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MINIMIZING THE NUMBER OF FIXED POINTS
FOR SELF-MAPS OF COMPACT SURFACES

MICHAEL R. KELLY

Let P denote the topologίcal space obtained by taking a closed
regular neighborhood of the figure-eight in the plane. Let MF(f) denote
the minimum number of fixed points achievable among maps homotopic
to a given self-map / of P. We present here a formula for the value of
MF(f). Note that MF(f) depends on the induced homomorphism, / # ,
on fundamental group, so our formula concerns the two relevant words in
the free group on the letters a and b corresponding to the loops which
comprise the figure eight. Special case: Let gm: P -» P, m > 0, be given
such that (g m ) # ( f l ) - {bab-ιa~ι)mba and (gm)#(b) = 1. It is easy to
show that the Nielsen number of gm, N(gm), is equal to zero. On the
other hand, our formula shows that MF(gm) = 2m. Hence the dif-
ference between N(f) and MF(f) can be made arbitrarily large.

Introduction. Let Xn be a compact ^-dimensional manifold (with or
without boundary) and let / be a self-map of X. We are interested in the
problem of finding MF(f) = minimum number of fixed points occurring
among maps homotopic to /. An imporatnt invariant which arises in this
problem is the Nielsen number N(f)9 defined as the number of essential
fixed point classes of /. As the precise definition does not play a role in
the results of this paper the reader is referred to [B] or [Jl] for an
exposition.

One reason for the importance of the Nielsen number is the inequality
N(f)< MF{f)\ even when X is a compact ANR. Another is the follow-
ing classical result.

THEOREM 0. If n> 2 or if X is a surface with non-negative Euler
characteristic then MF(f) = N(f).

In the case n > 2 this was first proved by Wecken [W]. A modern
treatment, using the Whitney Lemma, is given in [J4]. For surfaces with
χ(X) > 0 the reader is referred to the work of Nielsen [N] using the torus.
Also, as a result of Nielsen's and Thurston's work with hyperbolic
surfaces, MF{f) = N(f) when / is a homeomorphism (see [BK] or [J5]).
On the other hand, Jiang [J2], [J3] has produced examples for which
# ( / ) = 0 b u t M F ( / ) > 0 .

In this paper we give a formula for the value of MF(f) for any
self-map of the disk with two open holes removed (see Theorems 1.1 and
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1.4). As a consequence, in Corollary 1.2, we show that the difference
between MF(f) and N(f) can be arbitrarily large. The methods used in
proving Theorem 1.1 are quite different than the braid theoretic tech-
niques introduced by Fadell and Husseini [FH] and employed by Jiang in
his examples. Motivated by the "spurious elements" in [FH; §5], we
judiciously apply homotopies so as to find a representative map g,
homotopic to a given /, having MF(f) fixed points.

I have been informed that X. G. Zhang has also shown that the
difference between MF(f) and N(f) can be arbitrarily large.

This paper was submitted as partial fulfillment of the requirements
for the Ph.D. at the State University of New York at Binghamton under
the supervision of Professor Ross Geoghegan.

1. The main result. Let Sx and S2 denote simple closed curves in R2

meeting in the point x0. Set Po = Sx U S2 and let P denote the topologi-
cal space obtained by taking a closed regular neighborhood of Po in R2

(i.e., P = pair of pants). Orient Sλ and S2 so that one of the boundary
components of P is freely homotopic to the loop obtained by traversing
first Sx then S2 (following orientation). We identify πτ(P9 x0) with the
free group, G, on the letters a, b by associating the homotopy classes of
the oriented loops Sx and S2 with a and b respectively. See Figure 1 for
an illustration.

