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PATCH-CONTINUITY OF NORMALIZED RANKS
OF MODULES OVER ONE-SIDED

NOETHERIAN RINGS

K. R. GOODEARL

For J. T. Stafford's continuity theorem, concerning normalized
ranks of finitely generated modules at prime ideals of a noetherian ring,
a new proof is developed, which is much simpler than the original proof
and also extends the theorem to one-sided noetherian rings.

Introduction. The normalized (reduced) rank at a prime ideal P for
a finitely generated right module A over a right noetherian ring R is the
rational number

rP(A) = length^ ®R βP)/length(ρP),

where QP is the right Goldie quotient ring of R/P. In the main result of
the paper, we prove that rP(A) is a continuous function of P provided the
patch topology is used on the prime spectrum of R. A relatively straight-
forward method of proof is developed, avoiding the technical machinery
used by Stafford, to whom the two-sided noetherian case of the theorem is
due. If a "generic regularity" condition is assumed, meaning that any
element of R regular modulo some prime ideal P remains regular modulo
all prime ideals in some patch-neighborhood of P, then rP(A) is actually a
locally constant function of P. This was proved in the two-sided noetherian
case by R. B. Warfield, Jr. To put these results in context, we conclude
with a brief discussion of some of the known applications.

All rings in this paper are associative with unit, and all modules are
unital. This research was partially supported by a National Science
Foundation grant.

1. The continuity theorem. A standard result in commutative ring
theory is that the local rank of a finitely generated projective module A
over a commutative noetherian ring R is a Zariski-continuous function
from Spec(iί) to Z. The reference to localization can be removed by
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observing that

rank(Λp) = dim(AP/PAP) = dim(A ®R QP)

for all P G Spec(i?), where we have used Qp to denote the quotient field
of R/P. In the noncommutative case, we are concerned with a finitely
generated right module A over a right noetherian ring R. Then QP, for
P e Spec(i?)? becomes the right Goldie quotient ring of R/P, and
dim(yί ΘΛ QP) could be replaced by the composition series length of the
right <2p-module A <&R QP. To obtain a continuity theorem in this setting,
we must normalize the length of A ®Λ QP, and we must replace the
Zariski topology on Spec(iϊ) by the patch topology.

DEFINITION. Given any finitely generated module A over a simple
artinian ring Q, we write λ(^4) for the normalized length of A, that is,

λ{A) = length(^)/length(ρ).

Note that λ is additive on direct sums of β-modules.

DEFINITION. Let P be a prime ideal in a right noetherian ring R. For
any finitely generated right i?-module A, we set

rP(A) = λ(A ®R QP) = length(Λ 0 Λ ρ p)/length(βP).

Note that rp is additive on direct sums of right i?-modules. Although
rp need not be additive on short exact sequences, it is subadditive:
namely, if0-*A-^B-*C-*0is any exact sequence of finitely gener-
ated right iί-modules, then rp(B) < rP(A) + rP(C), because of the exact-
ness of the sequence

A®RQP-+B®RQP->C®RQP^ 0.

Also, since QP is a flat left (i?/P)-module, rp is additive on short exact
sequences of right (R/P )-modules.

DEFINITION. Let R be a ring. For any ideal / of i?, define

F ( / ) = { P e S p e c ( i ? ) | P 2 / } and W(I) = {P e Spec(i?) \P £ I).

The sets V(I) are exactly the Zariski-closed subsets of Spec(iί), and the
sets W(I) are exactly the Zariski-open subsets. The patch topology on
Spec(i?) is the topology with a subbasis of closed sets consisting of all the
Zariski-closed sets together with all the Zariski-compact Zariski-open sets
[4, §§2, 8].



PATCH-CONTINUITY OF MODULES OVER NOETHERIAN RINGS 85

With the patch topology, Spec(i?) is a compact, Hausdorff, totally
disconnected space [4, Proposition 4]. In case R has the ACC on ideals, all
the Zariski-open subsets of Spec(lϊ) are Zariski-compact [2, Proposition
4.3]. Consequently, all the sets V(I) and W{I) are patch-closed and
patch-open, and any point P e Spec(iί) has a patch-neighborhood base
consisting of the patch-open sets V(P) Π W(I) for ideals / properly
containing P.

