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BOUNDARY BEHAVIOR OF LIMITS OF DISCRETE
SERIES REPRESENTATIONS OF

REAL RANK ONE SEMISIMPLE GROUPS

BRIAN BLANK

The decomposition of the reducible unitary principal series of a
connected semisimple Lie group having real rank one and a simply
connected complexif ication is exhibited on a global analytic level in such
a way that it is seen to correspond to a phenomenon in classical Fourier
analysis, this is done by embedding limits of discrete series representa-
tions via a group equivariant passage to boundary values analogous to the
classical Hardy space inclusion used by Bargmann in the case of SL(2, R).
The boundary value map is shown to be a factor of the projection
operator given by the Knapp-Stein intertwining operator. From a repre-
sentation theoretic view, while these decompositions are already known,
the method of computing the leading term of the asymptotic expansion of
matrix coefficients is new and does not require a AΓ-finiteness assump-
tion.

1. Introduction and preliminaries. The decomposition of represen-

tations in the unitary principal series of a connected semisimple Lie group
G having real rank one and a simply connected complexification is well
understood [10], [11]. In particular, Knapp and Wallach having used
Szegό kernels to decompose all reducible unitary principal series represen-
tations as sums of limits of discrete series representations [11, §12]. In this
paper we exhibit these reducibility results on a global analytic level by
explicitly embedding limits of discrete series representations in the reduci-
ble principal series. This is achieved by realizing the representations in
question in suitable function spaces and providing a group equivariant
passage to boundary values analogous to the Hardy space inclusion of
i/2(R) in L2(R) that was used by Bargmann in the case G = SL(2,R) [1]
and Knapp and Okamoto [9] more generally in the case of limits of
holomorphic discrete series.

Throughout this paper we assume that G satisfies the properties listed
above. Furthermore, from the point of view of exhibiting reducibility
results, there is no loss of generality in assuming that G has a compact
Cartan subgroup T c K where K is a maximal compact subgroup of G
corresponding to a Cartan involution θ [10, p. 543-544]. Then G has
discrete series S>2(G) [5]. To each nonsingular integral form Λ on the Lie
algebra t of Γ, Harish-Chandra associates an invariant eigendistribution
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ΘΛ [4, Theorem 2] and proves the existence of a discrete series representa-
tion (πΛ, HΛ) with character ΘΛ [5] and that these representations exhaust
S>2(G); we call Λ a Harish-Chandra parameter.

Let g and f denote the Lie algebras of G and K, and let Δ
(respectively ΔΛ, ΔΛ) denote the roots (respectively compact roots, non-
compact roots) of (g c , t c ) . Normalize root vectors Ea (α e Δ) according
to [6,155-156]. If Λ is a Harish-Chandra parameter we order Δ so that Λ
is Δ+-dominant; Δ+ is thereby uniquely determined. If instead the in-
tegral parameter Λ is singular, but not orthogonal to any compact root, it
is easy to see that there is a noncompact root a for which {±a} is
precisely the set of roots orthogonal to Λ [11, Lemma 12.5]. For such a
parameter, called here a limit Harish-Chandra parameter, there are two
possible choices of positive roots Δ+ for which Λ is Δ+-dominant.
Whichever the choice, the unique positive root orthogonal to Λ is non-
compact and simple [11, Lemma 12.5].

Let Λ be either a Harish-Chandra parameter or a limit Harish-
Chandra parameter. Order Δ so that Λ is Δ+-dominant and put δ
= 2ΣαGΔ+α> $k = 2Σα<ΞΔ+α:, and δn = 8 - δk. Let α0 be any simple
noncompact root if Λ is nonsingular and the unique positive root or-
thogonal to Λ (hence also simple noncompact) if Λ is singular. Then a0 is
a fundamental sequence of positive noncompact roots in the sense of [11,
§4] and α 0 determines an Iwasawa decomposition G = ANK with the Lie
algebra α of A given by α = R (E + ̂ -«0)

 a n d Eao + E_ao in the
positive chamber of α. Observe that if Λ is singular, the Iwasawa
decomposition does not depend on which of the two possible systems of
positive roots Δ+ that is used. Let M (respectively M') denote the
centralizer (respectively normalizer) of A in K and denote by P the
minimal parabolic subgroup MAN of G. Let λ = Λ - δk + δn be the
Blattner parameter corresponding to (Λ, Δ+). Thus, when Λ is nonsingu-
lar, λ = λ(Λ) is the lowest K-type in πh. Even when Λ is singular, λ is
integral and Δ^-dominant [11, p. 198]; the Blattner parameter λ' corre-
sponding to (Λ,Δ+/), where Δ+ = (Δ+—{α0}) U {-α0} is the other
possible positive root system, is given by λr = λ — α0. For μ integral and
Δ^-dominant let (τμ,Vμ) denote an irreducible unitary representation of
K.

