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FITTING STRUCTURES

KARSTEN JOHNSEN AND HARTMUT LAUE

Motivated by papers of H. Fitting, the problem arises whether there
exists a ring which contains a given ring and a semigroup acting on each
other. This problem is solved in the affirmative by the construction of a
“universal envelopment”. Furthermore, the situation investigated gives
rise to a generalized wreath product which is used for a description of
certain automorphism groups.

0. Introduction. The endomorphisms of an abelian group form a
ring in a natural and well-known way, whereas in the case of a nonabelian
group one has no general “addition” of endomorphisms. One easily
proves that the “sum” of two endomorphisms «a, 8 of a group G,

a+ B: g ggf forallge G,

is an endomorphism of G if and only if [G% G#] = 1. Hence the endomor-
phisms that can be added to any endomorphism are exactly the homomor-
phisms of G into its center Z(G). In this sense, the ring Hom(G, Z(G)) is
a “pleasant” substructure of End(G). Long ago, Fitting [2] described the
structure of End ;(G) which, though not a ring, still has numerous ring
properties; if we put H:= End;(G), S:= Hom(G, Z(G)), then e.g.

(1) (s,h)s, = s,(hs,) forall he H, s;,s5, € S,
(2) (hy + s)hy = hih, + sh,, hi(hy,+s)=hh,+ hys

forall hj,h, € H,s € S,
(3) (h+s.)s,=hs, + 515,,  s:(h+5,) =150+ 5.5,

foral h € H, s;,5, € S.

Keeping these rules as axioms, we introduce so-called Fitting struc-
tures in the first chapter of this paper and show that firstly there does
exist a ring R containing H and S such that (1), (2), (3) are special cases
of its associative and distributive laws, and that secondly any ring with
this property (if—which is a non-essential restriction—it is generated by
H) is a homomorphic image of R. Emanating naturally from Fitting’s
notion of “Bereich” [2], the problem of the existence of enveloping rings
for Fitting structures, which has been solved for H = End ;(G) by Fitting
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112 KARSTEN JOHNSEN AND HARTMUT LAUE

in a special way, thus finds a general positive answer. Chapter 2 shows
that even if there is not given an addition of elements of H and S, such an
addition can be defined after a certain enlargement of H, and that this
process of making H and S into a Fitting structure is essentially uniquely
determined by the actions of H on S. In Chapter 3, we introduce to each
Fitting structure a generalized wreath product containing the usual wreath
product of (semi-)groups as a special case, and use this concept to give a
simple description of certain automorphism groups, applying a result of
another paper by Fitting [1].

1. Fitting structures. For every ring' S, we put
End,(S):= {a]a € End(S, +), (5;5,)" = 5,(s%) for all 5,5, € S},
Endp(S):= {ala € End(S, +), (s5,5,)% = (s{)s, forall s;, s, € S}.
Obviously, End ,(S) and End ;(S) are subrings of End(S, +).

1.1. DeFINITION. Let H be a semigroup, S a ring, ¢ a homomor-
phism of H into the multiplicative semigroup of End ,(S), ¥ an antiho-
momorphism of H into the multiplicative semigroup of Endp(S) such
that H® and HY commute elementwise. Let ¢ be a homomorphism of
(S, +) into the symmetric group &, on H such that »*° = & implies
s=0forall h € H, s € S (ie, (S, +) “acts freely” on H).

If h€ H, s €S, we write sh for s**, hs for s*, h + s for h*". The
5-tuple (H, S, 9, ¥, 0) is called a Fitting structure if (1), (2), (3) hold.?

By definition, we have
(4) (shy)hy = s(hh,), hi(hys) = (hihy)s

forall hy,h,€e H,s € S,

(5) (h+s)+s,=h+(s, +s,) foralheH,s,s,ES,

(6) (515,)h = 51(5,h), h(s15;) = (hsy)s,

forall h € H, s,,5, € S,
(7) (hys)h, = hy(sh,) forall h,h,e H,s€ S
(8) h+s=hes=0 foralhe H,s <€ S.

LAll rings in this paper are associative, but do not necessarily have an identity element.