Our objective in this section is to prove that for a finitely generated
right module A over a right noetherian ring i?, the rule P ^> rp(A) defines
a patch-continuous function from Spec(iϊ) to Q. In case A is projective
and R is right fully bounded or of right Krull dimension at most one,
Warfield and the author proved that the maps P -> rP(A) are actually
locally constant with respect to the patch topology [2, Propositions 4.4
and 4.10]. This result has been extended by Warfield in the two-sided
noetherian case to cover non-projective modules, and to allow somewhat
more general rings, namely those satisfying the generic regularity condi-
tion [13, Lemma 3]. In the meantime, the continuity theorem was proved
by Stafford for two-sided noetherian rings [8, Theorem 4.5].

That continuity rather than local constantness is to be expected in
general can be seen in the case of the first Weyl algebra over Z. If the ring
R = Aλ{Z) is written as a differential operator ring Z[x][θ; d/dx\ and if
A = R/xR, then ro(A) = 0 yet R has prime ideals P(q) for all prime
integers q such that f)P(q) = 0 and rP(q)(A) = \/q [8, Proposition 7.3].
That the patch topology must be used instead of the Zariski topology can
already be seen in the commutative case. For example, let R = K[xy y] be
a polynomial ring in two independent indeterminates over a field K, and
let A = xR + yR. Then rM(A) = 1 for all maximal ideals M Φ A, but
rA{A) = 2.

To prove the continuity theorem, we concentrate on the case in which
R is a prime right noetherian ring and A is a finitely generated torsion
right iϊ-module, so that ro(A) = 0. For any unfaithful subfactor B of A,
we have rp(B) = 0 for all P e W(axm(B)). Hence, the main difficulty
occurs with a fully faithful subf actor C. To see that rP(C) is arbitrarily
small for P in suitable patch-neighborhoods of 0, we show that all finite
direct sums of copies of C are essentially cyclic. The following two
lemmas are used to implement this procedure. The first amounts to a
simplified analog of the uniqueness of lengths of critical composition
series [3, Corollary 2.8; 5, Theorem 3.1]. It may be obtained as an easy
consequence of the Schreier Refinement Theorem, or by a short direct
argument, as follows.
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LEMMA 1.1. Let A = Ax Θ ΦAn where Al9...,An are a-critical

modules {for some ordinal α), and let

Bo = 0 c B1a B2a - c Bn

be a chain of n + 1 submodules of A. If K.dim(5 /5-_1) = a for each

/ = 1,...,«, then Bn is essential in A.

Proof. As Ax is uniform, the case n = 1 is trivial. Now let n > 1, and

assume that the lemma holds for direct sums of fewer α-critical modules.

If Bn Π An = 0, the projection p: A -> Aλ Θ ®An_x maps Bn

isomoφhically into Ax Φ ••• ®An_λ. By the induction hypothesis,

p ( B n _ 1 ) i s e s s e n t i a l i n A x θ @ A n _ l 9 a n d s o p ( B n _ 1 ) Π A Φ O f o r

i = 1,...,« — 1. Then Ai/(p(Bn_ι) Π ̂ 4Z) has Krull dimension less than

a for each / = 1,...,« — 1, whence

φ ®Λn^)/p{Bn^)) < a.

But then K.dim(p(Bn)/p(Bn_ ι)) < α, contradicting our hypotheses.

Thus Bn Π An Φ 0, and similarly Bn ΠAjΦQ for each y = 1,. . . , n.

Then each !?„ Π v4y is essential in Aj9 and therefore 5W is essential in A. D

DEFINITION. A /w//y faithful module is any nonzero module all of

whose nonzero submodules are faithful. (In contrast, a completely faithful

module is a nonzero module all of whose nonzero subfactors are faithful.)

DEFINITION. An a-homogeneous module (for some ordinal a) is any

nonzero module all of whose nonzero submodules have Krull dimension

a.

The following lemma was inspired by the result of Eisenbud and

Robson that all completely faithful modules of finite length are cyclic [1,

Lemma 3.1], and by the result of Stafford that over a ring of Krull

dimension greater than ny all completely faithful noetherian modules of

Krull dimension n can be generated by n + 1 elements [7, Theorem 1.3].

LEMMA 1.2. Let R be a right noetherian ring, and let A be a finitely

generated, fully faithful, a-homogeneous right R-module, for some ordinal

α. // r.K.dim(iί) > α, then A has an essential cyclic submodule.

