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ON ACCRETIVE OPERATORS ON /¢

H. BERENS AND L. HETZELT

To Professor H. G. Tillmann on the occasion of his 60th birthday

It is the object of the paper to discuss the result of Crandall and
Liggett on m-accretive operators in /7 in greater detail.

1. Introduction. By Zorn’s Lemma any accretive operator has a
maximally accretive extension. In this respect G. J. Minty [12] proved in
1962 that if H is a Hilbert space the accretive (= monotone) operator
A C H X H is maximally accretive exactly when there exists a A € R*
such that (and consequently for all A € R*)

(1.1) Vye€ H x+ Aa=y hasa (unique) solution in 4,

i.e., I + A A defines a bijection of 4 onto H. In this case, 4 is said to be
m-accretive. See the following section for the relevant definitions and
notations.

In contrast to Minty’s result, M. G. Crandall and T. W. Liggett [6]
showed in 1971 that for /2, n €N, > 2 and 1 < p < oo, the class of
m-accretive operators coincides with the class of maximally accretive ones
exactly when p = 2, or co. In particular, we want to reprove their

(1.2) THEOREM (Crandall-Liggett). In I?, n € N, the class of maxim-
ally accretive operators coincides with the class of m-accretive ones.

In the following section we do the necessary preliminary work, while
§3 is devoted to the proof of the theorem. In §4 we comment on the
theorem. Section 5, finally, deals with the domain and range of m-accre-
tive operators.

We would like to thank Professor K. Donner for the many valuable
discussions we had on this and related subjects.

2. Definitions, Notations, and Preliminaries. Let X be a finite
dimensional, real, normed vector space with || - |. It’s elements are de-
noted by x, y,z,.... For a subset K of X, K, K, and 9K denote its
closure, interior, and boundary, respectively. The open ball centered at x
with radius r € R* is denoted by b,(x).
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302 H. BERENS AND L. HETZELT

The semi-inner product { -, -);: X X X — Ris defined by

2 2
e i Lol x|
<y’x>s T tggl_'_ 2t s (y,x) EXXX.

If F denotes the duality map on X into its dual—F is the subdifferential
of || - 1>/2: X > R—then
(y,x), = max{(y,w): w € F(x)}.

It follows that { -, -), is upper semi-continuous on X X X. Furthermore,
if X is strictly convex, then F(x) N F(x’) = & whenever x # x’. If X is
smooth, then F is single-valued and (y, x), is just the derivative of
Il - 1I>/2 at x in the direction y. If, in particular, X is an inner product
space, the semi-inner product reduces to the inner product on X X X. For
7)1 <p< oo,

n
-1 -2
(7, x) Zyisgnxilxilp /"x"i > 1<p<oo,
] s = i=1

max{yixizlsiSn,lx,.[=ﬂx||m}, p = o0,

x,y€ll, x#0.
Forx,y € X, x # y,
C(y,x)= U b)\llx—y”(y +A(x —»))
A>0

denotes the cone of decrease of x with vertex at y. C(y, x) is the open
tangential cone of b, _,,(x) at y. With use of the semi-inner product the
cone of decrease can be rewritten as

C(y,x)={z€ X:(y—z,x—y),<0}.
If x =y C(y,x) is defined to be the empty set.
The set of intermediate points between x and y in X is defined by
Z(x,y)={zeX:|x —z|+lz -yl =lx - yl}.
A || - |-segment in X is a curve whose length equals the distance of its
endpoints.
We say that K C X is || - ||-convex, if
Vk',k”"eK3keK, k+k', k" 2 ke Z(k',k").

If K is a closed subset of X there is a useful characterization of
|| - |l-convexity, see [S, p. 29].

(2.1) LEMMA. Let K be a closed set in X. K is || - ||-convex exactly when

every two points in K can be joint by a || - ||-segment completely contained in
K.
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If X is strictly convex, then | - |-convexity reduces to the classical
notion of convexity. For I} —this is the case we are particularly interested
in—the intermediate points of x and y are given by the parallelepiped
spanned by x and y. And [0, ||y — x||,] 2 ¢t = z(¢) defines a || - ||;-segment
joining x and y, if it is a continuous curve with x and y as endpoints
which is monotone in each component z,(¢),0 < ¢ < ||y — x||;-

A set-valued map A4 from X into itself is called an operator on X. It
is convenient to identify 4 with its graph in X X X. D(4):= {x € X:
(x,a) € A} and R(A):= {a € X: (x,a) € A} denote the domain and
range of A, respectively. A7 := {(a,x) € X X X: (x,a) € A}. If A* and
A? are two operators on X, A' + 4%:= {(x,a' + a®’) € X X X: (x,a") €
A" and (x,a*) € A%}, and for A € R* A4 := {(x,Aa) € X X X: (x,q)
€ A}.