Let r: P -> Po be a retraction such that r~\x) is an arc for each
point x Φ x0 and r{At), 1 < i < 4, is a single point (see Figure 1). Given
reduced words X, Y e G we define f(XyY): Po -> Po by sending Sλ and S2

to the loops corresponding to the words X and Y respectively. In doing
so, Po Γi Pc together with a finite set of points in Po - (Pc Π Po) are
mapped to x0 while each complimentary domain is mapped homeomor-
phically onto a component of Po - {x0}- Define FiXY): P -> P by
F(x,γ) = f(x,Y) ° r- These self-maps of P will act as "reference-maps" for
all future work. Note that {F{XY))#{a) = X, (F(XY))#(b) = Γ, and, given
a pair (X, Y), it is easy to calculate the number of fixed points for

Convention Unless stated otherwise, it is assumed that all elements of
G and their products are reduced words. For example, X = WX means
that W, X are reduced and (Wey

ι Φ Xb (see (2) below).

Notation (1) Following standard conventions; Fix(/) = {x\f(x) =
JC}, ' = ' means 'homotopic to', 3M denotes the manifold boundary of the
manifold M and M its interior.
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FIGURE 1. The pair of pants—illustrating Po = Sx U Sl9

P = P L U P C U PR, A = A λ U A2U A3U A 4 , dP = 3 X U 3 2 U d3

(2) Given W e G let | ϊF| denote the length of WΛίWΦ 1, let ΪΓΛ

denote the prefix and Wς the suffix of W with | ^ | = \We\ = 1. Also,
ιb = 1, i e = l, w;-1 = ( ^ ) ' x

9 and w;-1 = (wς)-1.
(3) If # " is a finite set of words and X is a single word in G define

(number of appearances of W in X) where

(4) If / is a letter and Wy X, Y are words in G let

ί2 ifWb = l= Weznd\W\>l
Pι(W) = ( 0 if Ŵ  # / and We Φ I

11 otherwise

σ(X,Y) = where p = pa(X) + pb(Y).

and
-3 ifp = 4
-2 if p = 3
-1 if p = 1 or 2

1 ifp = O

Let X, Y e G be given and consider the following conditions on the
ordered pair (X, Y):

Condition (7\): Y = 1 and X is cyclically reduced.

Condition (Γ2): y Φ 1 is cyclically reduced and X = UXU'1 where
X =£ 1 is cyclically reduced. U = 1 implies that X6 # Yfc, X6 Φ Y'1,
Xe Φ Ye9 and Xe Φ Yς\

Condition (T3): X = WX, Y = WΫ where ϊΓ # 1 is the maximal
common prefix of X and Y. Also, X = 1 implies that 7 = 1, and Xe = 7e

implies that Y = 1 and there exists F such that X = V\ Y = F5, r > s > 0.
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Condition (T4): X = WX, Y = ΫW~X where W Φ 1 is the maximal
condition prefix of X and Y~ι. Also, X Φ 1, Y Φ 1, and X̂  ^ Yς1.

Condition (T5): X = 1X12X9 Y = /f1 where /x/2 e {aft, 6a, a'ιb'\ b'ιa'1}
and X Φ \ implies that Xe = /2.

The ordered pair (X, Y) is of type Tκ, 1 < K < 5, iff (X, 7) satisfies
condition (7^) but does not satisfy condition (Tκ,) when K' Φ K. Notice
that the conditions are not mutually disjoint. For example, (aba~2, ab'1)
satisfies both T2 and T3. But, up to free homotopy of maps, this pair is the
same as (ba~ι, b~ιά) which is of type T2. This idea is developed further in
Theorem 1.4.

We define a function M from {(X,Y)\(X9Y) has a type) into the
nonnegative integers as follows. If (X, Y) is of type Tκ then.

For K=l; M(X, Y) = Φa(X) + λλ where

I — 1 if a appears inX
1 \ +1 if a does not appear in X.

For K = 2; If [/,Xb = aa or J ^ " 1 = aa or pβ(X) = 2 or Φαί2(C/) > 0
then

M(X,Y) = Φ α ( * ) + Φb(Y) + Φ{β6,β6-i,β-χ6>β-i6-i

1 = αα or pa (X) = 2

where

x 2 =

otherwise M(X, Y) = Φa(X) + Φ_b(Y) + σ(X,Y).
For K_= 3; If Y = 1 write X = WN-1WX where JV is chosen maxi-

mal and W is the maximal common prefix of W and the reduced form of
Wι~NX. Then M(X, Y) = Φa(X) + Φb(Y) + min{λ3,σ(Z, Y)} where

-2 if either XbYb = ab oτ (Y = 1 and X^W^W)b = αόj.

