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THE BAIRE-CATEGORY METHOD
IN SOME COMPACT EXTENSION PROBLEMS

EvrLzBIETA POL

We characterize metrizable separable spaces X such that almost
every, in the sense of Baire category, embedding / of X into the Hilbert
cube 7 provides a compact extension #( X) such that the remainder
h( X) \ h(X) has certain dimensional property (for instance, is n-dimen-
sional, countable-dimensional or ‘“metrically weakly infinite-
dimensional”). We obtain a characterization of metrizable separable
spaces which have large transfinite dimension by means of compactifica-
tions. Two examples related to the results mentioned above are con-
structed.

1. Introduction. Consider the following two classes of separable
metrizable spaces: the class (P,) of spaces X with dim X < n and the
class (P,) of countable-dimensional spaces (for terminology see §2). In
this paper, for each of the classes (P), we characterize the class of the
spaces X such that almost every, in sense of Baire category, homeomor-
phic embedding 4 of X into the Hilbert cube 7“ yields a compact
extension 4 (X) of h(X) whose remainder £(X)\ h(X) is in the class
(P).

In contrast with the classical result in dimension theory that if X has
a compact extension with dim < »n (i.e. dim X < n, by Hurewicz theorem)
then almost every embedding A: X — I“ provides a compact extension
h(X) with dim%(X) < n, the existence of a compactification ¥ of Y
whose remainder Y\ Y is in the class (P), for any of the two (P) we
consider, is not enough to guarantee that almost every embedding #:
Y — I* provides such a compactification 4 (Y ) for h(Y).

In the case of (P,) the characterization is simple: the class consists
exactly of spaces which are unions of a compact set and an n-dimensional
set (§3).

To give a characterization for ( P,), we introduce a somewhat weaker
property than the weak infinite-dimensionality (in the sense of Smirnov).
In particular, spaces having large transfinite dimension have this property,
which yields a characterization of spaces with tr Ind, analogous to that
given by Hurewicz for small transfinite dimension (§4).
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We consider also (§5) spaces X such that for almost every embedding
h: X — I“ the remainder A(X) \ A(X) is “metrically weakly infinite-di-
mensional”; this class has a close connection with the class related to
(P,).

We end the paper with two examples related to the subject of this
paper (§6).

I would like to thank the referee for some valuable remarks.

2. Preliminaries. Our terminology follows [2], [3], and [4]. All
spaces considered in this paper are assumed to be metrizable separable. If
A is a subset of X, then B(A,¢) denotes an open e-ball about 4 with
respect to a fixed metric in X. By the dimension we understand the
covering dimension dim. A space X is said to be S-weakly infinite-dimen-
sional (weakly infinite-dimensional) if for every sequence {(A4,,B,),
(A4,, B,),...} of pairs of disjoint closed subsets of X there exists a
sequence L,, L,,... of closed subsets of X such that L, is a partition
between A4, and B, (see [3], Definition 1.1.3), and NY,L, = @ for some
integer N (N2,L; = &). A space is countable-dimensional, if it is a union
of countably many subspaces of dimension zero. The large (small) trans-
finite dimension tr Ind (trind) is the transfinite extension of the classical
large (small) inductive dimension Ind (ind) (see [4], Definitions 1.1 and
1.2). A family {(4,, B,),...,(4,, B,)} of pairs of closed disjoint subsets
of X is essential, if for every sequence L,,..., L, of closed sets such that
L, is a partition between A4, and B; we haveN!_,L, + &.

In the sequel we will often apply, without explicitly referring to, the
following lemma on partitions (see [3], Lemma 1.2.9).

LemMMA 2.1. Let M be a subspace of a space X and let (A, B) be a pair
of disjoint closed subsets of X. Then for every partition L’ in the space M
between M N U and M N V, where U, V are open subsets of X such that
AC U BCVand UNV = @, there exists a partition L in the space X
between A and B which satisfies the inclusion M N L C L'.