A convenient realization of the discrete series representation πA (Λ
nonsingular) is one the space of square integrable functions in

(1.1) C~(G,τΛ)

= {Fe C«(G, Vx)\F(kg) = τλ(k)F(g),k^K,g^G}
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that are annihiliated by a certain first order elliptic differential operator

For v e HomR(α, C) = α^ and (σ, H) a. irreducible unitary represen-
tation of M, let U(σ:v) denote the nonunitary principal series representa-
tion realized in the compact picture on L2(K,σ) (cf. §2). In [11] Knapp
and Wallach associate to the parameter Λ (and the ordering Δ+ if Λ is
nonsingular) an irreducible unitary representation (σλ, i/λ) of M with
highest weight λ and Hλ c Vλ (λ = λ(Λ, Δ+)), a parameter v(λ) in αf

c,
and an integral formula Sλ defined on the dense subspace

(1.2) C°(K,σλ)

= {/ e C°°(K, Hλ)\f(mk) = σλ(m)f(k), meM9keK)

of L2(K,σλ) by

(1.3) SJ(x) = / τλ{kylf{kx) dk (x G G).
Jκ

The dependence on υ(λ) is incorporated into the extension of / to G
required for formula (1.3) (cf. §2). The point is that Sλ carries C°°(K, σλ)
G-equivariantly into the kernel of 2)x in C°°(G, τλ) and thus provides a
quotient map of U(σλ: v(λ)) onto πA when Λ is nonsingular. When Λ is
singular, the two Blattner parameters λ and λ' give rise to equivalent
M-types σλ and σλ, and the formulas for both *>(λ) and v(λ') reduce to p
(cf. §2). The unitary principal series representations U(σλ: p) and ί7(σλ,: p)
are therefore equivalent. Nevertheless, their images under the Szegό maps
Sλ and Sλ, respectively have lowest ^Γ-types λ and λ' = λ — α0 respec-
tively and so are independent limits of discrete series representations.
Knapp and Wallach showed that the unitary principal series represen-
tation ί/(σλ:p) is infinitesimally equivalent with the direct sum of the
^-finite images of U(σλ:ρ) and U(σλ,:p) under Sλ and Sλ, respectively
[11, Theorem 12.6]. The completeness result that all reducibility of the
unitary principal series may be so accounted for is Theorem 12.7 of [11].

In this paper we will establish this decomposition in a global analytic
fashion by means of a boundary value embedding ££ carried out in §3.
The point is that, although l i m ^ ^ Sλf(α) = 0 for / in C°°(K,σλ\ we
can write Sλf(α) = c(/)e" p l o g " + lower order terms, with c(f) Φ 0 in
general. The boundary map is then defined by the constant term in the
expansion of eplogαSλf(α) after projecting by Eλ from Vλ onto Hλ:

(1.4) J?(SJ)(k) = Eλc(u(σλ:p:w-ιk)f)

where w is a certain representative of the nontrivial Weyl group element.
The bulk of §3 is devoted to establishing the finite, generally non-zero



302 BRIAN BLANK

limit in (1.4). The main tools in this analysis were developed in [10], which

we quote frequently. Particularly important for our purposes are the mean

value property [10, Proposition 20]

(1.5) f
JC<\V\

and another result of Knapp-Stein which we include here as Lemma 3.1.

Some consequences of the proof of this lemma, such as Proposition 3.3

and 3.4, may be of independent interest. The final limit result needed to

define JS? is given in Theorem 3.14. In Theorem 3.16 it is shown that J27

maps the limit of discrete series represenation with lowest K-type λ

G-equivariantly into U(σλ: p).

Embedding theorems for limits of discrete series for the classical real

rank one groups were given in [12]. In addition to the greater generality of

the present paper, the results given here may be of interest through their

relationship with the Knapp-Stein intertwining operators. These were

given in [10] where it is shown [10, p. 517] that in the noncompact picture

^ ( σ λ : p ) the intertwining operators consist of linear combinations of the

identity and the convolution operator with kernel \υ\~ισλ(vw)~ι. We show

in Theorem 3.16 that the composition

(cf. §2 for the definition of W) is indeed of the type described.

Some of these results were announced in [2]. It is a pleasure to thank

Professors A. W. Knapp and N. R. Wallach for their valuable suggestions.

