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THE ABEL-JACOBI ISOMORPHISM
FOR THE CUBIC FIVEFOLD

ALBERTO COLLINO

Let X be a general cubic fivefold, JX the associated intermediate
Jacobian, F the Fano surface of the planes contained in X. We prove
that the Abel-Jacobi map induces an isomorphism from the Albanese
variety of F to JX.

Introduction. It is a standard fact (see [7] Exp. XI (2.9)) that the only

smooth hypersurfaces X in p 2 J + 1

9 d > 0, for which the intermediate

Jacobian JX is an abelian variety are the quadrics, the cubic and the

quartic threefolds in P 4 , and the cubic fivefold in P 6 . For a quadric

JX = 0. In [5], Clemens and Griffiths proved that the Abel-Jacobi map

( + ) a: AlbF-+JX

is an isomorphism, where X is the smooth cubic threefold and F is the

(smooth) Fano surface of the lines on X. Recently Letizia, [9], using a

method which he credits Clemens for, [4], proved that ( + ) is an isomor-

phism also when X is a general smooth quartic threefold and F is the Fano

surface of the conies on X.

Here we complete the picture, proving that ( +) is an isomorphism

also when X is a general smooth cubic fivefold, F being the surface of the

planes on X. Our tool is the Clemens-Letizia method coupled with some

ideal which originated from [6].

We work with varieties defined over the complex numbers field.

(I). Let T be a plane in P 6 and let X be a cubic hypersurface

containing it. We choose projective coordinates (x 0 : xλ: x2: : x6) in

P 6 so that T has equations JC0 = xλ = x2 = x3 = 0. The equation of X is

then of the form

(1.1) 0 = Qoxo + β Λ + Q2x2 + Q3x3 + Σ{ΛijkxiXjxk)

+ B(x0, xl9 x2, x3)

where 4 < k < 6, 0 < / <j < 3, B is homogeneous cubic and Qi9 i =

0,..., 3, are homogeneous polynomials of degree 2 in x49 xS9 x6.
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Let C, be the conic on T of equation Qt = 0, X is non-singular along
T if and only if Π Ct = 0 . In the following we shall assume that X is
smooth along Γ, when it is not explicitly otherwise stated. We shall denote
F( X), or simply F, the variety of planes contained in X\ more precisely
we take F to be the Hubert scheme of the two-dimensional planes of X,
[1]. In order to study F we need to compute H°(T9 N(T9 X))9 which is the
tangent space to F at the point t representing T. When there is no
confusion we shall write N for the normal bundle N(T9 X) and h°(N) =
dim H°(T, N).

(1.2) PROPOSITION. h°(N) = 2 <-> CQ9 Cl9 C29 C39 are linearly indepen-
dent.

Proof. We start from the exact sequence of sheaves on T

(1.3) 0-tf-

where the middle sheaf is N(T9 P
6) and 0(3) is N(X9 P

6 ) | Γ . If one chooses
conveniently the splitting of N(T,P6) then/is given by the matrix (Qθ9

Qi, Qi> 63)> hence: (a) h\N) = 2 ~ (b)/: H°(T, O(l) θ 4 ) -> i/°(Γ, O(3))
is surjective <-> (c) given any homogeneous cubic polynomial K(x4, x5, x6)
there are linear homogeneous polynomials Lo, L1? L2, L3 such that ( + ):
K = ΣLiQi.

If the C; are linearly dependent then / cannot be surjective on global
sections, because the space of polynomials AT in (+) has dimension 9 at
most. We assume now that the Ci are linearly independent. Since the four
conies have no common point, the general member of the web they span is
non singular; without restriction we may assume that Cλ is smooth, so that
C\ Π C2 is finite and we may take C3 in such a way that Cλ Π C2(Λ C3 =
0 . In the ring R = k[x4i xS9 x6] we let / = the ideal (Qv Q2, Q3),
R3 = the vector space of homogeneous cubic polynomials, I3 = R3 Π /.
By a theorem of Macaulay, [8], the pairing g: (R/I) X (R/I) -• (R3/I3)
=κ C is a perfect duality, where g is given by the product of representative
of equivalence classes. It follows:

(i) I3 has codimension 1 in i?3, (ii) given β 0 , since Qo£ I by
hypothesis, there is LQ such that g(L0Q0) Φ 0, i.e. LQQQ £ I3. Therefore
I3 + (L0Q0) = i?3, hence/is surjective on global sections.