The operator 4 is said to be accretive if

V(x,a),(x’,a’)€ A 0<{(a—a’,x—x")

This is equivalent to the fact that
VA€ R*  (I+\A) " defines a contraction from X to itself,
1.€.,
V(x,a),(x',a’) € 4
[x = x| <||(x + Aa) = (x” + Aa’)|, VAeR".

A is said to be m-accretive if A is accretive and if for all A € R* I + A4
is surjective. (It follows trivially from the accretiveness of 4 that I + A A
is injective, thus if A4 is m-accretive for each A € R* I + A 4 is bijective.)
An m-accretive operator on X is a maximal element within the class of
accretive operators on X ordered by inclusion.

If X is an inner product space it is common to speak of monotone
operators instead of accretive ones.

3. Proof of the Theorem. The key to our proof is

(3.1) THEOREM. Let A be a finite accretive set in [ X [T, then
Vx€I¥ By(x)={aciP:(a"—a,x'—x), 20V (x",a’) € 4}

is nonempty, closed, and || - ||,-convex. If Q, denotes the smallest closed
parallelepiped* in 1% containing R(A), then even BS(x):= Q, N B,(x) is
nonempty, compact, and || - ||,-convex.

!The faces of Q, are assumed to be parallel to the main axes.
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Let 4:= {(x',a"),...,(x™, a™)}, m € N, and let x € [*. Setting
C/:=C(a’,a’ + x/—x), 1<j<m,

Theorem 3.1 claims that

m
B,(x)= N 0c/is # @, closed and | - ||,-convex.
j=1

Let us introduce some further notation
Io={1<i<nx{—x;=+|x) = x|w} and I':=T,Ul.
To prove Theorem 3.1 we start with
(3.2) LEMMA.

Vi<j,l<m C/n Clisacone.

Proof. 1t is an easy exercise to verify that
c'ncC'={zel* z;>al,ie \I'}
N{zel*:z,<aj,ie I\I'}
zel®:z,>al,iel'\1'}

zelw:zi<a,1-,i€I’_\If}

{
{
{z€l®:z,> max(a/,a!), ic N1}
{zelF:z;<min(al,a!),ic VN 1"}
(z€lr:al<z,<al,ielnI)
(zelr:ial<z,<al,ielnI}.
Hence,if C' N C' # @

C/'NncClisaconeiff N I'= @ and I'N I = 2.
Butif i € I/N I', then

x/ = xl=(x/ = x;) = (x/ - x,)

=[x/ = xlloo + %" = x ] =[x/ = x'[ec,

and consequently,

3.3) a/ —a')(x/ —x!)=(a’—a', x/ — x'), 20
( (I 1] 1 1 < >S
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implies a! < a/, or C/' N C' = @. Similarly, if i € I.N I, then x/ — x!

1

= —||x/ — x'||, by (3.3) a/ < a’ which again implies C' N C'= @. O
o i g p

Proof of Theorem 3.1. We prove the theorem by induction on m =
card(A4). For m = 1 there is nothing to prove. Let us assume that for all
accretive sets of cardinality m — 1 the theorem holds true.

If x = x/ for some 1 < j < m, we are done. Let us therefore assume
that x + x/,1 <j < m.

By the induction hypothesis

m—1
(3.4) N GC/+ @, closed, and | - ||;-convex.
j=1
Obviously, B,(x) is closed. First, we prove that it is nonempty. In
contrast to our claim, let us assume that B,(x) = &. Consequently,
m—1
(3.5) ' Ccmc U ¢

j=1
Wlog.let I = {1,2,...,5},1 < s < n. We define
J={l<jsm-1:C'nS"+ 2},

where S” = {be€l?: b,=al", i € I™} is the vertex set of C™. Since
s c 6c™, by (3.5) J, # 2. We claim,

(3.6) 3j,€J,> I cI™

If not, then J,=U?" ., D', where D'= DU D’ and D'.= {j € Jy
i € I)}. We select a sub-manifold S5* € S™ subject to the following
restrictions. For s+ 1 <i<n and D'+ & we set b = min{a/: j €
D'}, in case D' # @, otherwise = max{a/: j € D' }. In the first case, if
D' # & too, for all / € D°. a! < b, for, if for some j € D', and some
le D' aj<al, then C/'NC'# @ while I'N I' # @, contradicting
Lemma 3.2.