2. The Szegό integral. Let Λ be a limit Harish-Chandra parameter.

Order Δ so that Λ is Δ+-dominant and let α0, A, and α be as defined in

§1. Let Φ denote the restricted roots of g with respect to α; for γ e Φ let

g γ denote the corresponding restricted root space and set γ G φ + if

y(Ea 4- E_a ) > 0. Our assumption that G has real rank one results in

Φ + having the form Φ + = {a} or Φ + = (α,2a}. In our notation a will

denote the smallest positive root. Let p = dimR gα, q = dimR q2a where

Q2a = (0) if 2 α ί Φ, and let p denote half the sum of the positive

restricted roots with multiplicity so that

(2.1) p = \(p + 2q)a.

Let n = Σ 0 e φ Θ Qβ and let N and N denote the analytic subgroups of G

corresponding to n and θn.
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Since dimR α = 1, the Weyl group ΪΌ = M'/M has order two. Let M'

act in each equivalence class [σ] in M, the set of equivalence classes of

irreducible unitary representations of M, by

(2.2) wσ(m) = σ(w~ιmw) (w G AT; m G M: [σ] G M).

By [8] we can choose a representation w of the nontrivial Weyl group

element that centralizes M so that

(2.3) wo = σ.

We denote the factors of an element g in the Iwasawa decomposition

G = ANK by

(2.4) g = exptf(g) nκ{g) (H(g) e α, ιc(g) e tf)

and write logα for H(a) when a E: A. Every element g not in the lower

dimensional set Pw where P = MAN also has a unique Gelfand-Naimark

decomposition

(2.5) g = m(g)a(g)wi(g)

with factors in M,A, N, and N respectively. By means of this decomposi-

tion we extend representations σ of M and characters χ of A to functions

defined almost everywhere on G with respect to Haar measure:

σ(mann) = σ(m), χ(mann) = χ(tf)

where we adopt without further reference the lower case convention for

group elements with the exception that υ will always denote an element of

N. The Bruhat decomposition shows that for each g in G there is at most

one v in N for which n(vg) is not defined. If Ng is this exceptional set,

thenΛ^ = ΐV- {1}.

Let λ be the Blattner parameter associated to (Λ, Δ+) as described in

§1 and let (τλ9Vλ) denote a ^-type with highest weight λ. Let φ λ be a

highest weight vector of τ λ of length one, let Hλ be the M-cyclic subspace

of Vλ generated by φ λ, and let σλ be the representation of M given by τ λ

operating on Hλ. The proof of Proposition 5.5 of [11] and Lemma 12.3 of

[11] show that (σλ, Hλ) is an irreducible representation of M.

We recall from [3] that

(2.6) [ e^1+z)f>H^dv < oo ifRez > 0
JN

where do is unimodular Haar measure on N. We normalize Haar mea-

sures on M, K, and N so that

(2.7) ί dm= ( dk= f e2f>H{v)dv = 1.
JM JK JN
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We arrange parameters so that induction of σλ <S> ep ® 1 from MAN

to G gives rise to a unitary representation. In the compact picture of this

unitary principal series U = ί/(σλ:p) the representation space is the

closed subspace L2(K,σλ) of L2(K,Hλ) consisting of functions / such

that for every m

(2.8) f(mk) = oλ(m)f(k)

dk-almost everywhere in K. The action of G on Lk(K, σλ) is

(2.9) U(g)f(k) = e'W'Wikg))-

We let C°°(K, σλ) denote the space of smooth functions in L2(K,σλ).

Then C°°(i(Γ, σλ) is dense and is the space of C°°-vectors for U. If /

belongs to K, it will be convenient to denote its action on / under U by

'/.
In the unitarily equivalent noncompact picture °ll of U9 the Hubert

space is L2(N, Hλ) and the group action is given by

(2.10) V(g)F{v) = e^sσ(vg)F(n(vg)).

The intertwining operator W between these two pictures is

(2.11) Wf(υ) = epH^f(κ(v)) {v e N; f e L 2 (^σ λ )).

For / in C°°(jfiΓ, σλ) Knapp and Wallach define the Szegδ map S λ

with parameter λ by

(2.12) SJ(x) = / e"^-1>τλ(κ(/χ-1))-1/(/) dl (x e (7).

Extending / in C°°(i^,σλ) to G by/(g) = ̂ p / / ( g )/(κ(g)) so that f(mαnx)

= eplogασλ(m)f(x) and / is in the induced picture of [/, we have [11, p.

178]

(2.13) Sj(x) = f τλ(k)-ιf(kx) dk (x e G),

exhibiting the G-equivariance of the Szegό map into the space C°°(G, τ λ).