2If H is a “Bereich” in the sense of Fitting [2], let S be the set of all elements of H which
can be added to any element of H. Then S is a ring, and we get a Fitting structure with
the additional property that S is contained in H, and H has an identity element. Any
further possibilities to add elements of H (which might exist in Fitting’s “Bereich”) are
treated as non-existent in our Fitting structures.
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If H has an identity element 1, then (2) and (8) imply 1% = id = 1¥.

Fitting structures %= (H, S,p,¢y,0), F' =(H',S’,¢',{y’,6’) are
called isomorphic if there are isomorphisms a of H onto H’, B8 of S onto
S’ with the properties B0’ = oa, ag’ = @B, ay’ = B, where @ is the
isomorphism of &, onto &, induced by a (such that 7* = a '7a for all
7 € ), and B is the isomorphism of End(S) onto End(S’) induced by
B (such that ¢# = BB for all ¢ € End(S)).

F' is called a Fitting substructure of % if H’ is a subsemigroup of
H, S’ is a subring of S, and ¢’ = ¢@|,, V' ={|,, 0’ =0|y. If H is a
subsemigroup of H, S’ a subring of S, then (H', S’, 9|y, |y, 0|g) is a
Fitting substructure of % if and only if S'H' C S’, H'S' C §’, and
H + 8" =H'.

1.2. DEFINITION. Let % be a Fitting structure, R a ring, a
homomorphism of H into the multiplicative semigroup of R, and a
homomorphism of S onto an ideal of R. The triple (R, , ) is called an
envelopment of F if

9) h+5=h+s foralhe H,s€ S

holds.
The envelopment (R, ~, ) is called faithful if ~ and ~ are injective.
From (9), we conclude

(10) hs =hs,sh=sh foralhe H,s < S,

since

—_~ __ TN — . . -
h*+sh=h*>+sh=(h+ s)h=h+ sh = (h+ 5)h =h*>+ 5h,

and the second part of (10) is proved similarly.

1.3. DEFINITION. Let % be a Fitting structure and (R, ", ), (R’, , )
envelopments of #. Then a mapping x is called a homomorphism of
(R,”,”) into (R’, , ) if x is a homomorphism of R into R’ such that
hx=h, sx=5forallh € H,s € S. If x isan 1somorphism of R onto R’,
we call our envelopments isomorphic. An envelopment # of % is called
universal if for any envelopment ¥~ of % there is a homomorphism of %
into 7.

Universal envelopments of isomorphic Fitting structures are isomor-
phic. We now prove the following existence theorem:

1.4. THEOREM. Every Fitting structure has a faithful universal envelop-
ment.
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Proof. Let = (H, S, @, Y, 0) be the Fitting structure given. We put

~

T:= ZH and write +, * for the standard addition and multiplication in
T.(Then h, * h, = hh, forall h, h, € H) For h € H, s € S define

8(h,s):=(h+s)=h
and let K be the additive subgroup of T generated by {&(A,,s) =
8(hy,s)|hy, h, € H, s € S}. Then
(11)  h;*8(hy,s) = 8(hy, hys), 8(h,,s) hy = 8(hy,sh) €K
forall h,,h, € H,s € S,
as
hy *(hy,s) = 8(hy, his) = hy :((hi +s5) = hz) = 8(hy, hys)
=hy(hy +5) = hihy = 8(hy, bys)
= 8(hyhy, hys) = 8(h,, hys) €K,
the second part of (11) being proved analogously. Obviously, (11) yields
(12) b 3(8(hy,s) = 8(hs,5)), (8(hy,s) = 8(hy,s)) hy € K
forall h,,h,,h, € H,s € S.
Thus X is an ideal of T, and, by definition of K,
(13)  8(hy,s) + K=28(hy,s)+K forall h,h,€ H,s€S.
We now define
R:=T/K,
““H->R,h~h+K,
and for an arbitrary h € H
:S—>R, s—8h,s)+K.
(By (13), " is independent of the choice of 4.) Obviously, ~ is a homomor-
phism of H into the multiplicative semigroup of R, and

h+s=(h+s)¥K=h+(h+s)2h+K
=(h+K)+(8(h,s)+K)=h+5 foralh€ H,s €S,
whence (9) holds. We want to show that is a ring homomorphism of S
into an ideal of R, and start with
(14) &8(h,s, +s,) = 8(h,s;) = 8(h,s,) €K forallh€ H, s,,s, € S.
For
8(h,s; +s,) = 8(h,s;) =8
=(h+s+s5,)%
=8(h+s5,,5,)">

h,s,)
h2(h+s)+h=8(h,s,)
8(h,s,) € K.

