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ORTHOGONAL PROJECTIONS ONTO SUBSPACES
OF THE HARMONIC BERGMAN SPACE

EMIL J. STRAUBE

Let Ω c Rm be a bounded, smooth domain. We construct a continu-
ous linear operator T: W°(Q) -» W°(Q) which for all k e (N u {oo})
is actually continuous from Wk(Q) -> WQ(Q), and which moreover has
the property that ST = S, for any orthogonal projection S of W°(Q)
onto a subspace of the harmonic Bergman space. That is, the operator
assigns to each function a function vanishing to high (infinite if k = oo)
order at bQ,, but with the same projection. S can in particular be the
harmonic Bergman projection, or, when Ω c C " , the (analytic) Bergman
projection. The question whether such an operator exists arises for
example in connection with regularity properties of the Bergman projec-
tion and their intimate connection with boundary regularity of holomor-
phic mappings.

1. Introduction and results. Let Ω c Rm be a bounded domain with

smooth boundary. For k e N, we denote by Wk(Q) the usual Sobolev

spaces of order k on Ω (see [10]), and by WQ*(Ω) the closure of C0°°(Ω) in

Wk(ίi). hk(Ώ) denotes the closed subspace of Wk(Ώ) consisting of

harmonic functions; the harmonic Bergman projection Q is the orthogo-

nal projection of W\Q) ( = oS?2(Ω)) onto λ°(Ω). We are interested in

projections onto subspaces of /z°(Ω). The most interesting examples will

be Q itself and, in the case where Ω lies in complex euclidean space

C" = R2", the Bergman projection P. This is the orthogonal projection of

W°(Ώ) onto A°(Ω)9 the subspace of W°(Ω) consisting of analytic func-

tions. The purpose of the present paper is to construct a continuous linear

operator T from W°(ti) to W°(Ω), which to each function in Wk(Sl)

assigns a function in WQ(Q) (i.e. "vanishing to order k — 1"), but with

the same projection. More precisely, we have

THEOREM 1.1. Let Ω as above. There is a continuous linear operator T:

W°(Ώ) -> W°(Ώ) which satisfies

(i) for all k e (N U {oo}), Tmaps Wk(Ω) continuously into Wo

k(Ώ).

(ii) if S is the orthogonal projection of W°(Ώ) onto an arbitrary closed

subspace of h°(Ώ), then

(1) ST=S.

465



466 EMIL J. STRAUBE

REMARK 1.2. The point of the theorem is really that there exists T
with (i) and such that QT = Q. For S as in the theorem, S = SQ, so that
then trivially ST = SQT = SQ = S.

REMARK 1.3. By the standard interpolation argument, T is continuous
from W(Ώ) to W£(Ω), for r real, > 0. For r = integer + 1/2, we even
get continuity from W(Ώ) to W^(Ω); see [10] for details and definition of
the last space.

REMARK 1.4. The smoothness of Tg depends only on the smoothness
of g near &Ω. More precisely: if g e Wk(Ώ> \ K) for some compact subset
K, then Tg e WQ(Ω). This will be clear from the proof of Theorem 1.1.

The main source of motivation for constructing operators like T are
questions revolving about the Bergman projection P, and its intimate
connection with boundary behavior of holomoφhic mappings ([4] and its
references, [7]). One of the key steps was Bell's construction of (differen-
tial) operators φk: Wk+N{k)(ti) -> Wo

k(Q), such that Pφk = P. φk is also
bounded from Ak(Ώ) -» WQ(Ω) (Ak(Q) is the analytic subspace of
Wk(Q)). A revised version of these operators is in [1]. Harmonic and
pluriharmonic versions were given in [2] and [3], respectively. From this
circle of ideas, the question also arises whether the conditions Rk: P maps
Wk(Ό) into itslef, and Rk

0: P maps Wo

k(Ώ) into Wk(Ω), are equivalent.
The φk do not give an answer. This question also arises from [9], where RQ
rather than Rk appeared naturally. The question was answered affirma-
tively by the author in [12]. It was shown that there exist continuous
operators Tk: Wk(Ώ) -> Wo

