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TANGENTS TO A MULTIPLE PLANE CURVE

SHELDON KATZ

The limiting behavior of the tangents and the flexes are computed as
a reduced plane curve degenerates into a multiple plane curve.

0. Introduction. In this paper, we consider the degeneration of a
reduced irreducible plane curve to a multiple plane curve. We study the
associated degeneration of tangent lines by viewing a line as a linear
imbedding P1 «-» P2 and studying deformations of this imbedding. We
compute the limiting behavior of the dual curve and the flexes. A similar
computation yields the limiting behavior of the bitangents; this will
appear later in a separate paper. The main result is stated as Proposition
(2.1).

The author takes this opportunity to thank Professor William Fulton
for introducing him to this problem.

1. The dual of a multiple curve. Let C c P<? be a smooth curve of
degree d. C* c P2* will denote the dual curve of tangents to C.

Let n be a positive integer, n > 2. Let

(1.1) Gn + tF=0

be a generic pencil of plane curves, with deg G = d, deg F = nd. We will
freely abuse notation by using the same letter to denote a polynomial or
its zero locus. Here, generic means that G, F are smooth, and meet
transversely at their nd2 points of intersection, the base points of the
pencil. G* is assumed to have only nodes and cusps as singularities. The
pencil (1.1) will be denoted by Cr Let Q = lim,_0C,*. The goal of this
section is to prove the following.

(1.2) PROPOSITION. Q is the union of G* with multiplicity n, together
with the nd2 pencils of lines through the base points, each pencil having
multiplicity (n — 1).

REMARKS. (1) Proposition (1.2) is quite elementary. It is not much
more difficult than the case n = 2, d = 1 implicitly worked out in [4]. The
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value in this method of proof lies purely in its expository value as a
prelude to §2.

(2) By a standard formula for plane curves ([2], for example) deg C*
= nd{nd - 1) for t Φ 0, while degQ = nd(d - 1) + (n - l)nd2 =
nd{nd - 1).

The techniques used are a variant of the techniques of [3], which were
inspired by the work of Clemens. Given a line I c P 2 , we look for a
family of lines Ls with Lo = L and Ls tangent to Ct with t = sr for a
positive integer r. Then L would correspond to a general point of a
multiplicity r component of Co* with cyclic local monodromy.

We choose an isomorphism α: P1 -> L given by three homogeneous
linear forms a = (ao(u, v), aλ{u, v), α2(w, u)), where (w, v) are homoge-
neous coordinates on P1. We single out (1,0) e P 1 as the candidate for a
point of tangency of L with Co. We look for an extension of a to a{s),
holomorphic in s for |s| < ε, with α(0) = α, and satisfying

(1.3) (Gn + sT)oa(s) s 0 (v2) for | j | < ε.

We attempt to solve (1.3) by power series in s. We show that this is
possible when either L is tangent to G or when L passes through a base
point. In the former case, for general L, we must take r = n, while in the
latter case, we take r = n - 1. By consideration of degrees, i.e. Remark
(2), no other components are present, proving Proposition (1.2).

We now fix some more notation. Let Pk denote the vector space of
homogeneous forms of degree k on P1. There is a linear map

2 /

(1.4) Φ c : Pi -* Pd, ΦG(σ0,σlyσ2) = £ σ,|

and for each integer k > 0, the related map

(1.5) Φ^:P^Pd^Pd/(vk+1).

(1.6) LEMMA. For any L, Φ£} is surjectiυe {hence also

Proof. Since G is smooth, we may change coordinates so ψ =
9G/3Xo o a Φ 0 (v), so that ψ is a unit in the graded ring Rλ = φ . P/( y2).
Thus any β G Pd/{υ2) can be divided by ψ (modi;2) to yield σ e i\;
then Φ£}(σ, 0,0) = Q. Π
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We introduce some more notation to facilitate higher order computa-
tions. Let

<Γα,

ds' s=0

We also note that homogeneous polynomials of degree j in (w, υ) can
be viewed as polynomials of degree < j in v; we will hence usually view
Pj/(vk+1) c C[υ]/(vk+ι), and speak of constant terms, linear terms, etc.
We also freely divide truncated polynomials.

We start by specializing to the case n = 2 to fix ideas.

(1.7) PROPOSITION. (1.2) is true for n = 2.

Proof. We set n = 2, r = 1 (so that 5 = ί) in (1.3), and let / = 0 to
obtain

(1.8) G2 = 0(v2)

where we have abused notation by viewing G as a form on P 1 via α. This
gives

(1.9) (7 = 0(10-

We continue by differentiating (1.3) with respect to t and setting t = 0.