It is shown in [11] that the image of C°°(K, σλ) under Sλ is in the kernel

of S)x in C°°(G, τλ) and that infinitesimally the K-ΐmite image of Sλ is a

direct summand of U(σλ: p).

We will need another integral formula for the operator Sλ, one that

will be of use in conjunction with the noncompact picture ^ ( σ λ : p).

LEMMA 2.1. Let f belong to C°°(K9 σλ) and let Sλ be defined by (2.12)

or the equivalent formula (2.13). Then

(2.14) SJ(a) = f_
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Proof. We use the integral formula

(2.15) ί φ(k)dk= ί ί ψ(mκ(v))e2pH(v)dmdv

of Harish-Chandra [3, p. 287]. Thus, since wa'ιw~ι = a, H(mκ(υ)a) =
-H(v) 4- H(υa), and κ(mκ(v)a) = mκ(va), we have

κ

= ί e^la\(κ(la)wYιf(lw)dlJκ

= ί ί e^m^a\{κ{mκ{υ)a)w)-1 wf{mκ{υ))e2^^dmdv
JN JM

= ί ί epH^epH(va\(κ(va)wY\λ(m)'lσλ(m)wf(κ(v))dmdv

= ί epH^τx{κ{υa)w)'lepH^ wf(κ(v))dv.
JN

x { { ) ) f(()) Ώ
N

In view of the G-equivariance of Sλ this formula can be used globally
on G via the Cartan decomposition:

(2.16) Sλ(f:kak) = τλ(k)Sλ(
kf:a).

Let S?x: L2(N, Hλ) -» C°°(A, Vλ) be defined by

(2.17) ^λF(a) = e»λo*a ί epH(υa\x{κ{υa)w)~ιF{υ) dυ.
JN

By abuse of notation we define Sfλ on C°°(K, σλ) by

(2.18) Srλf(a) =

then we have by Lemma 2.1

(2.19) srj =

3. Boundary values of Szegό integrals. The group A acts on N by
the dilations 8a where

(3.1) 8aυ = a~ιυa (υ e N)

with change of variables given by

(3.2)
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The homogeneous norm \υ\ on N [10, p. 512] given by

(3.3) \v\ = e~plo^vw)
 (VΪΞNW = N - {1})

is α-homogeneous of degree p + 2q and invariant under conjugation by
M, i.e.,

(3.4) \δav\= e2f>lo*a\v\ a n d \mvm~l\ = | u | ( u * 1 ) .

The function i; -> σλ(ι;w) is of class C 0 0 away from v = 1 and has the
homogeneity property

(3.5) σλ(8av - w) = σ λ ( ιw) .

These facts may be found in [10, §6 and §8]. The following lemma may
also be found in [10] but we provide an outline of its proof because we
will need several consequences of the proof not found in [10].

LEMMA 3.1. ([10, Lemma 29].) The map υ -> \υ\2 is a polynomial on N

that is a-homogeneous of degree less than 2(p + 2q) such that

(3.6) e-2>"<»> = 1 + ^ ( 0 )

Consequently e2pH(v) < 1 and

(3.7) e2PH(v)<J_ { v φ l )

\υ\

Proof (sketch). Let π be a finite dimensional irreducible represen-
tation with α-weights p = μ0, μl9...9μs+1 of which p is the highest and
such that the compact real form f Θ ip of g c acts by skew-Hermitian
transformations. If φp is a highest α-weight vector of length one then
||7r(g)~Vpl|

2 = e~2pH(8\ Let Eμ denote the orthogonal projection onto the
weight space belonging to μ and put Pj(g) = \\E π(g)~ιφp\\2. Then

(3.8) e~2pH^ = P0(g) + - + P J + 1 ( g ) (g €= G).

Routine computation shows that when gw belongs to MANN

(3.9) ||£wp7r(g)-\i>p||
2 = e-pioβ'ίs")

and in particular when υ Φ \

(3.10)

Since P, + 1 (o) = e'2pl°6(vw) = |ϋ | 2 , all statements follow from (3.8) and
(3.10). D
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We define the kernel K( v: a) on N X A by

(3.11) K(v:a) =

Thenfor/inC°°(#,σλ)

_ ()MJ))'lWwf{v) dv.
N

The notation a -» oo will signify a = expί(£ α o 4- E_ao) with t -> oo.

LEMMA 3.2. For v in N different from 1 we have

(3.12) 2φ:a) < — ,
\v\

(3.13) Km tf(i;:a) = — ,

(3.14) A:(ϋ : a) dv = ̂ ( δ ^ ) J ( δ ^ ) wAew A (ι ) = A:(ι;: 1).