By I we denote the real interval [-1,1], I denotes the Hilbert cube
and let p be a fixed metric in I“. By C(X, I*) we denote the function
space of all continuous mappings from X into /“ endowed with a
complete metric

d(fi, fo) = SuP{P(f1(x),f2(x))3 X € X}-
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The subspace of C(X, I“) consisting of all embeddings of X into /¢ will
be denoted by E(X, I°). A subset A of a space X is residual, if its
complement X\ A4 is a first category set (i.e. X\ A4 is a union of
countably many nowhere dense sets); a countable intersection of residual
sets is residual in X, hence it is dense if X is complete. We will need the
following three classical theorems.

THEOREM 2.2 (see [7], Ch. 1V, 8§44, VI, Theorem 2). For any space X
the set E( X, I*) is a residual set in C( X, I*).

THEOREM 2.3 (see [7], Ch. 1V, §45, VII, Theorem 4', cf. also [9)). If
A, ..., A, are closed subsets of a space X such that A, N --- NA, = &
then the set {h € C(X,I1°): h(4,) N --- N h(A,) = B} is a residual set
in C(X, I®).

THEOREM 2.4 (see [7], Ch. 1V, §45, VII, Theorem 4’). If A is a closed
subset of a space X, then {h € C(X,I°): dim h(4) < dim A4} is a
residual set in C( X, I°).

3. Spaces whose almost every compact extension has remainder of
dim < n.

THEOREM 3.1. For any space X and n =0, 1,... the following condi-
tions are equivalent: L
(i) the set 5= {h € E(X, I°): dim(h(X)\ h(X)) < n} is a resid-
ual set in C( X, I*):
(ii) the set H# is dense in C( X, I°);
(iii) there exists a compact set K C X such that dim( X\ K) < n.

Proof. The implication (i) = (ii) is obvious. Let us show that (ii) =
(iii). First we will prove that if the condition (ii) holds then

(1) for every family {(A4,, By),...,(4,,B,)} of pairs of disjoint closed

subsets of X there exist closed sets L,,..., L, such that L; is a
partition between A4, and B, for i = 0,...,n and the set N L, is
compact.

Indeed, if {(Ay, By),...,(4,, B,)} is such a family then by Theorems 2.2
and 2.3 there exists f€ E(X, 1) such that f(4,) N f(B,) = & for
i=0,...,n Take ¢ > 0 satisfying p(f(4,), f(B;)) > e. By (ii) there exists
h € E(X,1°) such that d(f,h) <e/3 and dim(h(X)\ h(X)) < n. We
have then p(h(A,), h(B,)) > ¢/3 and thus h(A4,) N h(B,) = @ for i =
cont

0,...,n. Let U, and V¥, be open subsets of h(X) aining h(A4;) and
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h(B,) respectively with U, N ¥, = @. Since dim(h(X) \ h( X)) < n, then
for i = 0,...,n there exists a partition L/ between U N (h(X) \ k(X))
and ¥, N (h(X) \ k(X)) in the space 1 ( X) \ h(X) such that\"_ L, = @.
By Lemma 2.1 for i = 0,..., n there exists a partition L, between h(4,)
and h(B,) in h( X) such that L, N (h(X) \ #(X)) € L. The set N"_ L, is
compact and it is contained in #(X). Then the set L, = h™}(L, N h( X))
is a partition between A4, and B, in X such that the set N_(L, =
h~YN7_,L,) is compact, which finishes the proof of (1). To end the proof
of (iii) put K = X\ {x € X: x has a neighbourhood U with dimU < n}:
we have dim( X'\ K) < n. If the set K is not compact, then there exists a
discrete sequence { x, }72, of points of K and a discrete family { W) }72, of
open subsets of X such that x; € W,. Since x, € K, then dim W, > n and
thus there exists an essential family {(A{, BJ),...,(A4%, B/)} of pairs of
closed disjoint subsets of Wj Then, for i = 0,..., n, the sets 4, = U5_,4/
and B, = U%_,B/ are closed disjoint subsets of X such that if L; is an
arbitrary partition between 4, and B,, then the set \_ L, is not compact,
since it intersects every set Wj This is contrary to (1).