N~
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Furthermore,
(15) &(h,s,s,) = 8(h,s,)*8(h,s,) €K foralheH,s, s, <SS,
since
8(h,s:5,) = 8(h,s,)*8(h,s,)
= 8(h,s,5,) :‘((h +5) & h) :((h +5,) & h)
= 8(h,s,8,) 2 (h+s)(h+5,) (b +s)h+ h(h+s,) > h?
= 8(h,s5,5,) = 8((h + s.)h, (h + 5,)s,) + 8(h%, hs,) € K,
by (13) and (14). _ B
As (14) and (15) show, is a ring homomorphism, and by (12), S is
an ideal of R. Therefore, (R, - )_is an envelopment of #. We need some
preliminaries to show that ~ and ~ are injective:
Let D be the additive subgroup of T generated by {8(h, s)|h € H,
s € S}. Then K < D, and D/K = S. Since
(16) 2 8(h,s)=8(h+s,-s) foralhe H,s€E S,

every element of D has the form X ;8(h;,s;) for appropriate &; € H,
s; € S. We claim:
k

(17) ﬁa(hj,sj)=o=> Y5,=0

j=1
forall h,,...,h, € H, s,,...,5, € S.
Suppose L%_;8(h;,s;) = 0. Then we have X%_, (h; +5,) = Z5_, h,.

j=1
Since (T, +) isj free over H, there is a permutation 7 of {1,..., k} such
that h, + s, = h, forall j€ {1,...,k}.Forie {1,...,k}, let f, be the
smallest positive integer such that iw/ = i. Then {i,iw,...,im" "'} is the
orbit of i under 7, and h, + 5, + 5, + -+ +s5,0=h; 1 for 0 <1 < f,
hence in particular h;, +s; + 5, + -+ +5,,-1 = h;, and s, + 5,
+ - -+ +5,,,-1 = 0 by (8). Now if X denotes a full set of representatives
of the orbits of 7 in {1,...,k},

k
Z S = Z (s;+ 8, + -+ +5,01) =0,
j=1 iex
proving (17).
As a consequence, we have

k k’ k k'
(18) Y 8(hys) = L 8(h),s))= Ls;= X5
Jj=1 j=1 Jj=1 j=1

forall hy,...,hy, hy,...,h}. €EH, s1,...,8,5],...,5, €S.
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Therefore, p: X5_,8(h,,s;) = L%_,s; defines a mapping of D into S
which obviously is an additive homomorphism. We claim:
(19) K = kerp.

By (16) and the definition of K, we have K C kerp. One generally has
8(Ch;,s;)=8(hy +s, + -+ +s5;,_3,s;)mod K for hy,...,h;, € H,
51,...,5; € S. If now XX_, 8(h,s;) € kerp, then £¥_,s; = 0, and conse-
quently

k
E 8(hj’sj)
j=1

Ml
M=

8(hy + s, + -+ +sj_1,sj) mod K
1

(hy +5,) = hl) ;((hl +5, 4+ 5,) = (b + 31))

~.
I

Il
—_

+>

k(B A sy e bs) S (R s e )
=2h 4+ (h +s,+ -+ +5,)=0,
ie., Zj;ls(hj,sj) € K.
If h€ Hand s € S\ {0}, then 8(h, s) € K by (19), and this means
(20) " is injective.
We now want to show that ~ is injective which we shall conclude from
(21) h>WeD=h=h+s withse S, forall h,h' € H.
We reformulate (21) in the following form to make it accessible to an
induction argument:
Suppose h, i’ € H and r € N. If there are h,,...,h, € H,
(22)  s,...,5,€ Ssuchthat b = h" = X7_,8(h,s,), then there
is an element s € S such that A = A" + s.
If r=1then h=h, +s, =h"+s,as (T, +) is free over H. Now
suppose r > 1 and (22) is true for r — 1 instead of r. Since h = h’ =
-108(h;, s;), we may assume h = hy + s5;, h’ = h,. Furthermore, h;, = h,
+ s, with i € {2,..., r}. This yields

hah = (h+s,+s)>(h+s)+ X 8(h,s,)

j=2

=(h,+s5+s)>h+ 228(hj,sj)
=
j*i

=8(h;,s,+s)+ Y 8(h,,s;),
j=2
J#Fi
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and an application of the induction hypothesis yields our claim. This
proves (22) and the equivalent assertion (21) by means of which we
conclude

(23) " is injective:

For if h,h" € H and h =~ h’ € K, then a fortiori » =~ h’ € D and
therefore h = h’ + s with s € S. But then 2 = A’ = §(h’,s), and (20)
implies s = 0. Therefore we have & = h’, and the proof of (23) is com-
plete.