(1.4) COROLLARY. F is a non-singular surface at the point t representing
T if and only ifC0,...,C3 are linearly independent.
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Proof. h\N) = 0 ~ h°(N) = 2 ~ (C o,. . . ,C3) are linearly indepen-
dent.

We recall that in the preceding corollary we had the tacit assumption
that X was smooth along T. For next definition we drop it.

(1.5) DEFINITION. Let T be a plane contained in X; using the
notations above we say that T is a special plane for Jf, or that X is special
with respect to Γ, if Co,..., C3 are linearly dependent.

If X is non-singular along T then F is singular at ί if and only if T is
special; if X has an ordinary node on T we shall see that F is not normal
at /, but we shall also see that if T is not special then on the normalization
F+ of F the points tλ and t29 which map to t, are non-singular.

Let H be the Hubert scheme parametrizing the totality of cubic
hypersurfaces of P 6, H is naturally isomorphic to P 8 3 . We let Hs = the
subvariety of H of the cubics with special planes, D = the subvariety of
the singular cubics.

(1.6) LEMMA, (a) cod(Hs, H) > 1, (b) Hs is irreducible and Hs £ D.

Proof. Let Hτ =* P 7 3 be the variety of the cubics containing T.
Keeping the notations above (1.1) we note that X is special along T if
there are bo,...,b3 with (+ ): Σ biQi = 0. Let A24 be the affine space in the
variables a^J9 the coefficients of the Qk*s. Let (Z?o,... ,Z>3) be homogeneous
coordinates for P 3 . Condition (+ ) gives six bilinear equations in P 3 X A24,
let V be the determined variety. It is easy to see that V -> P 3 is an A18

fibration, further the projection V-» pr(F) ^ A24 is birational to the
image pr(F), therefore pr(F) is irreducible with dim = 21. Let i / 5 Γ be the
variety of the cubics which are special along Γ, because of our remark
cod(HsT, Hτ) = 3 and HsT is irreducible. Let G = G(2,6) be the grass-
mannian of the planes in P 6 , then Hs = UTeG(Hs'τ), so that Hs is
irreducible and dim Hs < 82. In order to see that Hs <£ D it suffices now
to produce one cubic which is non-singular and contains a special plane.
The Fermat cubic Σ x] = 0 has this property: let r be a third root of — 1,
i.e. r3 = — 1 , change coordinates zo = x0 — rx5, zλ = xλ — rx6, z2 = x2,
Z3 = X3 ~ rx4> Z4 = X 4 ' Z5 = X5> zβ = x

y> & * s e a s Y t o s e e that the plane
z0 = zλ = z2 = z3 is special for this cubic.



46 ALBERTO COLLINO

(1.7) in G X H we set / = {(Γ, X): Γ c l ) , / is the incidence
correspondence; / is a P 7 3 fibre bundle over G, so that dim / = 85. Let/?:
I -» G and q: I -> H be the projections, the fibre g " 1 ^ ) = i^X), the
Hubert scheme of the planes contained in X, the hypersurface represented
by x. Fix now a point (Γ, X) in / such that T is non-special for X and X is
smooth along T (it follows from the proof of the lemma that there is such
a couple) then F(X) is a smooth surface at the point t representing T.
Then the general F(X) is a surface, non-singular because it does not
contain special planes, moreover it is irreducible because of

(1.8) PROPOSITION. For all X, F(X) is connected.