-1 if λ3 = -2 is not satisfied and if either WeXb = b'τa or
λ 3 = { WeΫb = α " ^ or Φa-ib(W) > 0 or

( F = lane

, + 1 otherwise.
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For K = 4; M(X, Y) = Φa(X) + Φ^(y) + r where the value of r is
obtained from the following table.

CONDIΉON

(I) X = aX', Ϋ = Tb
oτX=aX', We = b (set T = y)
or y = Tb, We = α"1 (set X' = X)

(II) not(I) but W = W1(ba)8W2 where

(set JΓ - X, r = Y)
(III) neither (I) nor (II)

VALUE OF T

σ(JΓ,Γ)

Here

ί + 1 if X'e Φ a, Y'b Φ b, and Wb = α ' 1 or Z>.

λ 4 = ( 0 if W6 = β or b-1 and pα(x;) + pb(Y'b) < 2.

\ -1 otherwise.

For K = 5; M(X, 7) = Φβ( JT) + Φb(Y) + σ(X, 7) - 2pa(Xβ).
We are now prepared to state the main result of this paper. This is

given in Theorems 1.1 and 1.4. MF(f) = Min{#Fix(g) | g - /} .

THEOREM 1.1 Let (X, Y) have a type. Then MF(F(XY)) = M(X, 7).

COROLLARY 1.2 For each integer m > 0, let W(m) = (bab'ιa~ι)mba
andgm = F{mm)ly ThenN(gm) = 0 andMF{gm) = 2m.

. Clearly, (W(m), 1) is of type Tv As M{W{m\ 1) = 2m, Theo-
rem 1.1 gives MF(gm) = 2m. That N(gm) = 0 follows easily from the
definition of the Nielsen number. D

Let φ and ψ be homeomorphisms of P such that Φ#(a) = Z>, Φ#(b)
= α, ψ#(α) = ab, ψ#(6) = α"1. Given f:P-*P define three moves:

Move (I). Choose Q e G, the free group on α and b, and replace /
by / ' where / ' is homotopic to / and f#( •) = Qf^()Q~ι on T^.

Move (II): Replace / by φfφ'1.
Move (III): Replace / by ψ/ψ"1.

Procedure 1.3. Given fx: P -+ P and 1 < ί < 5, fi+1 is obtained from
f, by applying Step (i) as follows: let (Ri9 S,) s ((/;.)#(β), (Λ)#(6)) and
as a convention for Step (i), if (Ri9 St) has a type we set / / + 1 = ft (hence
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Step (1). Apply Move (I) so that (a) |Λ2| + \S2\ < \VR2V~ι\ + \VS2V~ι\
for each F e G , (b) S2 is cyclically reduced, and (c) (R2)e=

: (S2)e or
(R2)e = (S2)lι implies that R2 = Wn and S2 = Wm for some W^G
and integers n, m. We show in 1.4 that this step can be carried out.

Step (2). Apply Move (II) iff either (i?3, S3) has a type or (i?2, S2) =
(V'\VS) for some F G G.

Step (3). Apply Move (III). (Recall: only if (JR 2, S2) does not have a
type.)

Step (4). Apply Move (I) as in Step (1).
Step (5). Apply Move (II).

THEOREM 1.4. Given f: P -> P9 Procedure 1.3 yields a pair (R,S)
having a type, such that MF(f) = MF(F(RS)). Hence MF(f) = M(R, S).

Proof (of 1.4). Notice that the value of MF() is invariant under each
of the three moves. We show that the pair (R6, S6) in Procedure 1.3 has a
type. First, to see that Step (1) can be carried out, note that properties (a)
and (b) are easy to achieve. For (c), conjugation by Q = Re has the effect
of shifting Re = Se (or Re = Sb

λ) to Rb = Sb (Rb = S;1). If Rl9 Sx are
not multiples of a common word W then a finite sequence of such
conjugations will yield (R2)e Φ (S2)e and (R2)e Φ {S2)~b

ι without de-
stroying (a) or (b). Property (a) is important in that if a pair (X, Y)
satisfies (a) then it satisfies at most one of conditions (Γx) — (Γ5). Thus we
need only find (i?, S) satisfying some condition (Tκ). Throughout the
proof we do not mention the fts which are assumed to be chosen
compatible with the pairs (Rt, St).