We define SJ':={be S™ b,=b?, s+1<i<n, D+ &}. By
construction S§' C Cc/ for all je D, s+1<i<n, hence for all
j € J,. Trivially, S c 6C™ and S7* < 6C/ for all 1 <j <m — 1 not
belonging to J,. Thus S§" C B,(x), which contradicts the assumption that
B(x)= 2.

Hence there exists an index j, € J;, such that I/ c I"™. Since C’ N
C™ #+ @, by use of Lemma 3.2 [N I™ and I°N I7 are empty, i.e.,
Ilec I™and I’ C I™. But this implies that C™ c C“, and consequently,
By(x) =N CC/ which is nonempty by the induction hypothesis (3.4),
again in contradiction to our assumption that B,(x) = &.
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To prove that B,(x) is || - ||;-convex, let us assume there exist two
points in B,(x) which have no proper intermediate points. W.l.o.g. we
may assume that 0 and a are these points where @; > 0, 1 <i < s and

=0,5s+1<i<n,forsomel <s < n. Hence

Z(0,a) N B,(x) =(2(0,a) nCc™) n

m—1
Z(0,a) N N ccf) = {0,a)}.
j=1
Since by the induction hypothesis (3.4) N7 L0C/ is | - ||;-convex, it
follows that

{Oa}caC”‘ and Z(0,a)NC"+# @
—indeed, any || - ||;-segment in N, CC J connecting 0 and a belongs to
C™ except for the two endpoints. Consequently, there are two indices i,
and i ,, 1 < iy, i, <s, iy # i, (by use of Lemma 3.2) such that i, € I}
and i, € I”. W.l.o.g. we may further assume that i, = 1.
Consider the point

b,:= (e,a;,...,a,)in Z(0,a), 0<e<a,.

It is a proper intermediate point of 0 and a located on dC™. Since by
assumption Z(0,a) N B,(x) = {0, a}, there exists an index j, 1 <j <
m — 1, such that b, € C/. Obviously, C" N C’/ # &. By Lemma 3.2
I™N I/ and I™N I/ are empty.

If 1 & I, then a € C/, contradicting a € B,(x). Hence 1 € I'. If
1 € I/, then again a € C/, contradicting a € B,(x). Hence 1 € 1.
Since 1 € I, this is in contradiction to I7 N I = @&. Thus any given two
points in B,(x) have proper intermediate points in B,(x) with respect to
the || - ||;-norm.

Let Q, be the smallest closed parallelepiped containing R(A). To
prove that even

Q, N B,(x) is nonempty, compact, and || - ||;-convex,
we extend 4 via
n
A = U{(xi,i t+)eleoxloo}
i=1
where foreachl <i<n
xiti=x + re

e, being the ith unit vector in /? and r = 2max{||x — x/||.: 1 <j < m},
and

a*e Q,, a’*:= max a/ and a" = min a/.
1<j<m l<j<m
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By definition, 4.,, is accretive and B,_(x) = Q4 N B,(x). a

(3.7) PROPOSITION. Let A be a maximally accretive operator on 3.
Vx € D(A) A(x) is closed and || - ||,-convex.