Proof. Following an idea of Barth and Van de Ven [2] we need only to
check that the set S = {(Γ, X): F(X) is not a smooth surface at T) has
codimension at least 2 in p~\T). Now F(X) is not a smooth surface at T
only if either T is special for X or if X is singular at some points of T. The
first case is covered by the proof of (1.6), indeed p~\T) = Hτ and we
proved cod(HsT, Hτ) = 3. On the other hand let Dτ = {X(Ξ HT: X is
singular at some point of Γ}, by a similar argument as for HsT one can
seecod(Z)7; Hτ) = 2.

(1.9) REMARK. I n G x F let Is = {(Γ, X): T is special for X}\ it
follows from the proof of (1.6) that dim Is = 82, hence either (a) dim Hs

= 82, so that in a general cubic which is special there is a finite number of
special planes, or (b) dim Hs < 82, so that given a general pencil of cubics
none of the cubics is special.

Collecting the preceding results we see

(1.10) PROPOSITION. Let {X t}, t e P 1 , be a general Lefschetz pencil of
cubic fivefolds, let {F(Xt)}> / G P 1 , be the associated family of Fano
varieties, let tv...,tN be such that Xt is smooth for t e P 1 — { t l 9 . . . , t N }.
Then there exists tN+ι,.. .,tN+Min P 1 such that:

(1) F(Xt) is a smooth and irreducible surface for t ^P1 — {tv...,tN,

(2) The surface F(XtN+j) has only isolated singularities, 1 < J < M.
(3) The surface F(Xtj) has as only singularities the locus of the planes

through the ordinary double point ofXtj,\ < J < N.



THE ABEL-JACOBI ISOMORPHISM 47

In order to complete the program according to the Clemens-Letizia

method [9] we still need to check that the Abel-Jacobi map F -> JX is not

constant, and also to prove the following

(1.11) THEOREM. Let FQ be the Fano surface of the planes on Xθ9 general

cubic hypersurface with one single singular point p0 which is an ordinary

node. Then the family D which represents the planes through p0 is a smooth

irreducible curve; Fo — D is non-singular; along D Fo is analytically reduci-

ble in two smooth components meeting transυersally.

(II). This section is devoted to the proof of Theorem (1.11). We need

some preliminary considerations.

Let b: P + - * P 6 be the blow up of P 6 at pQ, let E = b~\pQ) be the

exceptional divisor, let X+ be the strict transform of Xθ9 let Q = X+Γ\ E

be the exceptional quadric. As in [5] the linear projection Xo --•> P 5 of

centre p0 induces a birational morphism λ: X+-+ P J , which turns out to

be the blow up of P 5 along the threefold Y, the (2,3) complete intersec-

tion of Q with a cubic K. More precisely let pQ = (0,... ,0,1), let P 5 be the

hyperplane x6 = 0, then the cubic Xo has equation

(2.1) 0 = Q(x09x1,...,xs)x6 + K(xO9...,x5)

and in P 5 the cubic and the quadric have equations K = 0 and Q = 0.

The planes through p0 are mapped via λ to the lines lying in Y and

conversely; hence the family of planes through x0 is in general a smooth

irreducible curve, because such a curve is the family of the lines in a

general Y, see [3].

(2.2) Let Γbe a plane in P 6 , iίp0 £ T then the total transform b~\T)

is isomorphic to T and it is also the proper transform Tb of T. If p0 e T

then the proper transform Tb of T is the blowing up of T at p0. In this

case Tb is not the correct transform with respect to the behaviour of the

Hubert scheme; in fact in both cases Tb is a complete intersection in P + ,

but of different type.

(2.3) DEFINITION. We say that a variety Z in P + is a strict biplane if

Z = Tb U B, where B is a plane in £, B Π Tb = L, where L is the

exceptional line in Tb, proper transform of a plane T throughp0.

It is easy to see that a strict-biplane Z is the same kind of complete

intersection in P + as it is a 'plane' Tb not meeting E. In the following we

denote G + = the Hubert scheme of P+ of the complete intersections of the

same type as a strict biplane. If a e G+ we let Za be the represented
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scheme; we call Za a biplane and remark that there are only two

possibilities: either Za is a strict biplane or Za = Tb

9 where T is a plane

not containingp0. One can see easily that G + is non-singular of dimension

12, by explicitly computing the dimension of the tangent space to G + at a

point representing a given biplane.