Proof. Since A may be replaced by an essential submodule, there is no

loss of generality in assuming that A = Aγ θ ΘAn for some α-critical

submodules A{.
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We claim that there are elements xέ e At for each i = 1,..., n such
that if /0 = R and /, = a n n ^ j q , . . . , Xj}) then K.dim(Ij_ι/Ij) = a for
each y = 1,..., n. First choose any nonzero element xx e ^41? and observe
that I0/Iλ has Krull dimension a because Ax is α-critical.

Now suppose that xx;..., Xy have been chosen, for some j < n. Since

K.dim(R/Ij) = α < r.K.dim(i?),

we must have Ij Φ 0. As A is fully faithful, there exists xJ+1 e AJ+1 such
that Xj+Jj * 0, and

K.dim(/ //. + 1 ) = K.dim(*y+1J,) = a.

This completes the proof of the claim.
Set x = xλ + + jtn, and observe that annΛ(x) = /„, whence

for each j = 1,...,«. Thus xR has a chain

JC/0 = XR 3 JC/i 3 3 X/M = 0

of n + 1 submodules in which the successive factors xlj^/xlj all have
Krull dimension α. By Lemma 1.1, xR is essential in A. D

PROPOSITION 1.3. Let R be a prime right noetherian ring, let A be a
finitely generated torsion right R-module, and let ε be a positive real number.
Then R contains a nonzero ideal I such that rP(A) < ε for all prime ideals P
not containing I.

Proof. Set a = K.dim(yl), and note that the case a = -1 is trivial.
Now let a > 0, and assume that the proposition holds for finitely gener-
ated torsion modules of Krull dimension less than a. There exists a chain

Ao = 0 c Ax c . . . c Am = A

of submodules of A in which the successive subfactors are all critical.
Since the functions rp are subadditive, it suffices to find nonzero ideals
Il9..., Im in R such that rP(Aj/Aj_ι) < ε/m for all prime ideals P "2 IJm

(Take / = 1^ Im.) Thus we may assume that A is α-critical.
First suppose that A contains a nonzero unfaithful submodule 2?, and

set Iλ = a,nnR(B). If P is any prime ideal not containing Iv then B/BP
is an unfaithful (i?/P)-module and so is torsion over R/P, whence
rp( B) = 0. As K.dim(A/B) < α, there exists a nonzero ideal I2 in R such
that rp(A/B) < ε for all prime ideals P £ I2. Thus rP(A) < ε for all
prime ideals P ^ lxl2.
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Finally, suppose that A is fully faithful, and note that because A is a
torsion module, r.K.dim(i?) > a. Choose a positive integer n > 2/ε. Then
An is a fully faithful α-homogeneous right i?-module, and so by Lemma
1.2 it has an essential cyclic submodule C. Since A is α-critical,
K.dim(v4n/C) < a. Hence, R contains a nonzero ideal / such that
rp{An/C) < 1 for all prime ideals P ̂  I. For such P, we have rP(C) < 1
because C is cyclic, whence rP{An) < 2. Therefore rp{A) < 2/n < ε for
all prime ideals P ^> I. D

A. V. Jategaonkar has pointed out that the use of Krull dimension in
proving Proposition 1.3 is not essential, for monoform modules can be
used in place of critical modules. A proof along such lines is to be
incorporated in [6].

THEOREM 1.4. Let A be a finitely generated right module over a right
noetherian ring R. Then the rule P •-> rp(A) defines a patch-continuous
function from Spec(i?) to Q.

Proof. Given a prime ideal T in R and a positive real number ε, we
must find an ideal / properly containing T such that

\rP(A)-rτ(A)\<ε

for all prime ideals P e V(T) Π W(I). As rP(A) = rP/τ(A/AT) for all
P e F(Γ), we may reduce to the case that T = 0, without loss of
generality.