(1.10) 2GΦGa' + F = 0 (v2)

Using (1.9), (1.10) forces F = 0 (υ), i.e.

(1.11) L passes through a base point.

To show that the pencil containing L indeed has multiplicity 1 in Co*, we
may take L general, and so assume G is not tangent to L = P 1 at (1,0).
We then obtain from (1.10)

(1.12) Φ£V = -F/2G.

and Lemma 1.6 implies that we can solve (1.12) for a'. Thus the pencils
through the base points deform to first order; these pencils are the only
candidates for a multiplicity 1 component of Co*.

For the second order obstruction, we take the second derivative of
(1.3) with respect to / and set / = 0 to obtain

(1.13) 2GΦGa" + 2GGua'a' + 2(ΦGa')2 + 2ΦFa' = 0(v2).
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In order for (1.13) to have a solution for α", we must require that

(1.14) 2(Φ cα') 2 + 2ΦF(α') = O(ί;).

This can be accomplished by the following lemma.

(1.15) LEMMA. Φ<?> | k e r φ g ) : kerΦ£> -* Pnd/(v) issurjectiυe.

Proof. Since dimPnd/(v) = 1, the lemma can fail to hold only if
ker Φ^1} c ker Φ£0). But since F and G intersect transversally, we can
change coordinates in P 2 so that Xo = 0 is tangent to F9 and Xλ = 0 is
tangent to G at α(l, 0). So we may assume that, in the affine coordinate v
near (1,0) e P 1 , (dG/dX0)(a(υ)) = av (v2), (dG/dX^aiυ)) s b (Ό),
where b Φ 0. Then (-bu, av, 0) e ker Φ£> - ker Φ<?>.

Now we can replace α' with α' — ά, where ά e ker Φ^X) and Φ^0)ά =
(Φ^α') 2 (v), by the lemma. Then (1.12) still holds, but now the left-hand
side of (1.13) is divisible by G, since (1.14) now holds. After dividing
(1.13) by G, we can now solve for α" by using lemma (1.6) again.

For simplicity, we introduce the symbol Qj to stand for any expres-
sion involving a only through α', α", . . . , au\ The higher order obstruc-
tions are now handled by the following easily established lemma.

(1.16) LEMMA. For n > 2, the nth obstruction to (1.3) is

- ^ ( G 2 + tF) s 2GΦGα(π) + nΦFa^n~l)

at , = 0

+ 2WΦGα'ΦGα<"-1> + GQn_x + βM_2 = 0 (v2). D

We inductively complete the power series solution of (1.3). We
suppose that we have solved for a\...,α("~1). Then using Lemma 1.15,
we modify α ( n - 1 ) so that (1.16) becomes divisible by G. After dividing by
G, we use Lemma (1.6) once more to solve for α ( w ).

This procedure gives a formal power series solution of (1.3). By
Artin's theorem [1] there is a holomorphic solution of (1.3) for \t\ < ε.
Thus, the pencils through the base points are each multiplicity 1 compo-
nents of Co*.

REMARK. The solution for α ( w ) is far from unique; in fact, the
computation above shows that the ambiguity lies in ker Φ£0) Π ker Φ ^ , a
4-dimensional vector space. Let B c GL(2) denote the isotropy group of
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(1,0), so that dim B = 3. This is the ambiguity arising by representing L
as (P\(l,0)). The difference between 4 and 3 reflects that a curve (the
pencil) is deforming.

The other component 2G* is found by letting n = 2, / = s2 in (1.3).
The order zero obstruction again leads to (1.9), which holds for a tangent
to G (in fact, G = 0 (u2)). The first order obstruction is

(1.17) 2GΦGa' = 0(v2)

which is again automatic, and puts no restrictions on a'.
The second order obstruction is

(1.18) 2GΦGa" + 2(Φ cα
/) 2 + 2GGiJa'a' + 2F = 0 (ί;2).

This equation can be solved for a" provided that

(1.19) (Φσα')2 =-F(v2).

We can assume that L does not pass through a base point (i.e. F Φ 0 (v)).
After taking a square root, Lemma (1.6) ensures that we can find such an
a\ and (1.18) imposes no conditions on a". For the higher order obstruc-
tions we need an easy lemma.

(1.20) LEMMA. For n>2, the nth obstruction is

= 2GΦGa
(n) -

Since ΦGa' is a unit in Pd/(v2), we can choose a{n l) to ensure that
there is no nth obstruction, using Lemma (1.6). Thus, there is a formal
power series solution of (1.3) with / = s2, and Artin's Theorem finishes
the proof of Proposition (1.7). D

REMARK. In the case of tangents, the ambiguity lies in ker Φ£\ which
is as before a 4-dimensional vector space.