Proof. By the maximality of 4 and by the u. semi-continuity of the
semi-inner product for each x € D(A4) A(x) is closed.
To see that A(x) is || - ||;-convex, let I' be the net of all finite subsets

A, ={(x',a"),...,(x™,a™)}, m €N, of A subject to the restriction
that x/ # x,1 <j<m,; y<y'if A, C A.. Clearly,
A(x) S By(x)= N {bEl;‘f:(a’—b,x’—x}szO}
(x’,a)eA
x'#x
= lim B, (x).
yer

We show that BA(x) is || - |l;-convex. Indeed, take b” and b” in B,(x),
and for each y € T let [0, ||p” — b'||;] © ¢ = b,(t) be a || - ||;-segment in
BAy(x) connecting b’ and b”. By definition, b, is Lipschitz-continuous,
ie.,

VO <t <t”<|b”— b, |b,(¢7)—b,

By the theorem of Arzela-Ascoli, any accumulation point of the net {b,:
vy € I'} defines a || - ||,-segment in B,(x) connecting b’ and b”.
By the maximality of 4, however, A(x) = B,(x). m|

(3.8) PROPOSITION. Let A be an accretive operator with R(A) C Q, a
compact parallelepiped.

If A is maximal with respect to all accretive operators with range in Q,
then ¥V x € I? A(x) is nonempty, compact, and || - ||,-convex.

Proof. By use of the notation introduced in the proofs of Theorem 3.1
and Proposition 3.7, for each x € I
A(x)c B2(x):= N {beQ:(a—b,x" —x), >0
(x’,a")eA

x'#x

= lim B2(x).

yel
By Theorem 3.1 for each y € T BQ(x) is nonempty, compact and || - ||;-
convex, and so is BY(x) by a compactness argument. The maximality of
A again implies that for each x A(x) = BZ(x). O
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Next we want to prove that under the assumptions of Proposition 3.8
an accretive operator is m-accretive. The proof rests upon a theorem of
surjectivity for set-valued mappings (J. M. Lasry and R. Robert [11,
Corollaire 1.18, p. 98]): Let I': R* - R” be an upper semi-continuous,
compact-valued, acyclic mapping. If I' is coercive, then it is
surjective.—For each x € R", let y(x) = min{{y,x): y € I'(x)}. T is
said to be coercive if y(x)/||x|| = oo when ||x|| = co.

Let A be an accretive operator on /2 satisfying the assumptions of
Proposition 3.8, and let A € R* be fixed. By maximality I + A A is upper
semi-continuous, and Proposition 3.8 assures that

Vxel® A(x)+# @,compact,and || - ||;-convex.

In [1] the authors proved

(3.9) LEMMA. A4 nonempty, compact, || - ||;-convex set in I is a R g-set,
i.e., it is the intersection of a decreasing sequence of compact sets which are
contractible in itself.

By J. M. Lasry and R. Robert [11, Proposition 2.1, p. 110] Rg-sets in
R” are acyclic (in the sense of Cech-cohomology).

Since R(A) is contained in the compact parallelepiped Q, I + A4 is
trivially coercive. Thus the conditions of the theorem of surjectivity are
fulfilled, giving

(3.10) PROPOSITION. Let A be an accretive operator on I7 with R(A) C
Q, a compact parallelepiped.

If A is maximal with respect to all accretive operators with range in Q,
then A is m-accretive.

ReMARK. To prove Proposition 3.10, instead of the theorem of surjec-
tivity due to Lasry-Robert we may use a set-valued version of the theorem
of the invariance of domain (A. Granas and J. W. Jaworowski [8]): Let U
be an open subset of R” and let ¢: U — R” be an upper semi-continuous,
compact-valued, acyclic mapping such that ®(x) N ®(x’) = & whenever
x # x’, then ®(U) is open. Indeed, for each A € R* I + A A satisfies the
assumptions of the theorem.

Now we are ready to prove the Theorem.

Let A be a maximally accretive operator on /. W.lo.g. let (0,0) € 4.
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For each m € N, we define the restriction 4™ = {(x, a) € 4: |4,
<m} of A. Let B™ be a maximal extension of 4™ subject to the
restriction that for all (x, b) € B™ ||b||,, < m. By Proposition 3.10 B™ is
m-accretive.

Let A € R™ be fixed. Assume that I + A4 is not surjective. We take
a point in /3, say y, contained in the complement of (I + A A)(/J). Since
for each m € N B™ is m-accretive

y=x"+ Ab™ for some (x™,b™) € B™.

Since ||x™||,, < ||yl there exists a convergent subsequence, say lim ; x"
= x. Consequently, lim ;5™ = (y — x)/A =:b. Take a pair (x’,a’) € 4.
For m; > ||a’||,, (x’,a’) € B™ and by the u. semi-continuity of the
semi-inner product

0 <lim(b™ — a’,x™ — x"), < (b —a’,x — x'),.