There is a more intuitive way to describe G+. Let S be the Schubert

variety of the planes in P 6 through p0, then S is smooth, being isomorphic

to G(l,5). Let β*: G* -> G be the blow up of G = G(2,6) along S. We

have G* = G+ . In fact there is a correspondence λ': G --> G(2,5) obtained

by sending a plane from P 6 to P 5 by means of the linear projection λ of

centre pQ. The indeterminacy of λ' at S is solved by blowing up G, so to

have λ*: G* -> G(2,5). Via (β*9 λ*) G* embeds in G X G(2,5). Similarly

there is a map β+: G+-+ G and a map λ+: G+-> G(2,5), obtained by

setting β+(a) = the point representing b(Za), λ+(a) = the point repre-

senting λ(Za). Also G+ embeds in G X G(2,5) and it has the same image

as G* has. In this way we get a 1-1 correspondence between G* and G+;

since they are both non-singular, then they are isomorphic.

We write F+ = the Fano scheme of the biplanes contained in X+ and

denote β+: F+-> F the map induced by restriction of β+: G+-> G.

Collecting previous remarks we note

(2.4) LEMMA. (1) β+: F+- β'\D) -* F - D is 1-1. (2) (β+)~\D) =

Dλ U D2 where Dλ and D2 are isomorphic to D via β+

y Dλ Π D2= 0.

Proof. (1) is clear. For (2) let t e D, then a <E (β+)~\t) means

Za <-* X, b(Za) = Tt contains pQ9 λ(Za) is a plane Ba contained in the

quadric Q and passing through the exceptional line L in the proper

transform Tt

h. In other words Za = Tt

b + Ba. Since β is a four dimen-

sional smooth quadric then for a fixed L in Q there are only two possible

choices for Ba9 one for each system of planes. Statement (2) follows easily.

Our next step is

(2.5) THEOREM. Let t represent the plane Γ, if Xo is not special at T then

F+ is non singular at the points of(β+)~ι(t).

If X is smooth along T the theorem is Corollary (1.4). We assume

therefore that p0 G T and let (β+)~\t) = {a,b}, a e Dl9 b G D2. We

denote N = N(Za9 X) the dual of the conormal bundle of Za in X, our
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program is to prove h°(N) = 2, hence F+ is a smooth surface at the point
a.

For simplicity we write Tt

b = A, so that A U B = Za and further we
set Z = Za. The standard exact sequences of "normal" bundles for the
triple (Z, X+,P+)is

(2.6) 0 -> JV(Z, X+) -+ N(Z,P+) ^N(X+,P)\Z^ 0.

(2.7) Let Do, D1? D2, D3 be four hypersurfaces in P + which intersect
completely in Z, then

7V(Z,P+) = O(D0)\z<B OiDj^Q O(D2)\Z® O(D3)\Z.

In the following (2.9) we fix such a splitting so that the restrictions of
sequence (2.6) to A, B, L are respectively

(sA) 0 -> NA -> Θ3OA(H-L) ®OA(H) fΛ OA(3H - 2L) -> 0

(^β) 0 -> iVβ -» θ 3 θ β ( l ) θ θ 5 -> 0#(2) -> 0

0 -> NL -* Θ3OL(1)ΘOL 4 ^ L ( 2 ) -* 0.

Here // is the divisor on A which is the total transform of the line in T, L
is the exceptional line in A. NA, NB and NL are the restrictions of TV to A,
B9L.

(2.8) There is a standard Mayer-Vietoris sequence

0 -> H°(Z, N) -> 7/°(^9 7VJ φ jy°(Λ, Λ^) -^ H°(L, NL);

in order to prove h°(Z, N) = 2 we shall prove: (i) H°(B, NB) ^

H°(L9 NL), (ii) h°(A, NA) = 2. We need first to compute fAJBJL.