After Step (1) there are five distinct possibilities for (2?2, S^): (i)
i ϊ 2 = 1 or S2 = 1 (ii) R2 is not cyclically reduced (iii) (R2)b = (S2)b,
R2 Φ 1 (iv) (R2)b = (S2ye\ R2 Φ 1 (v) none of (i)-(iv). Steps (2)-(5) are
now applied in the following manner. If (i) occurs, apply Move (II) when
R2 = 1 so that S3 = 1. Set R6 = R3 and S6 = S3 = 1 then (i?6, S6) is of
type Tv If (ii) occurs, set JR6 = R2, S6 = S2 then (i?6, S6) is of type T2.
Likewise when (v) occurs. If (iii) occurs, either (i?2, Ŝ ) is of type T3 or an
application of Move (II) yields (i?3, S3) = (φ(S2), Φ(R2)) of type Γ3.

The remainder of the proof deals with the case when (iv) occurs. Here
either (i?2, S2) is of type T4 or Move (II) yields (i?3, S3) having type T4 or
(i?3, S3) = (Li?, L"1) for some L, R e G. It is this exceptional case to
which Move (III) is applied. Let (£/, V) Ξ (i?4 ? S4) = reduced form of
(ψ # (L), ψ#(iϊ)). We analyze the various possibilities for (ί/, F) assuming
(for each of writing) that in each case none of the previous cases applies.
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Case 1. (R3)e = (S3)lι. From previous conditions, (i?3, S3) =
(Wκ\ Wκ*) where Kx > 0 and 0 < -K2 < Kv Then (U, V) = reduced
form of ( Z | J H Z * 1 + * 2 ) where Z = ψ#(ϊF). Apply Step (4) to obtain
(i?5, ιS5) observing that (i? 5) 6 = ( S ^ and hence type T3.

For the remaining cases we have (1.4.1): Lb Φ JR"1, Le Φ i?^1, and

Case 2. U = 1 or F = 1. In fact, must be true that F = 1. Clearly
(R6,S6) is oΐ type Tv

Case 3. ί/ is not cyclically reduced. Since L is cyclically reduced this
only occurs when L = a b or b~ι a~ι. We only consider L =
α b\ the other follows by taking inverses. From (1.4.1) we have that
Rb Φ b~ι and Re = a or b~ι. If R = a~ι or b then F = /? q where
p Φ a, qΦ a'1 and if Rb = a then F = 06 #, # Φ a~ι. Since [/ =
ab xa~ι where x = b or β"1 it follows that (i?6,56) is of type T2 or Γ3.

Case 4. ί/6 = Fe"
x. From (1.4.1) this only occurs when LbRe = ab or

Z r V 1 yielding U = ab—, F = — JOΓ1 or C/= αx ' 1 —, F = — b~la~l

where x = b oτ a'1, lί Vb = a then apply Move (I) with Q = a~ι. Since [/
is cyclically reduced, UeΦ a~ι and we obtain (R6, S6) of type Γ2 or Γ3. If
VbΦ a then F^ # ί/̂ "1 (as Le Φ R],1) and we obtain type T4 except when
x = 1. But here R = b or L = b~ι (depending on LbRe) and by (1.4.1)
we have Le = a or Rb = a±ι respectively and so (i?4, S4) has type T5

except when Rb = a (type T2).

Case 5. Ue = Vb

x. This is the same as Case 4.

Case 6. F is not cyclically reduced. As Cases 1 through 5 do not
occur simply apply Move (I) so that S5 is cyclically reduced. Hence, type
Γ2.

