special case of (4).D

This generalizes various known results. Note that if £ is a Frechet-

Montel space with a quotient isomorphic to lp (see [16], pp. 22-23), then,

obviously, the strong dual of the quotient map is not a homomorphism.

5.6. Clearly, these results provide many situations in which the strong

dual of a strict projective (resp. inductive) sequence is a strict inductive

(resp. projective) sequence.

6. Unconditional bases in certain Frechet spaces.

6.1. The dual-homomorphism Theorem 5.5. enables us to extend the

results of §4 on bases in nuclear Frechet spaces to the following

PROPOSITION. Let the locally convex space F be the limit of a strict

projective sequence (Fk). If

(a) each Fk is a Frechet-Montel space, or

(b) each Fk is a reflexive (DF)-space,

then F has an unconditional basis {if and) only if F is isomorphic to the

product of a sequence of complemented subspaces Hk of Fk with an uncondi-

tional basis.

Proof. 1. Let us assume for the moment that F is reflexive and

(*) Fβ'=ind(FkYβ.

The inductive sequence of the strong duals is strict in both cases (a) and

(b) by 5.5. By the remark in 1.1, the space Fβ' is, therefore, a reflexive

(jLF)-space. Now take an unconditional basis in F; since the coefficient

functionals form a weak* = weak basis in Ff and in separated (Li7)-spaces

the weak-basis theorem holds ([13], 14.3.5), the strong dual Fβ has an

unconditional basis by 1.2.(c). Then Corollary 2.2 implies that there are

complemented subspaces Gk of (Fk)β with an unconditional basis such

that



112 KLAUS FLORET AND VINCENZO BRUNO MOSCATELLI

It follows that

β β
k = l

and, since the Gks are complemented, each (Gk)'β can be identified with a
complemented subspace Hk of Fk. By the same reasoning as before, each
Hk has an unconditional basis.

2. It remains to prove the relation (*).
(a) F is clearly reflexive and a Frechet-space, so its strong dual is

bornological and, therefore, (*) holds.
(b) Denoting the mapping Fk -> Fk_x by Tk9 it follows from the

reflexitivity that for every bounded and closed Bk_λ c Fk_v there is a
bounded and closed Bk c Fk such that Tk(Bk) = Bk_v This implies, by
the very definition of a projective limit, that the canonical map F -> Fk

lifts all bounded sets (in the sense of 5.4), whence (Fk)'β is a subspace of
Fβ. Since F is semiflexive, Fβ is barrelled and, therefore, a result of
Valdivia ([20], Cor. 1.5.) yields (*). To see that F is even reflexive take a
weak* = weak bounded subset fief: it is bounded in Fβ' and so
bounded in some (Fk)β since the inductive limit is strict; therefore B is
equicontinuous in Fk and hence in F'. D

The last part of the proof showed that the limit of a strict projective
sequence of reflexive (2λF)-spaces is reflexive.

COROLLARY. The reflexive, twisted Frechet spaces which were con-

structed in [19], §1, Theorem 1, do not have unconditional bases. In particu-

lar (dualizing Corollary 3.2), there is a Frechet space without an uncondi-

tional basis which is the strict projective limit of reflexive Banach space with

an unconditional basis.

The first part of this result can also be obtained by using Dubinsky's
classification of perfect Frechet sequence spaces, since every reflexive
Frechet space with an unconditional basis is a perfect sequence space,
because the basis is then boundedly complete (see also [2], §5).
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