k(ti), such that PTk = P. For k = oo, it was
shown in [6] and [12] that for g e W°°(Ω), there is always h e W °̂(Ω)
with Ph = Pg, but it was not clear whether the function in W °̂°(Ω) could
be chosen in a continuous, linear way (in [12] a continuous linear map
into a quotient of WQ°(Q) was obtained). The operator T gives a unified
approach to all the above. In addition, we write down T quite explicitely
(in contrast to [12], where the author's Tk were obtained by abstract
arguments). This clarifies the situation; in fact it is precisely this feature
which allows to check the regularity properties. Note that the equivalence
for the harmonic Bergman projection, corresponding to Rk <=> RQ, gives
nothing interesting, because Q always maps Wk(Ώ) into itself ([2]). In
intermediate cases however, such as the projection onto the pluriharmonic
functions, the corresponding equivalence (also obtained from T) is of
interest.
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We also briefly mention that the operator T may be used to obtain
equivalence of certain negative Sobolev norms on harmonic functions (no
geometric assumptions on Ω), compare [5], §4. We do not elaborate on
this, because this equivalence also follows directly from the Sobolev
estimate on an "improper" JS?2-pairing given in [12], and it is our opinion
that the approach via the pairing is more natural in that context.

The construction of the operator T rests upon an observation about
the projections, which we now proceed to state. It says, loosely speaking,
that the condition of having the same projection as some given function
may be reformulated as a certain boundary condition. Consider the
Dirichlet problem for the Laplacian
/2x Δh = g on Ω
^ ' h = 0 on Z>Ω,
with g e Wk(Ω), so that the solution h e Wk+2(Ώ). Let Ψ be any
function in Wk+2(Ώ) such that

Ψ = 0
(3) 9Ψ _ 9Λ on Z>Ω

dv dv

Here, d/dv denotes the normal derivative (normal to Z>Ω, oriented inward);
the boundary values are, as usual, to be understood as traces. Then we
have

PROPOSITION 1.5. Let g e Wk(ίl) and let h be the solution of the
Dirichlet problem (2). For Ψ satisfying (3),

(4) S(&») = Sg,

for any projection S as in Theorem 1.1.

As we shall see, the main point here is that (4) is implied by a
boundary condition on Ψ (namely (3)).

Proposition 1.5 allows essentially to reduce the problem to finding
functions with prescribed normal derivatives on 6Ω. However, infinitely
many derivatives will be involved, and in order to get extensions depend-
ing linearly on the data, special care has to be taken. In §3, we construct
sequences of extension operators (roughly one operator for each normal
derivative) whose norms are well controlled. For certain boundary data
spaces (including the ones arising from our problem), they can be summed
up to yield a linear operator which gives functions with the infinitely
many prescribed normal derivatives. The construction is an infinite ver-
sion of a construction in [8]; it is also somewhat motivated by the
construction in [11].
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2. Proofs. We first prove Proposition 1.5. We have

K }

(1)

Use (2) and (3) (§1) to conclude that Ψ - h = 3(Ψ - h)/dv = 0 on bΏ

so that Ψ - A e WO 2 ( Ω ) (I10])- Therefore, Δ(Ψ - A) is orthogonal to

h°(Ώ) (integrate by parts, no boundary terms appear). Thus, by (1),

ΔΨ — g is orthogonal to A°(Ω) and thus to the image of S, whence the

result.

Now we prove Theorem 1.1. Let L: W°(ϊl) -> TF2(Ω) be the solution

operator of the Dirichlet problem

ΔLg = g on Ω

Lg = 0 on M2.

For g G J^°(Ω), 7g will be defined as ΔΨ, for suitable Ψ, with

* = 0
(3) 3 t _ 3 . on M2

(3) will ensure, by Proposition 1.5, that SΔΨ = Sg. The condition that

ΔΨ = Γg G W^(Ω), may also be formulated as a boundary condition; it

is equivalent to the condition

(4) — ΔΨ = 0 on&Ω, 0<j<k-l,
dvJ

see [10]. The next step is to observe that (3) and (4) together may

equivalently be written by prescribing only normal derivatives of Ψ. It

will be convenient to work in local coordinates near Z>Ω, so we choose a

partition of unity {φs] of 6Ω, so that supp<ps is contained in a coordinate

neighborhood Us of &Ω, which is "small" so that its local coordinates

(θv.. .,θm_ι) together with v (signed distance to b2) can be used as

coordinates of Rm near Us. Then the task is reduced (by linearity) to

constructing Ψs G Wk+2(Ώ) satisfying the boundary condition

— Δ Ψ = 0 0 < / < Λ: — 1,
dp' '

whenever the function g we start out with is in Wk(Ώ). Near Us, the

Laplacian is expressed in the local coordinates (the index ί is suppressed)
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as

where

g ' 7 ~ " ^ " ^

(g'7) = (g,7Γ
1 a n d

Thus

Note that the second term on the right side of (7) involves only normal
derivatives of order at most j' + 1. So if one knows the traces of Ψ and
dΨ/dv on bΏ, and those of dJΔΦ/dvJ, one may recursively calculate the
traces of dJΨ/dvJ. Thus we obtain a sequence (BJ)J)