It remains to prove that (iii) = (1). If 4, = X\ B(K,1/i) for i =1,
2,... then dim 4, < n. By Theorems 2.2 and 2.4 the set #= {h €
E(X,1°): dimh(4;) <dim A4, for i =1, 2,...} is residual in C(X, I®).
We shall show that dim(h(X)\ k(X)) < n for every h € #. By the

countable sum theorem it suffices to verify that A(X)\ h(X)C
U, h(4,). This follows from the compactness of K: if x € h( X) \ h(X),
then there exists a neighbourhood U of x in #(X) and a number i such

that U N h(B(K,1/i)) = &; we have then x € h(A4,).

REMARK 3.2. It is easy to see that the condition (1) described in the
above proof is in fact equivalent to the conditions (i), (ii) and (iii) in
Theorem 3.1. It is also easy to show by induction that X satisfies (1) if
and only if the strong inductive dimension which neglects the class of
compact spaces of X is not greater than n (see [1] for the exact definition
of this notion).

ReEMARK 3.3. Fach of the conditions in Theorem 3.1 is equivalent to
the following condition

(2) for each family { f,}_, of continuous functions of X into the interval
I there exists h € E(X, I®) such that dim(h(X)\ k(X)) < n, and
for each i = 0,..., n the function f,4~': h(X) — I has a continuous
extension f: h(X) > L.
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The implication (i) = (2) follows from Theorem 3.4 in [11] stating that for
every function f: X — I the set {h € E(X, I*): the function fA~" has an
extension f: h(X) — I} is residual in C(X, I*). Thus by Remark 3.2 it
suffices to prove that (2) = (1). Let {(4,, By),- A,,B,)} be a se-
quence of pairs of disjoint closed subsets of X and fii X—>1 be a
function such that f,(4,) = 0 and f,(B,) = 1fori =0,..., n. By (2) there
exists h € E(X, I*) such that dim(h(X) J\NA(X) <n and every function
fih™: h(X) > I has an extension f;: h(X) -1 For i=0,...,n we
have f,(h(A4,)) = 0 and f,(h(B,)) =1, hence h(4,) N h(B,) = E. Now
it is easy to construct the required partitions L; (compare the proof that
(i1) = (1) in Theorem 3.1).

4. Spaces whose almost every compact extension has countable-di-
mensional remainder.

THEOREM 4.1. For a space X the following conditions are equivalent:
(i) the set #={he€ E(X,I°): h(X)\h(X) is countable-dimen-
sional} is residual in C( X, I*):
(ii) X satisfies the following condition (K): X contains a compact set K
such that dim( X\ U) < oo for every open subset U of X which contains K;
(iii) the set #’' = {h € E(X,I°): h(X)\ h(X) is locally finite-di-
mensional } is residual in C(X, I*).

Proof. Let us prove that (i) = (ii). If the condition (K) is not
satisfied, then there exists a discrete family {U}}72, of open subsets of X
such that dimU, > j for j = 1, 2,..., (the proof repeats the reasonings of
Skljarenko [13] cf. [2], Ch. X, §6, LemmasZ and 3). Let {(A4/, B/)}/_,
an essential family in U, then the sets 4, = U7_,4/ and B, = U%_ ,B,f are
disjoint closed subsets of Xfori=12,... By Theorems 2 2 and 2.3 the
set F={he E(X,I°):h(4;)Nh(B) =@ fori=1,2...}is re31dua1
in C(X, I*). By (i) there exists h € # such that h(X) \ A(X) = U2, Z,,
where dim Z; < 0. By the separation theorem (see [3], Theorem 4.1. 13) for
each i there exists a partition L, between the sets /(4,) and h(B;) such
that L, N Z, = &. Then L = N, L, is a compact subset of h( X) so that
h7Y(L) is a compact subset of X. Since the family {l7j}j°=1 is discrete,
R (L)NU =@ for j=>j, where j, is some integer. Let F
= U k(U); since L N F = @, there exists an open subset V' of h(X)
such that L C Vand VN F = &. By compactness of L there exists i,
such that Nio L, c V so that Nio,L, N h(U,) = @ for n > j,. Take
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ny, = max(iy, jo)- Putting K; = h"Y(L;), i = 1,...,i,, we have

