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A REMARK ON FIELDS WITH THE
DENSE ORBITS PROPERTY

JESUS M. RUIZ

Let K be a formally real field and Ω its order space. The automor-
phisms group of K acts on Ω, and K is called D.O.P. when all the orbits
are dense in Ω. In this note the following is shown: The field of
meromorphic function germs of a real irreducible analytic germ of
dimension > 1 is never D.O.P.

A formally real field K has an associated order space Ω = SpecΛ K.
The automoφhisms group Aut(i^) of K acts over Ω in an obvious way,
and the space of orbits under this action measures the homogeneity of Ω.
Actually, Ω or K are called homogeneous if Aui{K) acts transitively.
There is also a weaker homogeneity condition, the so-called "dense orbits
property": K is D.O.P. if all orbits are dense in Ω (cf. [2], [4]). These
notions are specially considered in the geometric case, i.e., when K is a
field of functions. It turns out then that both are very strong rigidity
conditions. Indeed, let V be an irreducible algebraic variety over R and K
its field of rational functions:

(a) If K is homogeneous, then V is a curve, either rational or elliptic.
(b) If dim V = 1 and K is D.O.P., then V is homogeneous.
(c) If V is of general type, then K is not D.O.P.

(These results are contained in [3], although in some slightly different
form.) Thus, the open problem is to characterize D.O.P. (fields of func-
tions of) varieties. Some partial answers are known (for instance, affine
spaces are D.O.P., cf. [2]), but the general solution appears to be quite
misterious. In this small note we show that this is certainly not the case in
a local context, i.e., for analytic germs. Namely, we prove:

THEOREM. Let Xo be an irreducible analytic germ in Rn

0 and K its field
of real meromorphic function germs. 7/dimJ^0 > 1, K is not D.O.P.

REMARK. If dim XQ = 1, then K is nothing but the quotient field of
R{ /} and it is trivially homogeneous. The interesting question in this case
appears to be whether Ω is still homogeneous under the action of Aut(A),
A being the ring of analytic function germs in XQ.
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2. Proof of the theorem. We may clearly assume that Xo is normal.

First we need the following

(2.1) LEMMA. Any ψ e Aut(K) is induced by some (unique) analytic

diffeomorphism ψ* ofX0.

Proof. Let A stand for the ring of analytic function germs on Xθ9 so

that K= qfA. We have to check that ψ(A) c A and ψ|R = Id R . Let

h e A, h Φ 0 and h(0) Φ 1. Set ψ(Λ) = J C E £ For each H > 0 there is

AΛ = (1 — Λ)1/M e 4̂ (implicit function theorem) and, setting yrt = ψ(Art),

we have: ( j w ) " = l - . * = > > . Now consider any discrete valuation v of K

over yί. As P ( y ) = nv(yn), we conclude v(y) = 0 (were *>(>>) Φ 0, would

it be \v(y)\ = ^ K Λ ) ! ^ w ' a ^ w ) Thus, y ^ΠPAV = A, A being nor-

mal, and x e A

This proves ψ(Λ) c A and, by symmetry, ψ(A) = A. Hence ψ:

4̂ -> yl is an isomorphism and in particular a local homomorphism of

analytic rings. But by a result in [1], this implies ψ|R = Id R , and the proof

is complete.

EXAMPLE. If Xo is not normal, 2.1 is not true any more: take

A = R{t2, t5} c R{t} c AT and ψ induced by t -+ t + t2.

We now prove our theorem.

Step I. Let Xo* denote the maximum dimension locus of Xo. There

are two analytic half-branches c0 and c'O9 both in Xo*, whose multiplicities

m and m r are different, say m < m\

Indeed, after a standard application of local parametrization the

problem reduces to find c0 with arbitrarily large m in some given

non-empty open semianalytic germ Wo c R^ and, after a new linear

projection, d = 2 (notice that transversal projections do not increase

multiplicities). Also, we can suppose

Wo = {(x,y) e R2: JC > 0, h(xι") <y < g(xι/p)}

for some p > 1, Λ, g e R{ /}. As Wo Φ 0 we can write:

where ho(t), go(t) are polynomials in R[/] of degree < r and h0 < g0 for

small /. Then choose f0 e R[/], of degree < r, such that h0 < f0 < g0 for

small t. It follows that for any Puiseux series fι(tι/q) the curve germ
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is contained in Wo, and if fλ and q are well chosen, the multiplicity of this
curve germ is arbitrarily large. This completes Step I.

Step II. There is an open semianalytic germ ί/0 c R", such that
Co c {/0, and any curve germ c$ c Uo has multiplicity m* > m'.

For, like in Step I, it is enough to consider the case n = 2, and c'o
given by: y = h(xι/m), x > 0, where h e R{/}. We write h in the
following way:

h = aλt
Pι + + art

Pr 4- αί* 4- ί/>+1Λ1(ί), 1 ^ Pi < <Pr<P>

and (/?!,..., /?r, m
r) = 1. Then the Uo we sought is

{x > 0, h-(χVm') <y < Λ + (x 1 / m ' )},

where

A"(ί) = aλt
Pι -f + a r ί ^ +(α - ε)/^,

/z + ( ί ) = axt
Pι 4- 4-flrί

Λ 4-(fl 4- ε)/^

(pick any ε > 0). Indeed, if c* c ^o ̂ s given by j = /(x I / m*), x > 0, we
have

Λ-ίx1/"1') </(x 1 / m*) < Λ + (x1 / m ') (for small x > 0)

and so

But m* is the lowest common denominator of all exponents in this
development, so m* > m\ m' being the Led. of the first r exponents.
Thus we are done.

Step III: end of the proof. By the separation lemma in [6], there is an
analytic function germ h such that c'o c [h > 0} c {Λ > 0} \{0} c ί/0.
Let αr be any ordering centered at c'o (such an a' does exist, as c'o c Xo*,
cf. [5]) and consider the open neighborhood H = H(h) of αr in Ω =
SpccRK. We claim that H contains no ordering α* isomorphic to any
ordering a centered at c0 c Jf0*, what finishes the proof (again because
c0 c Xo*). Indeed, assume the contrary, i.e. there is ψ G Aut(ίΓ) such that
ψa e i/. Then by Lemma 2.1, we get an analytic half-branch ψ * " 1 ^ = c*.
As Λ must be positive in ψα, c^ c [h > 0} \{0} c Uo and multc^ =
m* > m', because of the choice of Uo (Step II). But c% is analytically
diffeomorphic to c09 hence m* = rn < m\ contradiction.
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REMARK. One technical point in the proof above is to be sure c$ is
within Uo and not merely in the boundary. It is here where the separation
lemma is useful. Yet there is another possibility: using formal half-branches
(cf. [5]). But then one needs an approximation lemma for these half-
branches (loc. cit.) and the proof becomes more involved than it actually
is.
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