Proof of Proposition (1.2). We start by letting / = s"'1 in (1.3), and
attempt to deform a pencil through a base point. There are clearly no
obstructions through order n — 2. The (n — l)st obstruction is (since
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Gj = 0 (v2) for j > 2)

' ) " ~ 1(1.21) n ! G ( Φ c α ' ) " ~ 1 + ( n - l ) ! F = 0 ( ι ; 2 ) .

We may assume L is not tangent to G or F; then we can solve (1.21) for

The nth order obstruction is seen to be

')"-2ΦGa" + n\{ΦGa')" + n\ΦFa'
22)

We now can use Lemma (1.15) to modify a' so that (1.22) is consistent.
After dividing (1.22) by G, and noting that Φ£V is a unit, we can then
solve for α".

For the higher order obstructions, we note that for r > n + 1

.15) —rη:\(j +S t)

As before, we can use Lemma (1.15) inductively to modify a(r n+1) to
ensure the consistency of (1.23), then solve for a

{r~n+2) using Lemma
(1.6). Finally, Artin's Theorem shows that a pencil through a base point is
a multiplicity (/ι — 1) component of Co*.

Turning next to the tangents to G (so that G = 0 (t>2)), we let t = sn

in (1.3). There are clearly no obstructions through order (n — 1).
The nth order obstruction yields

(1.24) πl^ί/)" + n\F=0 (v2).

Assuming that L does not pass through a base point, we can solve (1.24)
for a'.

For the higher order obstructions, we note that for r > n + 1

(1.25) (Gn + s"F) = n-( — r-(Φra')nlΦca
ir~n+1)

dsr

 5==0 \r - n + 1)!
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As ΦGa' is a unit, we can solve for a(r~n+l). Artin's Theorem completes

the proof. D

2. Flexes on a multiple curve. In the situation of §1, we look at the

limiting behavior of the flexes of Cr

(2.1) PROPOSITION. The flexes of Ct degenerate to the flexes of G, the

tangents to F at a base point, and the tangents to G at a base point, with

multiplicities n, n — 2, In — 1 respectively.

Proof. By a standard formula for plane curves [2], Ct has 3nd(nd — 2)

flexes; g has 3d(d — 2) flexes and nd2 base points. Also 3nd(nd — 2) =

n(3d(d - 2)) + (n - 2)nd2 + (2n - l)nd2. So as in §1, it suffices to

construct deformations of the claimed limits with the indicated multiplici-

ties.

We now need to solve

(2.2) (Gn + srF)oa(s) = 0 (v3) for \s\ < e

for r = n in the case of a flex of G, for r = n - 2 in the case of a tangent

to F at a base point, and for r = 2n — 1 in the case of a tangent to G at a

base point.

We first check the flexes of G, starting with a lemma.

(2.3) LEMMA. // L is an ordinary inflectional tangent to (?, then Φ^2) is

surjectiυe.

Proof. We can change coordinates so that L has equation Xλ = 0,

and G has an equation of the form XJ + Z0

3g, where /(0,0,1), g(0,0,1)

Φ 0. We may as well let a: P 1 -> L be α(w, v) = (ϋ,0, w). Then, using

subscript notation for partial derivatives, we find that

G0oa = 3v2g + v3g0 G 1 ° α = / + v3gx

and so Φ£2) is surjective by inspection. D

The proof of the case of flexes is now completed by mimicking the

computation of the component nG* of §1, using Lemma (2.3) in place of

Lemma (1.6).

We turn next to the case of a tangent to F at a base point, i.e. G = 0

(ϋ), F= 0(v2), t = sn~2.
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There are clearly no obstructions through order n - 3. For the order
n — 2 obstruction, we note that

(2.4) ^— {Gn + s"-2F)
dsn

 s=0

and since F9 G have order exactly 2, 1 respectively as polynomials in u,
F/G2 is a unit, so we can extract an (n - 2) root and solve for Φ£0)α' in
(2.4).

The higher order obstructions are given by

dk

(2.5) d

+

This case is finished by a couple of lemmas.

(2.6) LEMMA. Φj^lkerΦ^ kerΦ^0 ) -> Pnd/(v2) issurjectiυe.

Proof. Lemma 1.15 says that d i m k e r Φ ^ Π kerΦ£0) = 3. Reversing
the roles of F and G yields the lemma. D

(2.7) LEMMA. After solving for the kth obstruction, we have oo3 solutions
for α \ . . . , a(k+2~n\ and φ^a(k+3~n) is determined.