ig

N (Ki n l_j"o) =9

i=1
and K, N U, is a partition between A7 and B}, which is contrary to
the assumption that the family {( A7, B/")}72, is essential.

To show that (ii) = (iii) put F;, = X\ B(K,1/i)fori=1,2,...; we
have dim F; < oo. By Theorems 2.2 and 2.4 the set = {h € E(X, I*):
dimh(F) < dimF, for i = 1, 2,...} is residual in C(X, I*). From the
compactness of K it follows easily that for each h € % the set
h(X) \ h(X) is locally finite-dimensional.

The implication (iii) = (i) is obvious, since every locally finite-dimen-
sional space is countable-dimensional.

REMARK 4.2. Let us notice that every S-weakly infinite-dimensional
space (hence every space having large transfinite dimension tr Ind) satis-
fies the condition (K). Indeed, let us recall that a space X is S-weakly
infinite-dimensional if and only if S(X) = X\ U{U: U is an open sub-
space of X and dimU < oo} is a compact weakly infinite-dimensional
subspace of X such that for every open set U C X which contains S(X)
we have dim( X\ U) < oo (see [2], Ch. X, §6, Theorem 26).

By a theorem of Hurewicz (see [4], Theorem 4.15) a space X has trind
if and only if there exists » € E(X, I*) such that h(X) is countable-di-
mensional. From Theorem 4.1 we obtain a corresponding characterization
of spaces having tr Ind:

COROLLARY 4.3. For a space X the following conditions are equivalent:

(i) X has large transfinite dimension tr Ind;

(i) the set #= {h € E(X,I°): h(X) is countable-dimensional} is
residual in C( X, I®).

Proof. The implication (i) = (ii) has been proved by Luxemburg [8].
We shall prove that (ii) = (i). If the set 5# is residual, then by Theorem
4.1 the space X contains a compact set K such that dim( X\ U) < oo for
every open subset of X containing K. Since X is homeomorphic to a
subspace of a countable-dimensional space h( X ), where & is a member of
2, X is countable-dimensional. It follows that K is compact and
countable-dimensional, hence K has trInd, which implies that X has
tr Ind (see [4], Theorem 3.16).
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Let us note that other characterizations of metrizable separable spaces
having tr Ind, by means of compactifications, were given in [4], Theorem
4.10 and [10], Theorem 10.1(a).

COROLLARY 4.4. For a space X the following conditions are equivalent:

(i) X is S-weakly infinite-dimensional;

(ii) the set #= {h € E(X,I°): h(X) is weakly infinite-dimensional }
is residual in C( X, I°).

Proof. If X is S-weakly infinite-dimensional, then it satisfies (K) and
by Theorem 4.1 the set #= {h € E(X, I*): h(X)\ h(X) is countable
dimensional} is residual in C(X, I*). To prove (ii) it suffices to show that
if h(X) is S-weakly infinite-dimensional and h(X)\ 2(X) =U=,Z,
where dimZ, < 0 for i = 1, 2,..., then h(X) is weakly infinite-dimen-
sional. Let {(A4,, B,),(A4,, B,),...} be a family of pairs of disjoint closed
subsets of #(X). For i =1, 2,... let L, be a partition between A4,, and
B,, in h(X) such that L,,N Z,= @. Then the set L =N2,L,, is a
compact subset of h(X), hence it is weakly infinite-dimensional. Thus for
i=1,2,... there exists a partition L), ; between A4,, ; N L and B,,_;
N L in L such that N2 L), ;, = @. Taking partitions L,,_; between
A,;_; and B,,_; in h(X) such that L,, ;N L C L), _, we obtain a
family { L}, of partitions such that N2, L, = &.