Proof. Statement (3.12) follows immediately from (3.7) and (3.4) as

does (3.14) from (3.2). Statement (3.13) is a simple consequence of (3.6). D

PROPOSITION 3.3. The map μ: g -> e-
2ploga(8w) which is defined on

MANNw can be continuously extended to G by putting μ(man) = 0.

Proof. By (3.9), μ(g) = ||£wpir(g)-fyPll2 when g belongs to MANNw.

Since M preserves the highest α-weight space of 77, A acts by scalars, and

N acts trivially, \\Ewpir(man)~ιφp\\2 = 0, the result follows because G =

P U PNw (essentially the Bruhat decomposition of G). D

The significance of Proposition 3.3 is that μ | κ is zero precisely on M

and so provides a means of testing when an element of K belongs to M.

PROPOSITION 3.4. For v in N different from 1, l im α _ 0 0 κ(8av)w =

m(vw).

Proof. For every a in A and υ in N, writing δav as eH(8aV)nκ(δaυ) we

get κ(8av)w2 = w2e~H{8aV)n'v' belongs to MANN, since w2 is in M, and

so, in particular,

μ(κ(8av)w) =

Thus, for f Φ 1,

Urn μ(κ(δβι;)w) = lim e-2plogaK(v :a) = 0
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by (3.12) and so κ(8aυ)w tends to M as a -> oo. Since the Gelfand-

Naimark decomposition is continuous on MANN, the A, N, and N

components of κ(δaυ)w ϊor v Φ I each converge to 1 as a -> oo. The

result follows since m(κ(δav)w) = m(δavw) = m(vw) [10, formula

(6.12)]. D

Some remarks are appropriate before proceeding to the next sequence

of lemmas. If we define ^J(a) by (2.18), then by (2.14) and (3.11)

(3.15) Srxf{a)= ί K(v:a)τλ(κ(δav)w)-1WJ(v)dv
JN

or

(3.16) Srj{a)= ίe>H^K(v:a)τλ{π(δav)w)-lf(κ(v)w)dv.

We have now shown that the integrand converges pointwise, except for

v = 1, to (σλ(υw)~ι/\υ\)Wwf(υ)9 but since \v\~λ just fails to be integrable,

the dominated convergence theorem is not applicable. Instead, we obtain

more precise information about the rate at which κ(δav)w approaches

m(vw) in the case, essentially, of SU(291) to which the general solution

can be reduced. Positive constants that appear in these lemmas depend in

an essential way only on the subscripted objects and may change from line

to line. Let B denote the Killing form on g and let Bθ denote the positive

definite norm on g given by Bθ = B °(1 X — θ). The associated norm on

g will be denoted by || ||.

LEMMA 3.5. Suppose Y and Z are nonzero elements of g~α and Q~2a

respectively. Then

(3.17) [Z,ΘZ]tΞa,

(3.18) [ 7, [ 7, ΘZ] ] is a nonzero element of m,

(3.19) [Z,[Z,ΘZ]] = | 2 α | 2 | | Z | | 2 Z , and

(3.20) ( a d y ) 4 0 Z = cγzZ whereco\\γf < c γ z < cλ\\Y\f

for two positive constants c0 and c1.

Proof. The first statement is obvious, the second can be found in [7,
Lemma 1.8], and the third is an immediate computation. For (3.20),
observe that

Bθ((zdY)4θZ,Z) = -B([YΛYJZ]],[YΛY,ΘZ]])

= \\[YΛY,ΘZ}]\\\

since by (3.18) [7, [7, ΘZ]] belongs to f and so is ^-invariant. D
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Let d{k, kf) denote a translation invariant metric on K. For X in n

let kx = exp(X+ ΘX).

LEMMA 3.6. There exists a neighborhood I of 0 in n and a positive

number ε0 such that

(3.21) d(kX9l) < Cre-ε°plo^kχw) ( I G /).