==2 of differential
operators, such that for all k e N, the boundary condition

<«>

is equivalent to the boundary condition (5) (in Us). For convenience, we
set BQ := 0 and J5̂  = id (the identity operator), so that (8) can be
rewritten as

The order of BJ does not exceed j — 1, for j > 1. Since BJ(φs(dLg/dv))
is compactly supported in Us, we may continue it to bΏ by setting it equal
to 0 outside Us. In this way, (9) may be viewed as a boundary condition
on all of bΏ. Then, any Ψs is Wk+2(Ώ) which satisfies this condition, will
also satisfy (5) on all of bΏ (in Us by construction of the Bj, on
bΏ \ supp φ5 because there all normal derivatives are 0 on bΏ). We point
out once more that the BJ are easily calculated explicitly, by recursion,
starting with Bs

2.



470 EMIL J. STRAUBE

In §3, we will for every given sequence (CLJ)™ of positive numbers
construct a sequence (RJ)™ of linear operators defined on C
U^=o W'k(bίl)9 such that for all k e N:

(i)

(10)
Rj is continuous from Wk'j-ι/2{bίl) toWk(Q);

we denote the corresponding operator norm by || RJ

(11)

(ii) for 0 < s < k - 1,

0 if s Φj

u if s = j

Note that these traces are well defined, since Rju
(iii)

/ ds

\iPR"

(12)

This property is independent of the boundary norm used (see §3).

This will put us in a position to define the operator T. Denote by C
the operator norm of

s

We choose the sequence (otj)™ with α y:= sxιpssupk<jCJk and construct
the RJ corresponding to this sequence. Now we set for g e W°(Ω)

(13) Γg:=Δ
s j>0

is well defined: for k e N fixed, we have

3 r

Therefore,

(14)

W-o

< C(k)\\g\\w*w.
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Here, we have used (12); also note that s ranges only over finitely many
integers. From (14) it follows that T is continuous from Wk{Q,) to itself.
If

(15) Ψs

and

(16)
S

we have to check (3) and (4), or, after what we've done, just (9). Let k still
fixed. Let 0 < t < k + 1. Then we calculate the traces

(17) tt.E

This is (9). Thus T has all the properties required in Theorem 1.1, except
possibly those relating to the case k = oo. However, these are a conse-
quence of the properties for all k. Therefore, the proof of Theorem 1.1 is
complete.

REMARK 2.1. There is an abstract argument which gives an operator
T°°: W°°(ti) ~> JF0°°(Ω), such that ST°° = 5, for S as in Theorem 1.1. We
briefly indicate it, as it has some interest of its own. Again, it suffices to
treat the case S = Q. Moreover, we only need to find a right inverse t for
Q: W£°(Ω) -» Λ°°(Ω), then T°° := TQ will do the job, since Q is continu-
ous from H °̂°(Ω) -> Λ°°(Ω) ([2]). To find this right inverse, consider the
sequence

(18) 0 -> kerβ ^ WS°(Q) % Λ°°(Ω) -» 0.

It is exact (for the suqectivity of β, see [12]). Now Λ°°(Ω) = C°°(Z>Ω), by
the Poisson extension, which in turn is isomorphic to s, the space of
rapidly decreasing sequences ([14], Theorem 2.3). It is easy to show that
ker<2 = W °̂°(Ω), which is again isomorphic to s ([14], Theorem 2.3).
Therefore, Vogt's splitting theorem ([13], Theorem 2.2, see also Theorem
1.3) applies and yields a continuous right inverse f of Q. The drawback of
this approach is that it does not yeild exact preservation of differentiabil-
ity (measured in Sobolev norms) for f.
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3. Prescribing infinitely many normal derivatives. In this section, we
construct the operators RJ with properties (10), (11) and (12) of §2. With
the help of a partition of unity and local flattenings of the boundary, we
reduce the problem to the case where Ω is a euclidean half space,
Ω = {(x, t) e Rm X R/t > 0} (m here does not denote the same integer
as in the previous sections). This causes no problems as far as properties
(i) and (ii) (i.e. (10) and (11)) are concerned, but property (iii) needs some
attention, since cutoffs affect norms. Also, \\RJ\\k depends on the boundary
norms used, so it is not a priori clear that property (iii) is independent of
the choice of norm for the boundary Sobolev spaces. However, for both
problems the relevant norms are estimated by factors CJk9 and considering
a new sequence άy:= (supk<jCJk)(Xj (a similar "diagonal process' was
used in §2) shows that (iii) is preserved. With these considerations done,
we only state the result in the setting of a euclidean half space.