Case 7. all others. This only leaves Ub = Vb, Ue = Ve, or neither.
Apply Move (I) as necessary so that (R5, S5) has type T2 or Γ3. D

The remainder of this paper is concerned with the proof of Theorem
1.1. In §2 we prove a Lemma which helps detect fixed points for certain
maps. This is then applied throughout §§3, 4, and 5. Here, various
Lemmas are given with the purpose of finding a good representative map
/ =2 F(XY) achieving MF(F ( Λ, y )) fixed points. The main result of these
Lemmas is Proposition 5.8, which will enable us to describe the set
f~ι(A). In §6 all possibilities, up to isotopy, for f~\A) are listed. Section
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7 concludes the proof of the Theorem as the results of §§3-6 allow us to
apply §2 and actually count #Fix(/).

2. Detection of fixed points. In this section we describe a method
which will help "detect" fixed points, the main result of which is Lemma
2.1. This will be applied throughout the course of this paper. Serving as
the key ingredient for a sequence of lemmas designed to find a good
representative map, /, and then as the tool for counting #Fix(/). The
reader is referred to (2.2) for a short discussion as to how this method and
Lemma 2.1 are applied.

We begin with the setting for the Lemma. Let / denote the unit
interval [0,1] and let p{. I X / -> /, i = 1, 2, be the projection map
(xl9 x2) -> JC,.. Let D c / X / be a disk and let /: 3D -> / X / be given
so that F i x ( / ) = 0 and the set &>= S?(f) = {x e 3D|p λ ° f(x) =
pλ{x)} is finite. We call S?(f) the detection set for /.

Define a reduction procedure on S? as follows: First, let 6^0 = {x e
5PI there is a neighborhood 0 of x in 3D such that Θ — x = t/U V where
U Π V = 0 , Pι°f(u) >Pι{u) for u e U, and p1

of(v) <pλ(v) for v e
V). If T is a finite subset of 3D then a simple reduction of Γ is the set
Γ — {x, y} such that (1) {x, y] is the boundary of an arc a c 3D with
a Π Γ = da and (2) /?2 °/(x) > p2(x) iff /?2 °/(};) > Λί^)- ^ reduction
of 71 is obtained by taking a sequence of simple reductions. The set T is
reduced if no reductions exist.

LEMMA 2.1. Let f: 3D -> / X / be as above and let Sff be a reduction
of yo. If5fr is reduced, then there exists a fixed point free extension of f to
Diff•#» = 0 .

REMARK. Sff reduced implies that #&" is an even integer. If /:
D -> / X / is an extension of / then index (/, D) = ± # ^ ' / 2 . See [Jl;
p. 14] or [B; p. 59] for the fixed point index.

Proof. Using the reduction &" of 6f0 we define an extension f of f
which has exactly one fixed point. This is done in such a way that the
index of this fixed point is easily calculated using Nielson Theory. The
lemma is then established by invariance of the fixed point index.

To define / first consider the special case when &' = S^o = £f.
Choose p & D and let {γw}, w e S1 (unit circle), be embeddings of / into
D such that γw(0) = p, yw(I) Π yz(ϊ) = 0 if w Φ z, γw(/) c D, γw(l) c
3D, and D = Όwyw(I). Set f(p)=p and fix W G S\ Write yw(t) =
( ! / „ Vt) a n d / ( γ w ( l ) ) = (Uλ + d,Vx + e\ D e f i n e f ' ( y w ( t ) ) = (Ut+t-d,

Vt+ t - e) and do for each w e S1. Set / = r ° / ' where r is a retraction
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ofRxR onto I X I. Clearly, /extends / and since Fix(/) = 0 we have
d2 + e2 Φ 0 and so Fix(/) = p.

The general case can be done exactly as above but in order to
illustrate the reduction procedure an alternate approach is given. First,
pick q G Sf— yo and let TV be a regular neighborhood of q in D so that
the arc N Π 3D does not meet S? — {q}. Define / on dN extending / so
that £?(f\ dN) = {q] and then extend to N so that pλ ° f(y) Φ pλ(y) for
each y e D. Hence, no fixed points. Do this for each point in £f— S?o to
obtain D' c D and /: D - D' -> / X / with S?(f\ dD') = STQ.