We first find a nonzero ideal Ix such that rp(A) < ro(A) + ε for all
P <E W(IX). Write ro(A) = k/n for some k e Z + and n e N. Then
ro(An) = k, and hence An ®Λ Qo is a free right β0-module of rank k.
Choose a basis {xl9...9xk} for An ®R Qo, and write each x. = α ® c~ι

where al9..., ak e An and c is a regular element in R. Set B =
aλR + +tffci?, and observe that (An/B) ®R Qo = 0, whence An/B is
a torsion module. By Proposition 1.3, there exists a nonzero ideal IΛ in i?
such that rP{An/B) < nε for all P e W^/i). Since 5 is generated by &
elements, rP(B) < k for all prime ideals P. For P e W( J^, we thus have
rp(^l") < k + nε, and hence

Choose an exact sequence 0-*K-*F^>A^>0of right 7?-modules
such that F is free of finite rank m, and note that
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Applying the argument of the previous paragraph to the module K, we
obtain a nonzero ideal I2 in R such that rP(K) < ro(K) + ε for all
P e W(I2). As

m = rP(F) < rP(K) + rP(A)

for any such P, we conclude that

rP(A) > m - rP(K) > m - ro(K) - ε = ro(A) - ε

for all P G W(I2).

Therefore, \rP(A) - ro(A)\ < ε for all P e W^/^). Π

2. Generic regularity. In those cases where the continuity theorem
can be improved to say that the maps P •-> rp(A) are locally constant with
respect to the patch topology, regularity modulo prime ideals defines open
sets in the patch topology. Namely, consider a right noetherian ring R, a
prime ideal Tof R, and an element x e ^(T), that is, x e R and x + T
is a regular element of R/T. Then (xR + Γ)/Γ is an essential right ideal
of R/T and R/(xR + Γ) is a torsion right (jR/7>module, so that
rτ(R/xR) = 0. If the map P -> rP{R/xR) is locally constant in the patch
topology, the set

X = {P e Spec(i?)|rP(i?/xi?) = 0}

is patch-open. For all P e l , observe that R/(xR -f />) is a torsion right
(i?/P)-module and so (jci? + P)/P is an essential right ideal of R/P,
whence x e ^ ( P ) . Since x is regular modulo all the prime ideals in the
patch-open set X, we may say that x is "generically" regular (with respect
to the patch topology).

Conversely, we shall see that generic regularity implies patch-local-
constantness of the maps P »-* rp(A).

DEFINITION. Let R be a ring. A subset X of Sρec(Λ) satisfies the
generic regularity condition (or is sparse, in the terminology of [6]) pro-
vided that for any prime ideal T of R (not necessarily in X) and any
element x e ^(T), there is a patch-neighborhood U of T such that
x e ^(P) for all P e X n C/. In other words, there must exist an ideal /
properly containing T such that x e ^ ( P ) for those P e l such that
P D Γ but P 2 /.
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Two easy cases in which generic regularity occurs were observed in [6,
Chapter 6] and in [13, Lemma 1], namely any set of completely prime
ideals in any right noetherian ring, and any set of prime ideals in any right
fully bounded right noetherian ring satisfy generic regularity. Another
easy case is given in the following proposition.

PROPOSITION 2.1. Let Rbea right noetherian ring with r.K.dim(i?) < 1.
Then any subset of Spec(i?) satisfies the generic regularity condition.

Proof. It suffices to show that generic regularity holds for Spec(i?).
Consider T e Spec(Λ) and x e #(Γ), and note that (xR + T)/T is an
essential right ideal of R/T. If T is a maximal ideal of i?, then {T) is a
patch-neighborhood of T and we are done. Suppose then that T is not a
maximal ideal. As r.K.dim(i?/Γ) < 1, all proper prime factor rings of T
and all finitely generated torsion right (i?/Γ)-modules are artinian. In
particular, R/(xR + T) must have finite length. Hence, there are at most
finitely many maximal ideals Mt z> T such that the (unique) simple right
(Zί/ΛQ-module appears as a composition factor of R/(xR + T). There
is an ideal / properly containing T such that each Mi Ώ I.

Let P E F(Γ) Π tf(/). Since i G ^(Γ) to begin with, suppose that
P Φ T. Then P is a maximal ideal of R. If A is any composition factor of
R/(xR 4- Γ), the annihilator of A is either T or one of the Mt. In either
case, P Φ aimR(A) and so P % axmR(A), whence AP = A and rp(A) = 0.
As a result, rP(R/(xR + Γ)) = 0 and hence R/(xR + P) is a torsion
right (R/P)-module. Therefore x e <g(P). Π

As mentioned above, any set X of completely prime ideals in a right
noetherian ring R (in other words, the right Goldie rank of R/P is 1 for
each P G I ) is easily seen to satisfy the generic regularity condition.
More generally, any set X of prime ideals of R such that there is a bound
on the Goldie ranks of the prime factor rings R/P for P G I must satisfy
generic regularity. In case R is noetherian on both sides, this follows from
Stafford's continuity theorem [10, first proof of Corollary 3.9; 13, Lemma
1]. Stafford and Snider devised an ultraproduct argument to prove this
result for right noetherian rings [10, second proof of Corollary 3.9; 6,
Chapter 6], but with the continuity theorem available for right noetherian
rings, it is much more direct to use that, as follows.