(2.9) Looking at the sequences above we remark that fA is a global
section in H°(A, Θ3OA(2H - L) θ OA(2H - 2L)),fB is a global section
in 7/°(5, θ 3 θ β ( l ) θ OB(2)), and/L is in H°(L9 Θ3OL(1) Φ OL(2)). To
compute fA, fB, fL means to identify them as sections of the indicated
sheaves, in particular both fA and fB axe determined if we find their
restrictions toA-L and B - L respectively.

We let (xo,...,x6; yo,...,y5) be the bihomogeneous coordinates of
P 6 X P 5 , then P + is the subvariety determined by the equations xjj =
Xjyi9 0 < /, j < 5. The biplane Z is the complete intersection in P + of
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equations y0 = yλ = y2 = x3 = 0. We let Dt = locus^ = 0) / = 0,1, 2;
Z>3 = locus(x3 = 0), cf. (2.7). If fΛ_L denotes the restriction of /^ to
A — L = T — p0, then the same proof of (1.2) gives

(2.10) Λ-L β (βθ,β l>β2>β 3 )L,-L.

Let Cr be the proper transform in A of the conic C, and let /^ =
(/A* f}y fi>/A)- We shall see below that one can choose the coordinates
JC0, . . . ,JC3 so that both Co and C3 have a double point in p0, while Cx and
C2 are smooth there. From this and (2.10) it follows

(2.11) PROPOSITION. (CO~ + L) is the divisor of the zeros offf, C{ of

fl c; off I c3 off I

With the notations above, the equations of the plane B in the
exceptional divisor EofP+ are j>0 = yx = y2 = 0, while the equations of T
in P 6 are as before x0 = xx = JC2 = x3 = 0. Since /?0 is a node the
equations of the conies Cz are of type

(2.12) ρ, = L,.(JC4, χ 5 )χ 6 + ρ?(x 4 , xs)

cf. (1.1). In J? the exceptional quadric Q of X+ is therefore

(2.13) ^0^0(^4, Λ) + Mi(-V4» Λ) + ^2^2(^4, Λ) + ̂ 3^3(^4, Λ)

Since 5 is contained in Q one has

(2.14) Λ336 = 0, L3(y4,y5) = 0

so that C3 has a node in p0. Next we use the hypothesis of the linear
independence of the Ci to remark that, up to a linear change in x0, xx, x2,
one may assume that also Co has a node in p0, i.e. L0(JC4,Λ:5) = 0. Now
we recall that the exceptional line L has equations y0 = yλ = j>2

 = Λ = 0
in £ and that we have Za = A + B with B = Ba and also Zb = A + Bb,
where A C\ Bb = L = A C\ B. Without restriction we may require that Bb

has equations yλ = y2 = y3 = 0. The equation of g in E is then

(2.15)

with 0 < 1 <j < 3, and^oo6 = ̂ 3 3 6 = 0.

By hypothesis Q is of maximal rank, then by a linear change of coordi-
nates we may assume Lλ(y49 y5) = y49 L2(y4, y5) = y5 and also note that
A036 Φ 0.
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(2.16) COROLLARY.

fβ

(2.17) COROLLARY./L = (0, Λ , Λ , β3

0(y4? y5)).

Proof (2.16). We just outline the computation. It suffices to compute
the restriction of fB to the affine plane B — L (i.e. the locus y3 Φ 0), so we
restrict everything to the affine space V which is the locus in P + where
y3 Φ 0, x6 Φ 0. There B — L is the complete intersection y0 = yλ = y2 =
x3 = 0. Now in F y09 yl9 y2, x39 y4, y5 induce natural linear parameters
which we write y^ yζ9 y%, x3, y%9 y®. The equation of the restriction of X+

to Fis then of the form Mo ()^0° + Mλ( )y° + M2( )y* + M3( )x3

0 = 0. It
follows that the restriction of fB to B — L is equal to the restriction of
(Mo, Ml9 M2 ? M3). An explicit computation of the M/s yields the result.

(2.18) COROLLARY. h°(B, NB) = h°(L, NL) = 4.

Proof. Obvious since^4036 Φ 0.