It remains to show that the envelopment (R, ",7) is universal. To this
end let (R, ° ") be an envelopment of .%. Since (T, + ) is free over H,

Xo: T = R, szthsz‘izj (zje z)
J J

defines a ring homomorphism. We show
(24) K C kerx,.
Let hy,...,h, €H,s,,...,5, € Sand ZX_,8(h;,5,) € K. Then

(é:la(h,,s,))Xo = 2 ((h;+ )™ = hx)

Jj=1

=X (b, +s-h)= Z(h/+ ;= hy)
j=1 j=1

k _ k

=Y 5=2s=0,

j=1 j=1
by (9) and (19).
By (24),

X:R->R, Yzh +K-Yzh (z€2)
J J

defines a homomorphism, and for all # € H, s € S we have
hx=(h+ K)*
§x = (8(h,s) +
by (9). This completes the proof of our theorem.

=h,
K) =hos-h=h+

111

5=

L

b

2. Fitting pre-structures.

2.1. DerFINITION. Let H be a semigroup, S a ring, ¢ a homomor-
phism of H into the multiplicative semigroup of End ,(S), ¢ an antiho-
momorphism of H into the multiplicative semigroup of End(S) such
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that H® and HY commute elementwise. (We use the notations introduced
in 1.1.) The 4-tuple #,:= (H, S, ,{) is called a Fitting pre-structure if
condition (1) holds.

Let = (H*, S*, ¢p*, y* 6*) be a Fitting structure with § = S*, and
p a monomorphism of H into H*. The pair (%, p) is called a continua-
tion of %, if
(25) ¢ =pe*, Y= pg*
holds.

Isomorphisms of Fitting pre-structures and Fitting sub-pre-structures
are defined in complete analogy to the corresponding notions for Fitting
structures, the conditions on ¢, ¢’ being omitted.

If (‘9;1’ u‘l) and (3;—2’ “2) Wlth 33'1 = (H*’S*7 (P*, \[/*,0’*), -g'z =
(H**, S** @** {** o**) are continuations of %, then a homomorphism
of (#,, 1,) into (%, u,) is defined to be a homomorphism w of H* into
H** with the property
(26) By = .

If w is a bijection of H* onto H**, our continuations are called
isomorphic. A continuation % of %, is called universal if for any
continuation &’ of %, there is a homomorphism of % into % '.

Universal continuations of isomorphic Fitting pre-structures are iso-
morphic. We now prove the following existence theorem:

2.2. THEOREM. Every Fitting pre-structure has a universal continuation.

Proof. Let #,= (H, S, ,{) be the Fitting pre-structure given. We
put H%:= H X § and define

(hy,51)(hy, 55)= (hihy, sihy + hys, + s15,)
for all h;,h, € H, s;,5, € S. One readily verifies that H% is a semi-
group and the mapping

p: H—-> H%, h— (h0)
is a monomorphism. We call H% the continuation semigroup of %,. We
put S*:= S, and defineforall h€ H, s € S

(h,s)*: 8>S, r—>rh+rs

(h,s)¥': 8>S, re— hr+sr.

Then (A, s)®" € End \(S), (h,s)¥" € Endp(S), since
(r,r)h +(ryr)s = r(rh) + ri(rs) = r(rh + rs),
h(rr)) + s(rry) = (hr)ry +(sr)ry = (hr + sr)r
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forall he H, r,r, s € S. We show

(27) ¢* is a homomorphism of H% into End,(S), ¢* is an
antihomomorphism of H% into End ;(S), and (25) holds.