PROPOSITION 2.2. Let R be a right noetherian ring and X a subset of

Spec(i?). // there exists a positive integer n such that R/P has right Goldie

rank at most n for each P e l , then X satisfies the generic regularity

condition.
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Proof. For any P e ί 5 the quotient ring QP of R/P has length at
most n, and so λ(A) > \/n for all nonzero finitely generated right
βp-modules A. Consequently, rP(B), for any finitely generated right
ϋ-module B, is either 0 or at least 1/w.

Given Γ e Spec(i?) and JC e V(T\ we have rτ(R/xR) = 0. By
Theorem 1.4, there exists a patch-neighborhood U of T such that
rP(R/xR) < \/n for all P e £/. Thus for P e X Π £/, we have
rP(R/xR) = 0, and therefore x e #(P) . D

Without a bound on the Goldie ranks of prime factor rings, generic
regularity need not hold. For an example, consider again

Since R is a domain, x e #(0), yet R has prime ideals P(q) for all prime
integers q such that ΓΊP(tf) = 0 and JC ί %(P(q)) [8, Proposition 7.3].
Thus Spec(iί) does not satisfy the generic regularity condition.

That generic regularity implies patch-local-constantness of the maps
P -» rP(A) over right and left noetherian rings was shown by Warfield in
[13, Lemma 3]. For the right noetherian case, a modification of the proof
of Theorem 1.4 may be used, as follows.

THEOREM 2.3. Let A be a finitely generated right module over a right
noetherian ring R, and let Xbe a subset of Spec(i?) that satisfies the generic
regularity condition. Then any prime ideal T of R has a patch-neighborhood
Usuch that rp(A) = rτ{A) for all P €= X Π U.

Proof. We first prove the analog of Proposition 1.3, namely the case
that rτ(A) = 0.

Choose generators av...,an for A. Since rτ(A) = 0, the module
A/AT is torsion as a right (i?/Γ)-module, and hence there exists x e
&(T) such that atx e AT for i = 1,..., n. By generic regularity, T has a
patch-neighborhood U such that x e #(P) for all P & X n U. Since U
may be intersected with V(T), there is no loss of generality in assuming
that U c F(Γ). Now for any P e X Π [/ we have x e # ( P ) and a^ e
i 4 Γ c yίP for / = 1,..., ft, whence A/AP is a, torsion right (i?/P)-mod-
ule, and thus rP(A) = 0.

With this case in hand, we follow the proof of Theorem 1.4, replacing
[ < ε] everywhere by [ = 0], and ignoring prime ideals not in X. D

Theorem 2.3 simultaneously generalizes [2, Propositions 4.4 and 4.10].
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3. Applications. The main applications of the original patch-local-
constantness and patch-continuity results concerned estimates for num-
bers of generators of modules over noetherian rings [11, 12, 8, 9] and the
identification of extremal states on Ko of noetherian rings [2, 8]. To
spotlight the uses of local constantness and continuity arguments, we
briefly indicate their occurrence in some of these results.

(a) By analogy with the Forster-Swan Theorem, one wishes to esti-
mate the number of generators required for a finitely generated right
module A over a right noetherian ring R, in terms of the minimal number
of generators g(P, A) for the <2P-module A <8>R QP, for each prime ideal
P, or for each /-prime ideal P. Observe that g(P, A) is the smallest
integer greater than or equal to rp(A). If g(P, A) = 0, set b(P,A) = 0,
while if g(P9A)Φ 0, set

b(P9A) = g(P9A)+J-dim(R/P).

In case R is right fully bounded, Warfield proved that A can be generated
by

6 = sup{6(P,^)|Pe/-Spec(i?)}

elements [11, Theorem B; 12, Theorems C, 2].
A key reduction step in Warfield's proof requires that, assuming b to

be nonzero and finite, only finitely many /-prime ideals P satisfy b{P,A)
= b [11, Lemma 1; 12, Lemma 5]. The proofs of these lemmas used
patch-local-constantness together with an induction on /-dimension. There
is a more direct argument using compactness, which was communicated to
the author by Warfield, as follows.