It remains to prove that (ii) = (i). If {(4,, B;),(4,,B,),...} is a
family of pairs of disjoint closed subsets of X, then by (ii) and Theorems
2.2 and 2.3 there exists & € E(X, I*) such that A( X) is weakly infinite-
dimensional, and #(4,) N h(B,) = @ for i = 1,2,....If L is a partition
between h(A,) and h(B,;) in h(X) such that NY L) = &, then L, =
R~} (L} N h(X)) is a partition between A, and B; in X such that N L,
= @.

5. Spaces S-weakly infinite-dimensional modulo compacta.

DErFINITION 5.1. We say that a space X is S-weakly infinite-dimen-
sional modulo compacta (shortly, S-w.i.d. modulo compacta), if for every
sequence {(A4,, B,),(4,, B,),...} of pairs of closed disjoint subsets of X
there exists a sequence { L,}32, of closed subsets of X such that L, is a
partition between 4; and B, and for some integer N the set N L, is
compact.
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PROPOSITION 5.2. (i) Every space X which is a union of a compact
subspace and an S-weakly infinite-dimensional subspace is S-w.i.d. modulo
compacta;

(ii) If a space X is S-w.i.d. modulo compacta, then it has property (K).

Proof. The proof of (i) is standard: if X =K U Y, where K is
compact, Y is S-weakly infinite-dimensional, and {(4;, B,;),(4,, B,),...}
is a family of pairs of closed disjoint subsets of X, then we take open
subsets U, and V, of X such that 4,c U, B,C ¥V, and U, N V,= &.
There exist partitions L’ between U, N Y and V, N Y such that N\Y_ L, =
@ for some integer N. Take partitions L, between 4; and B, such that
L,NY C L; then the set Y, L, C K is compact.

The proof of (ii) follows easily from the fact that if the condition (K')
is not satisfied, then there exists a discrete family {U;}2; of open subsets
of X such that dlmU > j (compare the proof of the unphcauon (1) = (i)
in Theorem 4.1).

DEFINITION 5.3. We say that a subspace X C I is metrically S-weakly
infinite-dimensional (shortly, p-S-w.i.d.) if for every sequence
{(A4y, B,),(A,, B,), ...} of pairs of disjoint closed subsets of X such that

p(A4,, B;) > 0 there exists a partition L, between 4, and B;,, i =1,2,...,
such that N\Y L, = @ for some integer N (recall that p is a fixed metric
in 1¢).

THEOREM 5.4. For a space X the following conditions are equivalent:

(i) the set #={h € E(X,I°): h(X)\ h(X) is p-S-w.i.d.} is resid-
ual in C( X, I*);

(i) X is S-weakly infinite-dimensional modulo compacta.

Proof. To show that (i) = (ii) let us take a sequence {(4,, B,),
(A3, By),...} of pairs of disjoint closed subsets of X. By (i) and by
Theorems 2 2 and 2.3 there exists 4 € E(X, I*) such that h(4,) N h(B,)
=g, fori=1,2,..., and the set #(X) \ ~(X) is p-S-w.i.d. Take open
sets U, and V;, in h(X) containing /(4;) and h( B;) respectively such that
unvs= Q Since p(U, ,) > 0, then there exist partitions L, between
T N (h(X)\ h(X)) and 7, 0 (5(X) \ k(X)) such that N\ L/ = & for
some integer N. Finally, take partitions L, between 4 (4,) and h(B,) with
L,n (h(X)\ k(X)) c L}; then L, = h"Y(L, N h(X)) are required parti-
tions between 4; and B,.
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The first step in the proof that (i) = (i) is to show that if &/=
{(4;, By),...,(Ay, By)} is a family of pairs of closed disjoint subsets of
X such that

(3) fori=1,...,N there exists a partition L, between 4, and B, such
that the set N, L, is compact,
then
(4) the set o, = {h € E(X,I°): foreachi=1,...,N, h(4,) N h(B;)
= @ and there exists a partition K, between h(A ) and h(B;) such
that N\Y K\ h(X) = @} is re31dua1 in C(X, I®).