Now, let {x, y) be the first pair of points removed in reducing £fQ

and a as in the definition. Let N be a regular neighborhood of a in D so
that the arc N Π dD does not intersect S?o— {JC, y). Define / o n dN - a
so that Sf(f\dN) = { c, y}. Extend to N so that β = {y\p1

of(y) =
/?1(>y)} is an arc and, by (2) in the definition, that p2

of(y) * Pi(y) for
each y e /?. Repeat for each simple reduction to obtain f:D — E-*lXl
with S?(f\ dE) = S?'. Complete the extension by applying the special case
toE.

The advantage of defining / in this manner is that in the special case
it follows easily from the definition of the fixed point index that index
(/,/>) = ±#&"/2. Notice that the points of 9" alternate as to the
direction of the second coordinate projection. As a result, a pair of points
corresponds to one revolution about the unit circle.

To finish, if 9" = 0 then index (/,/?) = 0 and so / - / rel dD with
Fix(/) = 0 . If if' Φ 0 then by invariance of the fixed point index
(rel3D), index (g,D)Φ0 for any g = /rel3D and thus Fix(g) Φ 0. D

REMARK 2.2. Application of reduction and Lemma 2.1. Consider the
following general setting: Given f:P-*P suppose that D is a disk
contained in C = closure of a component of P - A such that /(D) c C.
In addition, suppose we can choose a product structure for C; a homeo-
morphism h: C -» / X /, so that S?(h °/° /Γ1 \h(dD)) = ST is known
and •$"= ̂ 0 (also, finite). We set £?(f) = h~\9) and to each point
p e ^ ( / ) we assign a label: ' + ' if p2

o h° f(p) > p2

o h(p) and ' - '
otherwise. Then ^ ( / ) together with the labels acts as a detection set for
/ | 3D. Reductions of S?(f) using labels corresponding to reductions of

3. Choosing a representative, I. This section deals with various Lem-
mas which are designed to improve the set f~\A) for a given /: P -> P
(see Figure 1 for A). Lemmas 3.1-3.3 are essentially general position
Lemmas while 3.4-3.7 are improvements in that they reduce f~ι(A) Π A.
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LEMMA 3.1. Given g = F^Y) there is a map f such that #Fix(/) <
#Fix(g) andj'= F{Xγ) relθP.

See Lemma 6.10 of [FH] or Lemma §3 of [J2] for a proof.

LEMMA 3.2. Gfeerc g ̂  ^.γ,γ) r e19^ /Λere is a map f ~ g rel3P such
that

(1) #Fix(/) < #Fix(g).
(2) f~\A) is a 1-dimensionalproper submanifold of P transverse to A.

(3)Fix(/)n/-V)= 0.
(4) For each p ^ f~1(A) and open set Up containing p there exists an

open set Θp with p e Θp<z Up such that f{0p) has nontrivial intersection
with exactly two components ofP — A.

Proof. By general position there is a map h satisfying (1), (3), and
h~λ(A) is a 1-dimensional polyhedron whose vertices miss A U dP. Let Q
denote the non-vertex points in h~λ(A) which do not satisfy (4). Then Q
consists of certain components of Λ~1(^4)-{vertices}. By a small homotopy
the points of Q can be removed from h'\A) without increasing the
number of fixed points or altering h on (h~\A) - Q) U dP. Finish by
altering h on a neighborhood of each vertex of h'\A) as indicated in
Figure 2 below. D

homotopy

FIGURE 2

The content of the proof of Lemma 3.2 is that by a small adjustment
of the map g we can replace the 0-dimensional non-manifold part of
g~ι(A) by the empty set. If the same process is applied to a homotopy
between two maps then the 1-dimensional non-manifold set (given by
general position) is replaced by a 0-dimensional set. Consequently,

LEMMA 3.3. Suppose hτ, h2-F{XY) rel3P with h~\A) (ι = 0,1)
being 1-dimensional submanifolds of P. Then there exist a homotopy H
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rel3P and a finite subset T of I such that Hi = hi9 i = 0,1, and (i) ift£T
then H~ι(A) is a 1-dimensional manifold and (ϋ) if t ^ T then H~ι(A) has
exactly one non-manifold point.