By construction, (x, b) € A. Hence A U (x, b) properly extends A, which
contradicts its maximality. |

REMARK. The proof of Crandall and Liggett runs as follows:

Let A4 be a maximally accretive operator on /3.

Fix an element y € /. They claim that y € R(I + A) (A is set to be
equal to 1). To prove their claim they define

V(ix',a')ed V(x,a)={zel*:(y—z—a',z—x"),>0}.
If N{V(x’,a’): (x’,a’) € A} is not empty, say z° belongs to the intersec-
tion, then by the maximality of 4 (z°% y — z%) € 4, giving y =z +
(y — 2°). For each (x’,a’) € A V(x’,a’) is nonempty and compact. Thus
it remains to verify that {¥(x’,a’): (x’,a’) € A} has the finite intersec-
tion property.

To do this, let B = {(x!,b"),...,(x™,b™)}, m € N be a finite accre-
tive operator and let D, be the smallest closed parallelepiped which
contains y — b/, 1 < j < m. Define T: Dy —» D, by
Dy3x—-T(x)={z€Dp:{(y—2)—bl,x—x/),20,1<j<m}.

The crucial part of their proof is the verification of the following

(3.11) LEMMA.
Vx € D, T(x)+ @, compact, and contractible in itself .
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Obviously, T is upper semi-continuous. By the fixed point theorem of
Eilenberg and Montgomery T has a fixed point in Dj,. This proves that
{V(x',a’): (x’,a’) € A} has the finite intersection property.

4. Remarks about the Theorem. The counterpart to Theorem 3.1 in
R" was formulated and proved by G. J. Minty [13] in 1962.

(4.1) THEOREM. Let A be a finite monotone set in R" X R". Then
Vx €R"By(x):={a€R"{(a"—a,x"—x) 20V(x,a’) € A} is non-
empty, closed and convex.

If 9, = co{a’ € R" (x',a’) € A}, then even the intersection Q N
B (x) is nonempty, compact, and convex.

To be more precise than above, the first statement of the theorem is
due to Minty, its extension was proved by H. Debrunner and P. Flor [7] in
1964, and the proof of Minty’s maximality theorem given in H. Brezis [3,
Theorem 2.1, p. 23f] is based on their extension.

For 14, 1 <p < oo, p# 2, Crandall and Liggett considered the
following operator 4: Let { e;, e, } be the natural basis in /£, and let

A= {(0,0), (31,e2)> (629 "el)}'

They pointed out that no maximally accretive extension of 4 on [} is
defined on the triangle {(&;,§,) €/15: 0 <§,<§,, § + &, <1} ifl<p
< 2, respectively on the triangle {(£,,§,) € 15: 0 < §, <&, &+ &, <1}
if 2 < p < oo, in contrast to the fact that the closure of an m-accretive
operator on /{ is convex, see Theorem 5.1 below.

In [2] the authors extended their result as follows:

(4.2) For the plane endowed with a strictly convex and smooth norm the
class of maximally accretive operators coincides with the class of m-accretive
ones exactly when the norm generates an inner product.

The stronger statement: In the normed plane the two classes coincide
exactly when the unit ball is either an ellipse or a parallelogram, as well as
the obvious extension for the n-space, are still open, see also the com-
ments of Crandall and Liggett, loc. cit., on this subject.

We want to conclude the section with two statements on maximally
accretive operators on the normed plane, which are in the vein of our
paper.

Via the quadratic and skew-symmetric form

S(x, y)= mé, — &y X = (51,52) and y = ("71,712)
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we define the so-called dual *norm

Vx [x":= sup{S(x, y): [yl < 1}.

The unit ball of the plane w.r.t. the dual *norm is just the unit ball
w.r.t. the dual norm rotated by 90°, and || - ||** = || - || The following
lemma, due to H. Busemann, if of interest in connection with accretive-
ness on the plane.

(4.3) LEMMA.
Vx (y,x);20e (x,y).>0.

We have

(4.4) Let A be a maximally accretive operator on the plane.
Vx € D(A) A(x) is closed and | - ||*-convex.

(4.5) Let A be a maximally accretive operator on the plane.
If A is defined on the whole plane then A is m-accretive.