Indeed, for i = 1,..., N, let E, and F, be closed subsets of X such that
L=ENF, A/CE, B.CF, ANF,= @, BNE,= @ and E, U F,
= X. Then the set C = N_,L, = N_,E; " NY,F, is a compact subset of
X.Let V, = B(C,1/k) for k = 1,2,...,; we have (N, E, N N, F)\ V,
= &. Hence for each k and a family { EE\ V,: i=1,..., N} U {F\ V,:
i=1,...,N} of closed subsets of X we have N\Y_,(E, \ V D N(F\V) =
Q By Theorems 2.2 and 2.3 the sets 5, = {h € E(X, I°):

L R(ENV)NNL R(FE\V,) =@ for k=1,2...} and 56, = {h
EE(XI“’) h(A,) "h(F)= @ and h(E)Nh(B)= & for i=1,

..} are residual in C(X, I*). We will show that 5,2 5, N 5#,. For
1—1 ,N let K, = h(E,) n h(F); smceheafz,thenthesetK isa
partition between h(A4;) and h(B,) in h( X). Let us verify that

Suppose to the contrary, that there exists a point x € (Y 1h(E )N

h(F )\ A(X). Since {x} and h(C) are disjoint compact subsets of
h(X ), there exists a neighbourhood ¥ of the point x in 4(X) such that
V N h(C) = &. Take an integer k such that ¥, N h™}(V) = @. For each
i we have

xe€h(E)NVAh(F)NVCh(EN\V,) Nh(E\TV,)

which is a contradiction, since # € 5#,. This ends the proof of (4).

Now suppose that X is S-w.i.d. modulo compacta. Let 2=
{(Cy, Dy),(C;, D,),...} be a family of pairs of disjoint closed subsets of
I° such that for every pair (A4, B) of disjoint closed subsets of I there
exists an i such that 4 € C; and B C D,. Let %, be a maximal family of
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disjoint open subsets of C(X, I“) of diameter < 1. If %,_, is defined,
then for each U € %,_, let %, be a maximal family of disjoint open
subsets of U of diameter < 1/iand %, =Uycq_ %, -

Let us fix an integer i. For each U € %, let us choose f,, € U and
consider the family

Dy = {(£31(C), £31(D1)), (£51(Cy), f5M(Dy)), ...}

of pairs of disjoint closed subsets of X. Let #"(U) be the family of all
finite subsequences &= {(A4,, B,),...,(Ay, By)} of the family &, for
which the condition (3) is satisfied. By (4), the set 5, is residual in
C(X, I°) for every &€ X' (U). Since |A(U)| < x,, then the set #(U)
= Ny e 4 () 1s also residual in C(X, I*). Since the family %, consists
of disjoint and open subsets of C(X, I®) and U%, = C(X, I*), then the
set

#= U (#U)nU)
Ue%,

is residual in C(X, I®). Finally, the set 5’ =N, is residual in
C(X, I°).