Let g: H°(B, NB) -> #°(L, ΛΓL) be the restriction map; using the
short exact sequences of global sections associated with sB and sL and the
snake lemma one finds

Ker(g) = Ker(Λ: ®3H°(B,0) Θ H°(B,0(-l)) -+H°(B,Q(1)))

where the matrix of h is just the matrix of fB. So h is surjective and g and h
are both isomorphisms.

(2.19) COROLLARY, g: H°(B, NB) ^ H°(L, NL).

We have proved part (i) in (2.8); next we show

(2.20) PROPOSITION. // Qo, Qv β 2 , Q3 are linearly independent then
h°(A9 NA) = 2.

Proof. Looking at the long exact sequence of cohomology associated
with sA we see h°(A, NA) = 2 <-> h\A, NA) = 0 *+ fA is surjective on
global sections. Let P(x 4, JC5, X6) = W(x49 x5)x6 + F(JC4? x5) be a cubic
polynomial, to prove that/^ is suqective amounts to produce i-oί*^ xs)>
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L 1(x 4, JC5), L2(x4, JC5), L3(x4, x59 x6) linear polynomials in the indicated
variables so that Σ LiQi = P where Qt are the quadrics in (2.12). For later
use we note that we shall in fact produce L3(x4, x5).

Using the simplifications established above we have Qo = AB, Qλ =
x4xβ + FG, Q2 = x5x6 4 DE, Q3 = CH with A,B,...,H linear homoge-

neous polynomials in x49 x5. Using the hypothesis of the linear indepen-
dence of <2o>--->(?3 w e c a n assume FG = 0, up to a linear change of
coordinates x4, x5. We notice first that there are Lx and L2 such that
Lxx4 4 L2x5 = W(x4, x5) and that also L[ = Lλ - ax5, L2 = L2 + ax4

satisfy the equation. So we need to find LQ(x49 x5), L3(x4, x5) and a
constant a such that

( + ) L0AB+(L2 + ax4)DE + L3CH= V(x4,x5).

Equivalently for any U(x49 x5) we look for Lθ9 L3, a such that

( + + ) L0AB + ax4DE + L3CH = U.

in other words we want to show that the dimension of the vector space of
polynomials in (+ + ) is 4. If AB and CH have no common factor a
solution for (+ + ) exists with a = 0, because of the theorem of Macaulay.
If AB and CH have a common factor then it can be only a linear factor,
because AB = Qo and CH = Q3 are linearly independent by hypothesis.
We assume then that B = H and also that A and C are not proportional.
In this case the linear system {(L0A + L3C)B) has dimension 3 and
the system {L0AB 4- L3CH + ax4DE} has dimension 4 if x4DE <£
{(L0A 4- L3C)1?}; we need therefore to exclude that either (i) x 4 or (ϋ) D
or (in) E is proportional to 5. In case (ϋi) or (ii) the point JC6 =
B = 0 on T is a point in the intersection of the conies Ci9 hence it is
a second singular point on Xθ9 which is a contradiction. In case (i)
similarly the set x4 = Q2 = 0 contains another singular point on Xθ9

again a contradiction.

(2.21) In order the complete the proof of (1.11) we show below that
the differential of β+ at the point a is injective and next that if a and b are
the two points in the fibre (β+y\t) then

dim{dβ+(Ta(F+)) Π dβ+(Tb(F+))) = 1.

PROPOSITION. dβ+: Ta(F+) -> Tβ+(a)(G) is injective.

Proof. Recall 7;(F+) = H°(Za, N) = H°(A, Na). From the long se-
quence of cohomology of the sequence (sA) we get the upper exact row in
the following diagram.
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0 -+ Ta(F+) i H°(A,O(H- E)<BO(H- E) θ O(H - E) θ O(H)) ^ //0(Λ, 0(3//- IE)) - 0

I Λ

H°(T,O(H) ®0(H) (BO(H)ΦO(H)) ^H°(T,O(3H))-+0
II

Γ,(G)

Now dβ+ = yΛιβ, hence dβ+ is injective.
In order to compute the intersection of Ta(F+) and Tb(F+) in Γ,(G)

one has to recall that the given splitting of Tt(G) depends on the ordered
choice of x0, xl9 x2, x39 the equations of the plane T. If in the analogous
diagram (Db) we want to give the map j b by means of the natural
inclusion of the summands then the diagram is

0-> Th(F+) ^ H°(A,0(H) Θ O(H - E) Φ O(H - E) θ O(H - E)) - H°(A, O(3H - IE)) -> 0

( ) ) -. 0.