We confine ourselves to the assertions about ¢, ¢* and leave the proof of
the assertions about v, ¢* to the reader. Forall 4, h,h, € H, r,s,,5, € S
we have

p(hsi)(hy,52)® — p(hihy,sihy+hysy+5152)%

= (rhy + rs;))hy +(rhy + r5;)s, = )™ (as)™
and
rh = rh 4 Q=07 =
In the following we write (as in 1.1) #(h,s) for r®%, (h,s)r for
r)%" and verify

(28) H* and H¥" commute elementwise,
asforall hj,h,€ H, r,s,,5, €S
((hy,5)7)(hy,55) = (Byr + 517)(hy, 5,)
= (hyr + s;r)hy +(hyr + 5y7)s,
= h,(rh, + rs,) + 5,(rh, + rs,)
= (hy,s)(rhy + 1s,) = (h17s1)(r(h29s2))'
A similar standard calculation yields
29)  (r(h,s))r,=r((h,s)r,) foralhe H, r,r, sES,

i.e., condition (1) is satisfied.
For all r € S we put

ro: H% - H*%, (h,s)~ (h,r + s).

Then r°" is a permutation of H%. As before, we write (h,s) + r for
(h,s)” and observe

(30) o* is a homomorphism of (S, +) into & ;,
(31) (h,s)+r=(h,s)er=0,foralhe H,r,s €8S.
We put % := (H%, S*, ¢* *, 0*). In order to show that % is a Fitting
structure it remains to check conditions (2) and (3) which here turn into
(32) ((hl’sl) + r)(hz,s2) = (hy, 5)(hy,5,) + r(hy, s,),
(hy, s)((hy,55) + 1) = (hy,50) (s 85) +(hy, )7
forall h,,h,€ H, r,s,,s, €S,
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(33) ((h,s) +r)r,=(h,s)r, + nr,
r((h,s) +r) =r(h,s)+nrr,
foralh € H, s,r,,r, €S,
both being immediate consequences of our definitions. Now (27) and (30)
show that (%, p) is a continuation of #,, and we claim:
(34) & is universal.
For if (F/, ) with &’ = (H**, S** o** J** o0**) is a continua-
tion of %;, we put
w: H% > H** (h,s)—> h* + 5
and calculate for h,, h, € H, s,, 5, € S by means of (25):
((hyy51)(h2,55)) " = (h1h2> sé’f' + S1h¥. + S1sz)w
= (hh,)¥ + s+ 518 4 505,
= h¥RY + sHY 4 sMT 4 g8,
= (hf, + sl)(h'zu + Sz) = (hy,5)"(hy,5,)%,
whence w is a homomorphism. Since for all # € H we have h** = (h,0)*
= h*, we put ' = pw so that (26) holds. Thus the proof of our theorem
is complete.
We add some remarks on the continuation semigroup H% of a
Fitting pre-structure %,. For any ring S,
sio8,:=8 +s,+s55 (5,5, €8)
defines an associative composition with identity element 0. As is well
known, § is a radical ring if and only if (S, ) is a group. We have:

(35) If H has an identity element 1, then
v:S—> H%, s (1,s)
is a monomorphism of (S, o) into H*,

(36) If H has a zero element 0, then
A:S—> H% 5 (0,s)

is a monomorphism of (S, -) into H%.
(37)  An element (h,s,) € H® is an identity element of

H% if and only if A, is an identity element of H,

soH = 0= Hsy and (hy + 50)% = idg = (hy + s54)Y,
since (h,, 5,) is an identity element of H% if and only if hyh = h = hh,
and hys + sgh + sos =5 =hsy + shy + sys forall h€ H, s € S.
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We obviously have

(38) If H® is a group, then sois H.

(39) If H has an identity element 1 such that 1? = idg = 1¥,
then (1,0) is an identity element of H*, and H® is a
group if and only if H is a group and § is a radical ring.
In this case H® is a semdirect product of H and (S, °).

Herein the statement about (1, 0) follows from (37). Now let H be a
group and S a radical ring. If for » € H, s € S the o-inverse element of
sh™! is denoted by (sh~*)~, we have

(hys) (A, k7Y (sh™)7) = (1, 1(sh™Y) + sh™' + sh™(sh™)") = (1,0).