It remains to prove that J#’ C J, i.e. that for every & € 5#’ the set
R(X)\ h(X) is p-S-wid. Let {(4,, B,),(4,, B,),...} be a family of
disjoint closed subsets of A( X) \ A(X) such that p(4,,B;) > 0fori=1,
2,.... Then for each i the closures 4, and B, of A4, and B, in I* are
disjoint and thus there exists an integer j(i) and a real number ¢ > 0
such that B(4;,¢) C C;,, and B(B;,¢;) C D;,. For each i take 5, > 0
such that the sets C* = B(Cj(,), ;) and D* = B(D,,,m,) are disjoint.
Consider the family {(A™Y(C*), h~ 1(D*)) (h™X(CF), h"Y(D$)),...}. Since
X is S-w.i.d. modulo compacta, there exists an integer N and partitions L;
between A~Y(C*) and h~}(D¥), for i = 1,..., N, such that the set N\, L
is compact. Let ¢ = min{e;,..., &y, My,..., My} and let m be a natural
number such that 1/m < e. There exists exactly one U € %, such that
h € U. Observe that f;'(C;,,) € h"}(C) and f;'(D;;)) € h™Y(D}). In-
deed, if x € f;'(C;), then since d(h, fy) <1/m <e we have
p(h(x), fy(x)) < e and thus h(x) € B(C,;),e) € B(C;,y,m,) € C* ie.
x € h'}{(CX).

Thus, for i =1,..., N, the set L, is a partition between the sets
fo(c iy) and foND (,)) and the set ﬂ,,lL is compact. Hence the family

A= {( ( ,(1)) fo ( ,(1))) ( _I(C/(N)) fo ( ;(N)))} e (U).
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Since h € #(U), then h € ), and thus there exist partitions K; be-
tween h(f;'(C;,)) and h(f;'(D;,)) such that NX,K,\ h(X) = @.
Observe that 4, C if;'(C;,,) and B, C hf;' (D). Indeed, we shall show
that 27'(4,) € f;(C;,y) and h™(B,) C f'(D;;))- Let a € h7(4,); then
p(fy(a), h(a)) <e<eg and thus fy(a) € B(A,¢)C Cy,y, ie. a€
f5'(Ciy)- Tt follows that K/ = K, N (h(X)\ (X)) is a partition be-
tween A4, and B, in hA(X)\h(X) for i=1,...,N and NV K/ = &,
which ends the proof.

6. Examples and remarks.

ExXAMPLE 6.1. A space X satisfying the condition (K) which is not
S-weakly infinite-dimensional modulo compacta.

Let Z = {0,1,%,3,...} be a subspace of the real line and let E, =
{{xj} €I -1<x;,<1for j=1,2,...,n and x;=0for j=n+1,
n+2,..,},forn=12,....Let

X=(1*x{0o})u U (E x{;l;})
n=1

be a subspace of the Cartesian product I* X Z. Put 4, = {({x,},0) € I*®
X {0}: x,=-1} and B, = {({x;},0) € I* X {0}: x,=1}; 4, and B,
are compact disjoint subsets of the space X. Let L; be an arbitrary
partition between A4, and B,. We shall show that for every integer N the
set N ,L, is not compact (this implies that X is not S-w.i.d. modulo
compacta; some other properties of X follow from Remark 6.3 below— see
Corollary below). Let I, = {{x;} € I“: -1 < x; < 1for j=1,...,n and
x;=0forj=n+1,n+2,...}. Put

X' = (1°x{0}) v i_j (I,, x{%}) cl°XxZ.

For each i take a partition L] between A4, and B, in X’ such that
LN X c L,. For every i there exists integer n; > 1 such that for any
n>n; the set LN (I, X {1/n}) is a partition between the sets
(({x,}.1/n): {x;) € L, x, = -1} and {({x,},1/n): {x;} €I, x,= 1)
in the space I, X {1/n}. Let N be an arbitrary integer and let n >
max{n,,...,ny, N+ 1}. Then for i=1,...,N the set LN (Iy,, X
{1/n}) is a partition between the opposite faces {({x;},1/n) € I}y, X
{1/n}: x; = -1} and {({x,},1/n) € Iy,; X {1/n}: x; = 1} of the cube
Iy,, X {1/n}. Hence the set N ,L. N (Iy,; X {1/n}) contains a con-
tinuum C meeting the faces {({x;},1/n) € Iy, X {1/n}: xy,; = -1}
and {({x,},1/n) € Iy, X {1/n}: x5, = 1} (see[12], Lemma 5.2). For
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m=1,2... take

A 1 1
a, € ﬂL:ﬂ{({x} )EIN+1><{ } xN+1=1—;}.
i=1
Then the sequence {a,,}%_, is contained in N, L; and has no accumula-
tion point in X. Thus the set N, L, is not compact.