THEOREM 3.1. Let (ocj)™ be an arbitrary sequence of positive numbers.
Then there exists a sequence (RJ)™ of operators defined on PF~°°(Rm),
valued in W~°°(Ώ\ such that for all k e N:

(i)

(1) RJ is continuous from Wk'J-ι/2(Rm) to Wk(Ω), j = 0,1,2,...,

(ii) for 0 < s < k - 1,

0 ifsΦj
(2) 7 = 0,1,2,....

a ιfs=j

(iii) If \\RJ\\k denotes the operator norm of RJ as an operator from
Wk-j-1/2(Rm) to Wk(Ω), then

(3)

REMARK 3.2. We identify 6Ω with Rm. The left side of (2) is under-
stood in the sense of traces. These are well defined for 0 < s < k — 1,
since RJa e Wk{Q).

Proof. First note that

(4) W
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Here, JS?2((0, oo), E) denotes the space of square integrable ^-valued
functions on (0, oo), with norm

(5) Uoo 2 \ 1/2

MOIlU)Equality in (4) means "same elements and equivalent norms", i.e.

(6) dt

1/2

For a proof, see [10], Theorem 7.4, Chapter 1. We identify the Sobolev
space Wk(Rm) in the usual way with its Fourier transform, consisting of
all functions a(ξ) which are square integrable with respect to the weight
(1 + \ξ\2)kdζ. Thus wGoS?2((0,oo),W^(Rm)) is an Se1 function with
respect to / with values in a weighted JS?2-space with respect to £, and the
norm (5) becomes

(7) \u(t,ξ)\\l

After these preparations, we are ready to define the Rj. For a
00(Rm), set

(8) R'a(t,ξ):- folfij

with

(9) iβy.:

φ is a fixed [0, l]-valued function in Q°(R), supported in [-1,1], and
identically 1 on [-1/2,1/2].

Clearly, RJa e WK-°°(Ω). Fix now k e N. Assume that a e
Wk-J-χ/2(Rm). To show (1), we shall use (4). For t e (0, oo) fixed, the
right-hand side of (8) is in Wk(Rm), since a is locally integrable and φ has
compact support. So RJa is a W*(Rw)-valued function on (0, oo); it is
easy to see that it is smooth. To estimate H-R ̂ ll^*^), we have to estimate
the right-hand side of (6). The first contribution is (after squaring (6)):

(10) ) k\RJa(t,ξ)\2(l+\ξ\)kdξ\A
/
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Since suppφ c [-1,1], we are in fact only integrating over the subset of
(0, oo) X Rm where

Using this and Fubini's theorem, the last integral in (10) can be estimated
by

(12) ( /Wα+lίlV" Λ iiliϋJ :\a(ξ)\2dξ

1 „ ,,2
β||^-V-l/2(R«).

The calculation for the second contribution in (6) is essentially the same.
Note that

Therefore, in order to estimate

r/
it suffices to consider the terms

dξdt,

For s > j \ the integrand is 0, so nothing needs to be estimated. For s < j ,
(14) may be treated exactly as (10), and we find that it is estimated by

(15)
Ct

h)
2j-2k+l
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where Ck is a constant depending on k only. This shows property (i) of
the theorem. From (12) and (15), we also read off that

(16) || R
C,

k
k

w - * '

with a different Ck (note that β; > 1). Thus

(17) Σ\\R%«j*ckΣ

Now for j > k, (βj)j~k > βj > (j)2otp so that the right-hand side of (17)
is finite. This proves (iii).

To prove (ii), we first observe that the trace of dsRJa/dts on Rm is the
limit, in Wk~s~ι/2(Rm), as t0 -> 0+, of the traces on the hyperplanes
t = t0 ([10]). Since 0 < s < k - 1, this convergence takes a fortiori place
in W°(Rm) = J^2(Rm). Thus the trace we look for is the J?2-limit, as
t ^ 0 + , o f

(18)

Because the limit exists, we may calculate it by taking the pointwise limit
a.e.; but this limit is 8sja(ξ), since for / small enough, φ(β/(l + |£ | 2 ) 1 / 2 )
= 1 (because ξ is fixed). This proves (ii), and the proof of Theorem 3.1 is
complete.
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