Proof. We give the proof for the case where Φ + = (α, 2α}, it being
the more difficult. The modifications necessary when Φ + = {«} are evi-
dent in the proof. For X in n write ΘX = Y+ Z with Y in R X_a and
Z in R X_2a where X_a and JΓ_2α are nonzero vectors in g"α and g~2α

respectively. Let QX be the Lie subalgebra of g generated by X_a, X_lcL,

ΘX_a, and ΘX_2a and let Gx be the analytic subgroup of G corresponding
to QX. Then QX is isomorphic to §u(2,1) [7, p. 54] and direct computa-
tion shows that the analogue px of p for QX is given by px= 2a. Let πx

be the representation of Gx constructed in the proof of Lemma 3.1 so that
in fact mx acts on (g^, Bθ) with πx(X + ΘX) = adg^( X + 0Z). We carry
over from Lemma 3.1 the notation for weight vectors and projections. In a
neighborhood / of 0 in n we have

/ 4 , 2

(3.22) -la[ Σ JJ«x

But the left side of (3.22) is

[Had Z)2 + I ad 7ad Zad 7 + £(ad y)2ad Z

and since [Y, Z] = 0, hence ad Z(ad 7 ) 2 = ad 7ad Zad7 = (ad Y)2 ad Z,
(3.22) for X in / simplifies to

| [ i ( a d Z ) 2 + H a d 7 ) 2 a d Z + ^ ( a d 7 ) 4 ] φ 2 α | 2 < cT\\E_2awx(kx)<i>2a\\2.

Now, if Z ¥= 0,

' 1(3.23) φ2a=\\Z\\'1ΘZ,

hence by (3.17) (ad 7)2(ad Z)φ 2 α = 0, so that

(3.24) | i ( a d Z ) 2 φ 2 a 4- ά ( a d 7 ) V | 2 < cr\\E_2jrx(kx)<t>2«t-

Substituting in (3.23) and using (3.19) and (3.20) we get

2 |α | 2 | |Z | | 2 + £c o | | y | | 4 < c^E^irAk^Φ^l
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By shrinking the neighborhood / If necessary so that if X e /

d(kXfl) < cr\\Y+ Z\\ < cr(2\a\2\\Z\\2 + ±co\\

we have in view of (3.9)

a\κx>λ) ^ cr\e ) ~ c i i

Since d(k~x, 1) = d(kx, 1), chosing / to be symmetric we get

with ε0 = (p + 2q)~ι. D

PROPOSITION 3.7. The operator valued map of N into End c(F λ)
defined by v -> epH(v)[τλ(κ(v)w)~ι — σλ(vw)~ι] is integrable.

Proof. Because m(vw) = m(κ(v)w), we have the Lipschitz inequality

[[^(^(y)^)" 1 - σ λ(ϋw)" 1 |< cd(κ(v)w,m(κ(v)w)).

Thus, in view of (2.6) it suffices to show that for some e > 0

(3.25) d{κ{υ)w9m{κ(ϋ)w)) < ceεpH^v)

for \v\ sufficiently large. But by Proposition 3.4, for \υ\ sufficiently large
k = m(κ(v)w)~ικ(v)w is sufficiently close to 1 so that the neighborhood
/ in Lemma 3.6 may be used as a chart via kx = exp( X + ΘX). Thus, by
(3.21)

d(κ(ϋ)w9m(κ(ϋ)w)) < C /e-

Since a{m{κ{υ)w)-ικ(υ)w2) = a(κ(v)) = -H(v), (3.25) follows. D

We may now now use Proposition 3.7 to deal with the singularity of
l^l"1 at v = 1. To do so we will construct a modification of a partition of
unity found in [10]. Following [10, p. 521, 523] we identify N and θn and
transfer the norm || || to TV. The norm on Vλ will be denoted by || \\v.
Fix any positive number Ro (with the intention of doing a Taylor
expansion in {||ί;||<i?0}). Let φ(s) be a nonincreasing element of
Co°°([0, oo), [0,1]) that is equal to 1 for 0 < s < d and to 0 for b < s < oo
where 0 < d < b and b is chosen so that {|u| < b) c {||ι;|| < Ro) (cf. [10,
p. 529]). Define ψx(k) by

(3 26^ \b (k) = / ψ(l^I) if ^ = mκ(υ)w for some m ^ M, v G N
10 otherwise.
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LEMMA 3.8. The function ψx defined on K by (3.26) is a well-defined,
left M-invariant, smooth separation of the two closed disjoint subsets M and
Mw of K, and does not depend on the function f.