EXAMPLE 6.2. A space X such that X has trInd and yet X has no
compactification with S-weakly infinite-dimensional remainder.

Before we proceed to the construction let us recall that the deficiency
of a space X, def X, is defined as min{dim( X\ X): X is a compactifica-
tion of X'} (see [3]).

Let X= @ X,U{p}, where X, is a separable space such that
defX, > n and the base of neighbourhoods of p consists of the sets of
the form UY_, X, where k =1, 2,.... For example, we can take X,
=I"" N\ {(xp, .. X)) X4 =1 and 1 <x,<1lfori=1,...,n) (see
[6], Ch. VI, Research problem D); notice that inequality def X, > n
follows from the fact that if L, is a partition between the compact
sets A, = {(x;,...,%,11) €I x,=-1} and B, = {(x},--.,X,41)
eI" x,=1} in X,, for i=1,...,n, then the set N”_,L, is not
compact (compare Remark 6.3 below) Suppose that the space X has a
compactification X such that the remainder X\ X is S-weakly
infinite-dimensional. Then X\ X contains a compact set K such that
dim( X\ X\ W) < oo for every open set W in X\ X containing K. Let
U and V' be neighbourhoods of the set K and the point x respectively in
the space X such that U N ¥ = &. Then the set (X\ X)\ U has a finite
dimension, hence the set ¥ € X U (X\ X)\ U has def V < co. This is a
contradiction, since V' contains almost all X,’s and def X, > n.

REMARK 6.3. In the sequel by a compactness degree of a space X
(cmp X) we understand the transfinite invariant defined as follows: cmp X
= —1if X is compact and cmp X < a if X has a base # of open sets such
that cmp FrU < « for every U € Z (see [5] and [14]).

PROPOSITION. Suppose that a space X satisfies one of the following
conditions:

(i) there is an embedding h: X — I such that the set h(X) \ h(X) is
p-S-weakly infinite-dimensional,

(i) the transfinite compactness degree cmp X is defined.
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Then

(5) for every sequence {( A,, B,),(A,, B,),...} of pairs of disjoint compact
subsets of X there exist partitions L, between A, and B; such that for
some integer N the set N\X_, L, is compact.

Proof. In the case when X satisfies (i) the proof is similar to the proof
of the implication (i) = (ii) in Theorem 5.4. Now suppose that cmp X is
defined. We apply the transfinite induction with respect to « = cmp X. If
a = -1, then X is compact and the condition (5) is obviously satisfied.
Now assume that the proposition is proved if cmp X < a and let X be a
space such that cmp X < a. Let {(4,, B,),(4,, B,),...} be a sequence of
pairs of disjoint compact subsets of X. Since 4, is compact and cmp X < a,
there exist open subsets U,,...,U, of X such that 4, c U* U, and for
each i=1,...,k we have UN B, = & and cmpFrU, < « for some
a’ < a. By the inductive assumption each Fr U, satisfies (5), hence the set

k| FrU, satisfies (5) since the property (5) is finitely additive. It is easy
to see that the set L, = FrU c U% ,FrU, is a partition between 4, and
B, and satisfies (5). For i > 2 there exists a partition L] between 4, N L,
and B, N L, in L, such that the set N, L, is compact for some integer
N. Now if we take partitions L, between A, and B; in X such that
L,N L, c L, then the setN;_, L, is compact.

COROLLARY. For a space X defined in Example 6.1 the transfinite
compactness degree is not defined and there is no embedding h: X — I such
that the set h( X )\ h(X) is p-S-w.i.d. (since X does not satisfy (5)).
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