We do not want to give formal proofs of the two propositions. The
first one is not difficult to verify, while the second one follows from the
fact that under the assumptions of the proposition A4 is upper semi-con-
tinuous and

V x A(x) is nonempty, compact, and contractible in itself.

5. On the domain and the range of an m-accretive operator. In the
following A is assumed to be m-accretive on X. Hence for each A the
Yosida-resolvent J, := (I + AA4) ! defines a contraction on X.

Following H. Brezis [3, Theorem 2.2] and R. C. Bruck [4] it is not
difficult to prove

(5.1) THEOREM. Let A be m-accretive on X.
(52) VyeXx 3xeD(4)20=<(y—x,x—x"), Vx' €D(4).
Moreover, D(A) is || - ||-convex.

If X is strictly convex, D(A) is just convex. If X is smooth, then D(A)
is the range of a uniquely defined contractive projection, say Py ), and

VyeX lim = Psx—ry = X.
y )\_.0+J)\y Pray = x

Proof. Take an element y € X.
VAeR' 3(x,,a)) €45 x, +Aa,=y.



312 H. BERENS AND L. HETZELT

By the accretiveness of A4
0<(ay,—a,x\—x"), V(x,a)eA,

or, multiplying the inequality by A and replacing Aa, by y — x,,

0<(y—xy—Ad',x, —x'), V(x',a)eA.
On the other hand, { x, },. , is bounded for A — 0 + —indeed, for each
(x’,a’)y € A ||x, — x| < |ly — (x" + Aa’)||. Since the semi-inner product
is upper semi-continuous, for any accumulation point x of { x,},., for
A—->0+,

0<(y—-x,x—x")y, Vx' €D(A).

Since {x, } x5 o C D(4), x € D(4).
The inequality (5.2) implies that

G ’ ’
(5.3) I = x"[" < (y = ", x = x"),

<|ly=x|lx-xll, Vx’' e€D(4),

from which we easily derive that D(A4) is || - ||-convex. Indeed, let x" and
x”" be elements of D(A). If y = (x’ + x”)/2 € D(A), we are done. If

not, let x € D(A) be such that (5.2) holds. By (5.3),

lx = x' <lly = x| and lx = x"|l <lly = x|,

but ||y — x'|| =]ly — x”|| = |Ix" — x"||/2 which implies that x # x’, x”
and that

Ix" = x”Il <llx" = x| +]x" = x| <]lx" = x"|,
x is consequently a proper intermediate point between x’ and x” in D(A4).

If x is smooth then the semi-inner product is linear in its first
variable. Let y € X and x,, x, € D(A4) be such that

0<(y=—x,x —x),

for all x’ € D(A), i =1,2. 1t follows that
2
e = 2,17 = (o = %3, %1 — x,),

= =y =X, X% — Xp), — (¥ — Xy, X5 — X1), < 0.

Thus for each y € X there exists at most one element x € D(A4) satisfy-
ing the inequality in (5.2). By (5.2) there exists such an element, namely,

Iim J,y = x. O
A->0+ 4 *
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Let K be a proper closed nonempty subset of X. In connection with
his study of the fixed point set of contractive mappings, F. E. Browder
introduced the so-called approximation region A(y; K) between y (€ X)
and K:

A(y; K)={zeX:0<(y—z,z—-k),VkEK}.

If for each y € X, A(y; K) N K # & then K is said to be a co-sun, a
notion which was introduced by P. L. Papini and I. Singer in connection
with problems within the theory of best approximation, see L. Hetzelt [10]
and U. Westphal [14] for details. With use of this notion, for an m-accre-
tive operator on X the closure of its domain is a co-sun.

We want to state a few facts about co-suns which seem to be of
relevance in connection with accretive operators, see [9] for proofs.

(5.4) A subset in R" is a co-sun exactly when it is closed and convex,
and the metric projection onto it is the uniquely defined contractive retraction
of R" onto it (F. O. L. Klore).

(5.5) A subset in the normed plane is a co-sun exactly when it is closed
and || - ||-convex which in turn is the range of a contractive ray retraction
(L. A. Karlovitz, P. Gruber, L. Hetzelt).

In 1941 F. Bohnenblust characterized those subspaces in /2,1 < p <
oo, p # 2 which are the ranges of contractive linear projectinos. He
proved, a hyper-subspace is the range of a contractive linear projection
exactly when its normal vector contains at most two nonzero coefficients,
and concluded that a subspace has this property when and only when it
can be written as the intersection of such hyper-subspaces. The second
named author extended Bohnenblust’s characterization as follows.