Proof. That ψλ is well defined and smooth follows from the Gelfand-
Naimark decomposition. It is clear that ψx is left M-invariant and
ψχ I Mw = 1. The existence of an element m in M for which ψχ(m) Φ 0
would imply the existence of an element υ in N for which κ(v) belongs to
Mw, contradicting the disjointness of N and MANw. Thus ψx | M = 0. D

Let ψ2 = 1 — ψ1? ψλ = φ, and φ2 = 1 — ψv Thus \pj is in C°°(K, σλ)
( i - l , 2 ) and &λf = &MJ) + &χ(φ2f). Let Yf(v) = W»f(υ) -
f(w)epH{v) and let Zf(v) = f(κ(v)w) - f(w), that is, Yf(v) =

epHi")Zf{υ) .Then

(3.27) Sfλf(a)=

We will deal with the integrals in (3.27) in the order in which they are
written. With v an integer to be determined by Lemma 3.9, the function
Zf(v) has a Taylor expansion in {||z;|| < Ro) of the form (cf. [10, p. 523])

(3.28) Zf(v)= Σfj(v)+R9(v)
7 = 1

where fj(υ) is α-homogeneous of degree j and

(3.29) | |*»lk <cHf+1.

LEMMA 3.9. For v sufficiently large

lim (_^{\v\)K{v •.a)τx{κ{8aυ)w)'ιepH^Rv{υ) dυ
a -»oo ^AΓ

ists and equals

ί ψ ( \ v \ ) —
JN \υ\

Proof. By (3.12), (3.13), and Proposition 3.4, the result will follow
from the dominated convergence theorem if we show that
epH(<v)\υ\-1\\υ\\v+1χw<h}(υ) is integrable for v sufficiently large. This
follows from [10, p. 529 (10.2)]. D
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LEMMA 3.10. For eachj = 1,. . . , 2v

lim

exists and equals

( Yι

JN \υ\

Proof. Here it suffices to exhibit the integrabihty of the dominating

function

Now

hAυ) = \υ\ /,•(*>) L
j \ / I I IIJ J v ' II Vχ

is α-homogeneous of degree 0. By [10, Proposition 3] there exists a real

number e(hj) for which

Gj(υ) dv = e(hj) I — φ(r)dr.

The right hand side is clearly finite for any j > 0. D

COROLLARY 3.11. For fin C°°(K,σλ),

lim (φ{\v\)K(v:a)τλ{κ(δav)w)-lYf(v) dv
a-* oo Jj\j

exists and equals

LEMMA 3.12. For fin C°°(K, σλ),

lim
a—» oo

eJcϋ/5 α/ί J equals
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Proof. Here we may take 2||/||Loo|ι;|~V//(ί0χ{ί/<,ι;,}(ι;) as the point-
wise dominating function and its integrability follows from (2.6) and
(3.6). D

Lemma 3.12 together with Corollary 3.11 show that

(3.30)

Only the last integral in (3.27) remains. As a first step in this considera-
tion we write

(3.31) ί K(v:a)τλ(κ(8av)w)~1f(w)epH(v)dv

JN

= ί ζa{v)f{w)epΉ{υ)dυ+ ί K(v:a)σλ(vwyιf(w)epH(v)dv

where ξa: N -> EndKλ is defined by

(3.32) ζa(v) = K(v:a)[rλ(κ(8av)wYι - σ^σw)'1].
Note that by Proposition 3.7 ̂ (v) = epH{v)[τλ(κ(v)w)-1 - σχivw)'1] is
integrable. Furthermore, by the homogeneity property (3.5) and by (3.14),

(3.32) ζa\
v) dv = ςι\oav) aybjϋ).

Thus, if we let Ξ be the element of End(Fλ) given by

(3.33) Ξ-/_{»*,

a standard approximation to the identity argument gives

(3.34) lim
α—> oo

and so we may turn our attention to establishing the limit of the last term
in (3.31). We introduce the truncated kernel

(3.35) K'(v:a)=\\υ\ i f e " z p κ * β £ M
10 otherwise

and we let

(3.36) θa(v)[K(v:a) - K'(v:a)]σλ(vw)-\

It is a simple matter using (3.6) to verify that θ^v) belongs to
L\N,End(Hλ)). Furthermore, θa(v)dv = θ^δju) d(δav) by (3.2) and
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(3.4). If we let & be the element of End(i/ λ) given by

(3.37) #= (θi(v)dυ
JN

then an approximation to the identity argument gives

(3.38) lim
a-*oo

LEMMA 3.13.

lim f K(v.a)σλ(vwy1f(w)epriiv)dv
a-* oo JJSJ

exists and equals

* I iil <-* 1
Π σλ
\υ\

/ ~ oλ{vw) f(w) dυ
1<M |ϋ|

(_K'{v:a)σλ(vwyιf{w)epH{v)dv
JN

f
= I

Je-

(_
JN

epH{υ)

e-2plo*a<\υ\ \υ\

f epH{v) - i

= / ——-σ λ(ι?w)" f{w)dv
J e ~ 2 p l o & a < \ v \ < l \V\

Now

< r 2 p l o g α < M < i | ί ; |

e^

for every ύf by [10, Proposition 20] so we may subtract it from the first

term on the right hand side above. Since (epH(v) — 1)|^|~x is continuous

on the compact set {\υ\ < 1}, the lemma follows by decomposing K(υ:a)

as K{v: a) = θa{v) + K'(υ:a) and using (3.38). D
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We combine the results of (3.27), Corollary 3.11, Lemma 3.12, (3.31),
(3.34), and Lemma 3.13 as