Therefore H? is a group. As to the converse, observing (38), it suffices to
show that S is a radical ring. But if s € S and (h,,s,) € H® is the
inverse of (1, s), then

(1,0) = (1,s)(hy, 50) = (hy,1 - 5, + shy + ss,),

(1,0) = (hy, s9)(,s) = (A, hys + 5, - 1 + 5y5),

hence h; = 1 and s,°5 = 0 = sos,. Thus s is o-invertible. Let finally p
be the embedding of H into H® as in the proof of 2.2 and » as in (35).
Then S? is a normal subgroup of H* and isomorphic to (S, o), H" is a
subgroup of H* which is isomorphic to H such that S* N H* = {(1,0)},
and forall h € H, s € S we have

(h,s)=(1,sh7")(h,0) = (sh™!)"h*,
whence H* = S*H".

In order to give examples of Fitting structures, it is sufficient, by 2.2,
to construct Fitting pre-structures:

2.3. EXAMPLE. Let M be a set and A a subset of M which is an
abelian group with respect to some composition +. Then the set

S(M,A):= {s|s: M —> A, s|4 € End(4)]}
is a ring with respect to the compositions

s +s,0 M- A

m = m’ + m*"
8§15, M — A4
52

m = r(mt)™,
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and the set

H(M,A):= {hlh: M > M, h|, € End(A4)}
is a semigroup with respect to the composition

hh,: M->M
m — (m™)
For all h € H(M, A), s € S(M, A) let s"° (resp. s") be the usual
composition (of mappings) sh (resp. ks).
Then (H(M, A), S(M, A), ®,V¥) is a Fitting pre-structure.

We show that all “well-behaved” Fitting pre-structures can be sub-
sumed under this type of example:

hy

2.4. THEOREM. Let H be a semigroup with identity element 1, F =
(H, S;9,Y) a Fitting pre-structure such that 1¥ = id ;. Then there are M, A
as in 2.3 such that % is isomorphic to a Fitting sub-pre-structure of
(H(M, A), S(M, A), ®, ).

Proof. W.lo.g. we may assume H N S = . Then we put
M:=HUS,(A,+)=(S,+). Forall h € H, s € S we define

mh formeH

h®

h*: M > M, mv—amh={
m forme S

¥
sP: M > A, m'—>ms={sm form € H
ms forme S.

Obviously, a is a homomorphism of H into H(M, A), and B is a
homomorphism of S into S(M, A). For h € kera we have 1 = 1" =
1- h = h; thus a is injective. Similarly, s € ker8 implies 0 = 1** =1 - s
= s, hence B is injective, too. Forall m € M, h € H, s € S we have

m"*s’ = (mh)s = m(hs) = m®**,
m** = (ms)h = m(sh) = mG»*,
m*" = m" = (ms)h = m(sh)

B (h%B) Nt NG
= mGn = s = (P = mGH*",

m = " = (mh)s = m(hs)

= BE — s ®B BT m(sﬂ)(h"’)ﬁ.
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Hence H°S? C S?, SPH* C SB, a® = ¢B, a¥ = yB. Therefore
(H*, SB, ®| 5, ¥| ) is a Fitting sub-pre-structure of (H(M, A4), S(M, A),
®,¥) and isomorphic to (H, S, ¢,¢). The hypothesis that H has an
identity element 1 such that 1¥ = id; has only been used to prove that «
and B are injective. As is easily seen, for that purpose even weaker
hypotheses on H are sufficient.

Let G be a group and A a characteristic abelian normal subgroup of
G. Then #:= (H(G, A), S(G, A),®,¥) is a Fitting pre-structure. If we
put H:= Aut(G), S:= Hom(G, 4), then we obviously have HS C S,
SH C S, whence (H, S,,¢) with ¢ = ®|,, ¢ = ¥|, is a Fitting sub-
pre-structure of & . If we put for h € H(G, A), s € S(G, A)

G- G, g - ghg,

then s* e S 16, 4> and 2 is a homomorphism of (S(G, A), +) into
@H(G 4y such that W =hes=0forall he H(G,A), s S(G,A). 1t
is easy to see that (2) and (3) hold; thus (H(G, 4), S(G, 4), ®, ¥, Z)isa
Fitting structure. We put ¢ := Z|,. In general, (H, S, ¢, {, 6) need not be
a Fitting structure. But we have:

2.5. THEOREM. Let G be a group which has no nontrivial direct abelian
factor. Assume Z(G) is finite. Then (Aut(G), Hom(G, Z(G)), p,y,0) is a
Fitting structure.