(5.6) Let U, denote the set of unit vectors in R" which have at most two
nonzero coefficients. A subset inI1?,1 < p < oo, p # 2, is a co-sun exactly
when it is the intersection of a family of closed half spaces the normal vectors
of which belong to U,.

For I} and likewise for /® those subspaces which are the ranges of
linear contractions have been characterized, but as far as we know there
are no descriptions of co-suns for these spaces.

Also there is not much known about the ranges of m-accretive
operators.
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If X is an inner product space and 4 a maximally monotone operator
on X, sois A~! and, consequently, the closure of R(A4) is convex. This
result has its counterpart for the normed plane.

(5.7) If A is accretive on the normed plane, then, by Lemma 4.2, A™!
is accretive with respect to the dual *norm. Consequently, if A is m-accretive
then R(A) is || - || *-convex.

Note added in proof. Professor S. Reich kindly pointed out to the
authors that A. Cernés [Israel J. Math. 19 (1974), 335-48] already proved
(4.2) even for n-spaces. In the plane he further verified that the two
notions of accretiveness coincide exactly when the unit ball is either an
ellipse or a parallelogram. In [J. Funct. Anal. 26 (1977), 378-95] S. Reich
among others extended Cernés first statement to smooth spaces.

Finally, following Reich’s ideas on approximating zeros it is not
difficult to prove: Let A be m-accretive on X,

Vye XdacR(4)20<(a—a’,y—a), Va €R(4),
i.e., R(A) is a sun in the setting of best approximation.

REFERENCES

[1] H. Berens and L. Hetzelt, Die metrische Struktur der Sonnen in I (n), Aequationes
Math,, 27 (1984), 274-287.

, On maximally accretive operators in the plane, in Anniversary Volume on
Approximation Theory and Functional Analysis, ed. by P. L. Butzer, R. L. Stens, and
B. Sz.-Nagy, ISNM 65. Birkhauser Verlag, Basel 1984, 109-116.

[31 H. Brezis, Opérateurs Maximaux Monotones, Notas de Matematica (50). North-Hol-
land Publ. Co., Amsterdam, London, 1973.

[4] R. C. Bruck, Nonexpansive projections on subsets of Banach spaces, Pacific J. Math.,
47 (1973), 341-355.

[S] H.Busemann, The Geometry of Geodesics, Academic Press, New York 1955.

[6] M. G. Crandall and T. M. Liggett, A theorem and a counterexample in the theory of
semigroups of nonlinear transformations, Trans. Amer. Math. Soc., 160 (1971),
263-278.

[7] H. Debrunner and P. Flor, Ein Erweiterungssatz fur monotone Mengen, Arch. Math.,
15 (1964), 445-447.

[8] A. Granas and J. W. Jaworowski, Some theorems on multi-valued mappings of subsets
of the Euclidean space, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 7,
No. 5 (1959), 227-283.

[9] L. Hetzelt, Uber die beste Coapproximation im R", Dissertation U Erlangen-Nurn-
berg 1981.

, On suns and cosuns in finite dimensional normed vector spaces, Acta Math.

Acad. Sci. Hung,, 45 (1-2) (1985), 53-68.

(2]

(10]




ON ACCRETIVE OPERATORS ON /{° 315

[11] J. M. Lasry and R. Robert, Analyse nonlinéaire multivoque, Cahiers de Mathéma-
tiques de la Décision No. 7611, Université Paris IX, Dauphine 1980.

[12] G. J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J., 29
(1962), 341-346.

, On the simultaneous solution of a certain system of linear inequalities, Proc.
Amer. Math. Soc., 13 (1962), 11-12.

[14] U. Westphal, Uber die Existenz- und Eindeutigkeitsmengen bei der besten Ko-Ap-
proximation, in Linear Spaces and Approximation, ed. by P. L. Butzer, E. Gorlich
and B. Sz.-Nagy, ISNM 60. Birkhaser Verlag Basel 1981, 225-264.

(13]

Received April 30, 1985.

UNIVERSITAT ERLANGEN-NURNBERG
BISMARCKSTRASSE 1%
D-8520 ERLANGEN, W. GERMANY