Proof. Inductively, we equate the linear plus constant term of (2.5) to
0 (v2\ using Lemma (2.6) to modify a(k+2-"\ φ^a

(k+3-n) is now found
by Lemma (1.6). D

An application of Artin's Theorem completes the proof of the case of
a tangent to F at a base point.

Finally, we turn to a tangent to G at a base point, i.e. G = 0 (v2),

There are clearly no obstructions through order n — 2. The order
n — 1 obstruction is

(2.8) d

as"'1
5 - 0
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which forces

(2.9) Φ«V = 0.

We change notation slightly, putting GU) = dj(G ° a(s))/dsj\s==0,
noting that GU) = ΦGa

u) + Qj_v With the additional information (2.9),
we now see that there are no obstructions through order 2n — 3. The
order In — 2 obstruction is given by

(2.10) -£^(Gn + s2"~ιF)
s = 0

2»-i * ' 2 " -

This leads to

(2.11) G" ^ -

The order 2w - 1 obstruction is

(2.12) d

 2n~ΛG" + ^ ' ^

^ n{n - 1)(2« - 1)!
«-26-2

+ / ι ( / ι - l ) ( / ι - 2 ) ( 2 ι ι - l ) ! ( c / )

6 2"-2

+ n(2» - 1)! / / ) H_! + ( 2 M _
2"

looking at the linear term, and using (2.11), we find

(2.13) (G'fy ^
n(n - 1)

(2.12) implies that we can solve for Φ^α', and that G" is a unit, using
(2.11) again.

Turning to the quadratic term of (2.12), we see that we must solve for
G'"(v), or equivalently, for Φ f α w . This is possible exactly when the
expression multiplying G'" in (2.12) is divisible by v2, but not by v3. But
this expression is a multiple of

(2.14) {G")n~*[GG" +(n - 2)(G')2]
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which satisfies the indicated requirement, by (2.11) and the fact that G" is
a unit.

Notice that Φ£0)α" depends only on α', while Φ£0)α'" depends on
Φ^a" and α'; however, it is a non-trivial linear expression in the linear
term of Φ ^ α " , as revealed by a examination of our solution of (2.12).

The higher order obstructions are given by

(2.15) -^-(Gn + s2n~ιF)
dsκ

 s=0

n(n - \)k\

- 2n)\

^ ( ) 2 ( ) " 3 < - 4 2 « ) + GQk+3_2n
4 -

\k + 2 - 2n)

φ (

Equation (2.15) can be solved inductively.

(2.16) LEMMA. After solving for the kth obstruction, we have oo3

solutions for a\.. .,a{k+ι~2n\ we have found Φ ^ α { / c + 2 " 2 w ) , and we have
found φ^a(k + 4~2n\ This last depends non-trivially and linearly on the
linear term of ΦGa

(-k+3~2n\ and on terms of lower order.

Proof. By induction. We start by examining the constant term of
(2.15). We observe that the constant term of G(k+2~2n) depends on
φα)α(Hi-2n) a n ( j i o w e r derivatives of α. Also we note that the expression
Qk+ι-2n i n ( 2 1 5 ) depends on φpa

(k+ι'2n) and lower derivatives of a.
So Lemma (1.15) applies to allow for the modification of a

(k+1~2n) as
before.

Next, we consider the linear term of (2.15). We observe that the
constant term of <2k+2-2« depends on φ£°)α(*+2-2") a n c [ lower derivatives
of α, while inductively the constant term of G(k+3~2n) depends non-triv-
ially and linearly on the linear term of ΦGa

{k+2~2n) and on lower order
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terms, so that after equating the linear term of (2.15) to 0, we can first
solve for the linear term of φGa(

k+2~2n) (hence for φ^a^k+2~2n\ as we
inductively know the constant term). Lemma (1.16) allows us to solve for

Finally, we turn to the quadratic term. Exactly as in the order 2/2-1
obstruction, we see that φpa

{k+4~2n) is multiplied by a constant multiple
of (2.14), which we have seen is divisible by υ2, but not by υ3. So we can
solve for φpa

{k+4~2"\ and apply Lemma (1.6). Note that the quadratic
term of (2.15) involves a

(k+3'2n) only non-trivially and linearly through
the linear term of ΦGa

{k+3~2n\ completing the induction. D

An application of Artin's Theorem now finishes the case of tangents
to G through a base point, as well as the proof of Proposition (2.1). D
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