(Here @, {, 6 have the meaning introduced abbve.)

Proof. By our preparatory considerations it suffices to show:
(40) of € Aut(G) forall @ € Aut(G), { € Hom(G, Z(G)).
Since of” € Aut(G) if and only if id{*®)" € Aut(G), for our proof of (40)
we may assume a = id . Surely, id$ is a homomorphism. By our hy-
potheses on G and Z(G), we have (see [1]) {” = 0 for an appropriate
n € N. Since

15 -GS Y = qd g = i E L Y

id%; is bijective, proving (40).

3. Wreath products over Fitting structures.

3.1. DerFINITION. Let %= (H, S, p,{y,0) be a Fitting structure and
n € N.For7 € &,,a(n X n)matrix 4 = (aq,;) is called a 7-matrix over
HU S if

- H forj=inw
% =\s  for j# im.
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If 7,7’ €&, and (q,)) is a 7-matrix, (aj;) is a @’-matrix over
H U S, we define, using the product and sum notations introduced in 1.1,

n
(a;,)(a};)= (b;) withb, = k);la,.ka;q. forl<i,j<n.

We observe:
(41) I 7,7’ €&, and 4 is a 7-matrix, 4’ is a 7’-matrix over
HU S, then AA’ is a (77’)-matrix over H U S.

3.2. DEFINITION. Let %= (H, S, p,{y,0) be a Fitting structure and
n € N. Let X be a subgroup of &,. We put

H}X:= {(A,m)|m € X, A is a m-matrix over H U S},

and define for (4, 7), (4", 7"y € H }9 X
(A,7)(A4’,7"):= (44, 77’).
By (41), this is a composition in H }v X. We observe:
(42) H }g X is a semigroup.

We call H ; X the wreath product of H and X over S.If HN S = &
and (A4,7) € H\ &, then 7 is uniquely determined by A. In this case
the elements (A, 7) of the wreath product can be identified with their first

components, the matrices 4.
We add a few simple remarks:

(43) If H= S and X is the trivial subgroup of &, then H ! X

is isomorphic to the multiplicative semigroup of the ring
(S), of all (n X n)-matrices over S.

(44) If F’'=(H',S,¢,¢¥,0’) is a Fitting substructure of F

and X’ is a subgroup of X, then H’\ X’ is a subsemi-
S/
group of H } X.

(45) The standard wreath product H \ X is isomorphic to

H \ X (writing S, for the trivial ring); thus it is contained
So

" in every wreath product H } X as a subsemigroup.

For (H, {0}, ¢,, xpo,o|{0}) is a Fitting substructure of (H, S, ¢, {y, o)
where we write ¢,, ¥, for the (unique) actions of H on {0}, whence the
second part of (45) is a consequence of (44).
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Matrix multiplications yield actions of H {é} X on (S),: We put
BA:= BA, B*"=AB for(4,7)e H{(\)}X, Be(S),,
where these products are defined analogously to the matrix product

introduced above. Then one readily verifies that %#,:= (H 1 X, (S),,

$,v) is a Fitting pre-structure. The mapping k of the cont1nuat1on
sermgroup (H ) X)% into H;X such that (4,B)*=A4 + B for all
(A, 7)€ (H b X)%, B € (S), is an epimorphism. (The addition of 4
and B means, as usual, addition of corresponding components, using the
notations of 1.1 with regard to ¢.) If H has an identity element 1, then
1+ s 0
kerk = s, €S E(SEB---GBS,°).
0 1+s, g
We claim
(46) Let #F=(H,S,9,¥,0) be a Fitting structure, n € N and
X a subgroup of &,. Suppose H has an identity element
1. Then H } X is a group if and only if H is a group and S
is a radical ring.
For, if H is a group and S is a radical ring, then, by (45), H }) Xisa

group and, by [3, I, 7. Th. 3], (S),, is a radical ring. Therefore, (39% yields
that (H \ X)% is a group, and so is a fortiori the semigroup H 1 X,

{0}
being isomorphic to (H \ X)% /kerx. Conversely, suppose H 1 X 1s a

group. Its identity element {)emg denoted by (7,1id), where I is the identity
matrix, we have (/ + B,id) € H\ X for every B € (S),. If we put