THEOREM 3.14. Let f belong to C°°(K, σλ) and let ̂ λ , Ξ and # be the

operators defined by (2.18), (3.33), and (3.37) respectively. Then

lim 6fχf{a) = Ξ/(w) + #/(w)
a—> oo

[
N

[Wwf(υ) - <?'"<">/(w)] dv

\v\<ι

Ί<M PI

We can write this result in a more convenient form through the use of
principal value integrals. Thus, for F in L2(N, Hλ) we make the following
interpretation of the singular inegral with kernel \v\~ισλ(vw)~1:

l_\υ\ oλ(vw)'1F(v) dv = lim / \v\ σλ(vw)~1F(v) dv.

Then, by using the mean value zero property (1.5) of \v\~lox(vw)~l on
spherical shells, we can rewrite the conclusion of Theorem 3.14 as

(3.39) lim STJ(a) = Ξ/(w) +*/(w) 4- /_ , / Wwf{v)dv.
a -> oo Ά Γ I f I

Furthermore, the same device shows that

ί epH(v\(κ(v)Wy1f(w)dv
JN

has meaning as a principal value integral and in fact

lim f ef>H(v)τλ{κ(v)wY1f(w)dυ = (Ξ
K-»oo J\v\< V

Thus,

(3.40) Urn &J(a) = f_ e^^T^K^wY'fiw) dv

7+
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Let Ex be the projection of Vx onto Hx. Observe that the last term in
(3.40) already has values in Hx and is not affected by the projection Ex.

LEMMA 3.15. There exists a constant aλ such that

(3.41) lim Eλyj(a) = aχf(w) + f ^o^vwY'W^υ) dυ.
a-* oo Jtf

Proof. That

is a consequence of Schur's lemma. Indeed, for m in Af, we have
wm = mw, m~1κ(v)m = κ(m~ιvm), and d{mvm~ι) = dv. Hence, σλ(m)
and

Exίe
pH^τx(κ(v)w)~1dv

N

commute. D

To each element F in the image of Sx in C°°(G, τλ) we now associate
a function ££F on K with values in i/λ as follows:

(3.42) SfF(k) = Urn Ex^
kf){a) (F = SJ;f e

£ - • 0 0 V y

Using the form of 5 λ given in (1.3) we have

(3.43) SeF{k) = lim eplo*aEλ( τx(l)~ιf{law-ιk) dl,
a-*oo JK

from which it follows that

^F(mk) = ox{m)&F{k).

We extend the definition of £?F to G by

(3.44)

THEOREM 3.16. The boundary value map ££ defined by (3.42) maps
Sx(C°°(K,ax)) into L2(K,σx) in a G-equivariant manner. Furthermore,
the intertwining operator that is the composite

^ ( σ λ : p ) -> U(σλ:p) -> U(σλ:p) -> ^ ( σ λ : p )

is the projection axl 4- /^ li l^σ^ϋw)" 1^!; ) dv, i.e.

(3.45) W^?(SλW^-1F)(w) = axF(u)

for a smooth element F in L2(N, Hx).
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Proof. Since Sλ is G-equivariant, to establish the G-equivariance of JSf
it must be shown that

(3.46) J2?(Sλt/(g)/)(x) = nSJ)(xg) (x, g e G).

It suffices to prove (3.45) when x = 1. For g in K this follows form the
definition. For g = a0 ^ A we have by (3.43)

τλ(/Γ7(law~ιa0) dl

lim eplo&aa^Eλf r^iy^ilaa^w'1) dl
α->oo

It follows from the Cartain decomposition G = KAK that (3.46) holds for
every g when x = 1. Finally, from the explicit limit formula given in
Theorem 3.14, it is clear that S£F{k) is continuous; hence, ££F belongs
to L2(K, σλ). This proves the first part.

Now let F be a smooth element of L2(N, Hλ). Then

{W~ιF){k) = e^°δβ(/c)σλ(

By (3.41) and (3.42) we get

= aλW~ιF(k) + f \υ\'loλ(υwYιW{kW-ιF)(υ) dυ.
JN

Since W9 W~ι, and <& ° Sx are equivariant, we have for u'm N

D
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