By [2, Proposition 4.3], /-Spec(iί) is patch-closed in Spec(i?) and so
is patch-compact. Using local constantness, each P e /-Spec(i?) has a
patch-neighborhood U(P) of the form V(P) Π W(IP) such that rQ(A) =
rP(A) for all Q e U(P). Then g(β, A) = g(P, A) for such Q. If Q Φ P,
then Q properly contains P, and so if Q e /-Spec(iί) we obtain
/-dim(i?/β) </-dim(i?/P) and hence b(Q,A)<b. By compactness,
some U{Pλ),..., U(Pn) cover /-Spec(iί), and any /-prime ideals P which
satisfy b(P,A) = b must be among P l 9 . . . , Pn.

(b) Warfield also proved that if R is right fully bounded and
noetherian on both sides, A can be generated by

max{g(M, A)\M is a maximal ideal of R] + /-dim(i?)

elements [12, Theorems A, 5]. This estimate follows from the previous one
provided that for each /-prime ideal P there is a maximal ideal M such
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that g(P,A) < g(M,A) [12, Lemma 6]. This is an easy consequence of
local constantness, as follows.

There is an ideal / properly containing P such that rQ{A) = rp{A)
for all Q in V(P) Π W(I). Since P is /-prime, there is a right primitive
ideal M i) P that does not contain /. Then rM(A) = rP(A) and so
g(P, A) = g(M, A). As R is right fully bounded, M is a maximal ideal.
(Because the prime spectrum of any right fully bounded right noetherian
ring satisfies generic regularity, the left noetherian hypothesis for War-
field's second estimate is not needed. Both estimates can be proved
assuming only that R is right noetherian, all right primitive factor rings of
R are artinian, and /-Spec(i?) satisfies generic regularity.)

(c) Stafford's number of generator estimates apply to any finitely
generated right module A over any right and left noetherian ring R. In
these estimates the value b{P,A) is either 0 or g(P, A) + r.K.dim(i?/P),
and A can be generated by

max{K.dim(Λ) + 1, sup{b{P,A)\P e /-Spec(i?)}}

elements [8, Theorem 3.1]. Stafford also proved that A can be generated
by

max{g(P, A)\P is a right primitive ideal of R) + r.K.dim(iϊ)

elements [8, Corollary 4.6]. The second estimate follows from the first
provided that for each /-prime ideal P there is a right primitive ideal M
such that g(P, A) < g(M, A), and Stafford obtained this from patch-con-
tinuity, as follows.

Since g(P, A) is the smallest integer greater than or equal to rP(A),
we have rp(A) > g(P,A) - 1. By patch-continuity, there is an ideal /
properly containing P such that rQ(A) > g(P, A) - 1 for all Q in
V(P) Π W(I). Since P is /-prime, there is a right primitive ideal M Ώ P
that does not contain /. Then g(M,A) > rM(A) > g(P, A) - 1, and
hence g(M, A) > g(P, A), because these are integers.

(d) The state space of Ko of a ring R is a compact convex subset
St(R) of the product space of all real-valued functions on K0(R),
consisting of all group homomorphisms s: KQ(R) -> R such that s([7?])
= 1 and s([^4]) > 0 for all finitely generated projective right i?-modules

A. In case R is right noetherian, each of the normalized rank functions rP

(for P e Spec(i?)) induces a state sP e St(Λ), where sP([A]) = rP{A) for
all A
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Warfield and the author proved that for a right noetherian ring R
such that either R is right fully bounded with finite /-dimension, or
r.K.dimί/?) < 1, every extreme point of St(R) has the form sP for some
P ^ /-Spec(i?) [2, Theorems 4.5, 4.11]. Stafford derived the same conclu-
sion when R is right and left noetherian with finite right Krull dimension
[8, Theorem 6.4]. A key step in these proofs is to show that {sp | P e
/-Spec(iί)} is a compact subset of St(/f). This follows from the patch-
compactness of /-Spec(jR), together with the patch-continuity of the map
P >-> spy which is an immediate consequence of the patch-continuity of the
maps P -> rp(A).
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