C:= (I + B)™}, then BC € (S),, and
Bo(-BC)=B—-BC—-B‘C=B—-B(I+B)C=B—-BI=0,
(-BC)oB=-BC+B—BCB=B—-BC(I+B)=B—-BI=0.
Therefore (5),, hence S, is a radical ring. Now let # € H and set
h 0

b
i

0 1
As before, we have (4,id) € H X, and the entry ¢ in the upper left

s
corner of A~! satisfies hc = 1 = ch. The assumption ¢ € S would imply
1 € S and, regarding the equations 1% = idg = 1¥, 1 were an identity
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element of S. As S is a radical ring, this would yield S = {1} C {1} - H
C S, whence S = {1} = H, and everything would be trivial. But if ¢ & S,
then ¢ € H, and h is an invertible element of H, as desired.

We finally show that our notion of a generalized wreath product is
useful for the description of automorphism groups of groups:

To this end let G be a direct indecomposable nonabelian group
satisfying the minimum condition on central subgroups, and let n € N.
We put S:= Hom(G, Z(G)). Then S is a nil ring, hence a radical ring. By
2.5, (Aut(G), S, p, ¢, 0) is a Fitting structure, and the associated wreath
product (Aut(G)) \ &, is a group, by (46). Since Aut(G) N S = I, we
may identify its elements (A4, w) with their first components, the matrices
A. For 4 = (a;;) € (Au(G)) } &, we define

(@7) (81 8)4:= (ITgm,.... [ge| forgu....g,€ G,

This gives a mapping a, of G X --- X G (n factors) into itself which can
formally be regarded as the multiplication of the row (g, ..., g,) and the
matrix A. The properties of 4 imply:

(48) For gy,...,8,€ G, jE€{1,...,n}, there is at most one
i €{1,...,n) such that g & Z(G), viz. i = jw~', where
o is the permutation determined by A.

Therefore for g;,...,8,, hy,...,h, € G, j€{1,...,n} we have

lj[l(g,-hi)“" = [Ilg,""h:-"f - ljlg?'f[Ilh?'f,

yielding
(49)  For all 4 € (Aut(G)) ;@n, o, is an endomorphism of
GX -+ XG.

FOI' A= (aij)7 B = (Bij) = (AUt(G)) ; @n’ glv'-"gn € G and .] =
{1,...,n}, we have, by (48)

n n n B n n By
[Tgr-m = T1{ [Tem| = T1(ITe]
i=1 i=1\k=1 k=1\i=1
which implies

(50) a0,=a,, forall 4,B < (Aut(G)) }g@"'

This and the obvious statement
(51) a,=1id, where I is the identity element of (Aut(G))\ &,
s
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imply:
(52) Associating to each 4 € (Aut(G)) }g &, the automorphism
a, yields a homomorphism ¢ of (Aut(G)) }g@" into
Aut(G X --- XG) (n factors).
If 4 € (Aut(G)) }s@” such that a, = id; ... ¢ (n factors), then for all
i€e{l,...,n},g€GC
1,...,1,g1,...,1)=(1,...,1,2,1,...,1)4 = (g°,..., g%),
where g is in the ith place. Hence 4 = I. Thus we have
(53) ¢ is injective.
Finally we claim
(54) ¢ is surjective.
To this end we define for all j € {1,...,n}
g: G->GX --- XG

J
g~ (1,...,1,g,1,...,1),
(where g is in the jth place)
8: GX---XG-G

(815---28x) ™ 8>
and put for all « € Aut(G X --- X G)
A= (a;) withe, =¢ad, fori,je {1,...,n}.
Then «;; is an endomorphism of G, and by [1, Satz 2] there is exactly one

7 € &, such that, for i € (1,...,n}, «,;, € Aut(G) and o, €S for
Jj # iw. Hence 4, € (Aut(G)) }v ©,. By (47), A, = a, proving (54).

Summarizing, we have proved:

3.3. THEOREM. Let G be a direct indecomposable nonabelian group and
suppose Z(G) is finite. Let n € N and put S := Hom(G, Z(G)). Then

Aut(G x e X G) = (Aut(G)) 1S,

If G satisfies the additional condition Hom(G, Z(G)) = 0 (which is in
the finite case equivalent to (|G/G’},|Z(G)|) = 1), our Theorem yields via
(45) the well-known statement:

Au(G X -

n

X G) = (Aut(G)) 1 &,
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