Next we note that the foldlowing sequence is exact.

0 -* Ta(F+) Π Tb(F+) Λ jyoμ^ 0(H - E) Φ4)

The exactness follows from the proof of (2.20) and more precisely from
the remark that one can produce a L3(x4, x5). The statement about the
dimension of the intersection is then obvious. We remark that on the
other hand if Co, Cl9 C2, C3 were not linearly independent then the above
sequence could not be exact to the right, for simple reasons of rank, so
that the analytical branches of F would not be transversal.

(III). In this section we complete the Clemens-Letizia program by
proving that the Abel-Jacobi map is not constant on the Fano surface. Let
X be a smooth cubic fivefold, we show that the Abel-Jacobi map a:
F -* JX is an immersion at a point t which represents a plane T if T is
non-special in the sense of (1.5). Our method follows [10] p. 24.

The cotangent space of F at / is

(H°(T, N(Tf X)))* - H2{T, ΛΓ*(-3));

the cotangent space to JXis H2(X9 ίl3

x); the codifferential a* turns out to
be the map k in the following commutative diagram, which we explain in
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a moment:

ALBERTO

H°(X,OX(6)VKX)

1*

H°(T,OT(2))

COLLINO

# 2 <

N* (-3)).

We shall show that h and g are surjective, hence k is also suqective so
that a is an immersion at t.

The top row is obtained as follows. Start from

(3.1) 0^O(-3)x-*a\>elx-*Ql

x->0

take then Λ5 and tensor with 0(3) so to have

(3.2) 0 -» Ω4, -* Ωf,6|X(3) -» 0^(3) -* 0.

Taking instead Λ4 one has

(3.3) 0 -» Ω^( -3) -• Q^x -» Q4

X -» 0.

Putting (3.2) and (3.3) together and tensoring with 0(3)

(3.4) 0 - Ω3* -> Ω4

P^(3) -* Ω5

p6|X(6) - 0^(6) - 0.

The top row comes from the (hyper)cohomology sequence associated
with (3.4).

To find the bottom row in the diagram one starts from the usual
sequence of conormal bundles for (Γ, X, P 6 ) :

(3.5) 0 -> O(~3) Γ -> O Γ ( - 1 ) Θ 4 -* ΛΓ* ^ 0

taking Λ3 and tensoring with 0(3) it follows

(3.6) 0 -> Λ2ΛΓ* -^ O®4 -» Λ3iV* 0 O(3) -^ 0.

Since cx(N*) = Λ3iV*, thenΛ3JV* β OΓ(3) = Or(2).

Taking Λ2 instead one has

(3.7) 0 -> ΛΓ (-3) ̂  O Γ ( - 2 ) Θ 6 -> Λ2iV* -> 0.

Putting the sequences together we have the exact sequence

(3.8) 0 -> N*(-3) -> O r ( - 2 ) θ 6 -* O®4 -^ OΓ(2) -> 0.

The bottom map g in the diagram is obtained by looking at the
associated (hyper)cohomology sequence. To check the commutativity of
the diagram is now a standard exercise, the main point is to provide a map
from the restriction of (3.4) to T to sequence (3.8). We leave the details to
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the reader, everything is based on the commutativity of

0 0
1 4

0 -> Oτ(-3) -» Oτ(-3) -» 0
I 4 i

0 -> O r ( - 1 ) ® 4 -» Si^i,. -• ΩV -» 0

4 I 1
0 _» # * _» Ωiχ | Γ _> Qi. _> o

4 4 4
0 0 0

The map h in the diagram is obviously surjective, being the restriction
map. The surjectivity of g is a simple consequence of the vanishing
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