REMARK. Lemma 3.3 is only used in proving the Propositions in §6.
Lemmas 3.1 and 3.2 are used throughout the paper and so we assume that,
unless stated otherwise, all self-maps of P satisfy the conclusions of these
two lemmas.

Let /: P -* P be given. Choose embeddings, Ai9 1 < / < 4, of the
unit interval [0,1] into P so that ^[0,1] = At and ^4,(1) c 33 (see Figure
1). Given x9 y e Ai we say that x < y iff Aj\x) < Aj\y) and x > y iff
Ajλ(x) > Ajλ(y). We say x is inside (outside) of y when x < y (x > y).
Let J denote the arc contained in At which has boundary { x, y}. Given
x < y and f({x, y}) c At we say that the pair of points {x,y} is
contracting if f(x) > x and f(y) < y; expanding if f(x) < x and f(y) >

y-
A simple null curve is a subset, a(r, s), of f~ι(Ar) homeomoφhic to

[0,1] with α(r, s) ΠA = 3α(r, 5) c As. A ww// ewπ e is a connected curve
formed by joining together a finite number of simple null curves; again
written α(r, s). We write a in place of α(r, s) when either the values of r,
5 are clear or not of importance. Also, Ja is used in place of Jda. The null
curve a(s, s) is contracting (expanding) if da is contracting (expanding).

The following notation will be used throughout the remainder of this
section and into the next. Let a(r,s) be a simple null curve and let PL9

P c , PR be as in Figure 1. Let Da denote the disk with boundary a U Ja9

Ra = Pz where z e {L,C,R} so that Da c i?α, and La = Pw where
w Φ z and 7α c La.

LEMMA 3.4. (Simple Crossing Reduction) Suppose (x, y}aAsΓ\
f~ι(Ar) with Jxy Πf~ι(A) = 0 . TTϊen /Λ̂ r̂  w α map g ~ f rel3P such
that F i x ( g ) c F i x ( / ) and ( i) if r = 5 ίΛew g - 1 ( ^ ) nA= f ~ \ A ) Π ̂ 4 w/ϊΛ

[x, y) being the boundary for a simple null curve in g~ι(A), (ϋ) if r Φ s
theng-\A)C\A = (f'\A)ΠA) - {χ9y).

Proof. If r = s let λ be an arc parallel to Jx y contained in the
component of P — A which does not meet f(Jxy), 3λ c f~\A). If r Φ s
let λ = Jx (see Figure 3 below). Let (N9 No) be a regular neighborhood
of (λ, 3λ) in (P, f'\A)) such that if r = 5 then iV Π A = 0 and if r Φ s
then JV Π ̂ 45 is an arc. Also, f(N) Π N = 0. Choose arcs βx, β2 in N
such that 3# <z No and β Π (f'l(A)U\U dN) = 0 . Define g so that
g = / on P — N and g(jβ,) <^ Ar. Now, if JV is chosen close enough to λ
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FIGURE 3. λ in Lemma 3.4

then we extend to each component of N - (βx U β2) by mapping into
P — (N U A) (this is simply due to the choice of λ). As a result g(N) Π
JV = 0 and g " 1 ^ ) = (/" x(^) -N)Uβ1U β2. D

LEMMA 3.5. (Null Curve Reduction.) Given f:P-*P and a(r,s) a
simple null curve in f~\A), there is a map g = / rel dP such that #Fix(g)
< #Fix(/) and

Uf-ι(A) ΠA)-Ja ifr = s, f(Ja) c Lβ, and a is

g~1(A) ΠA = I expanding or contracting.

((/- 1 (^) ΠA)-Ja otherwise.

Proof. First consider the special case when JaΠf~ι(A)= 0. Here
we need to remove da from f~\A) ΠAiί either r Φ s, f(Ja) c Ra9 or a
is neither expanding nor contracting. If r Φ s, just use the proof of
Lemma 3.4 with λ = Ja.lί r = s and α is neither expanding nor contract-
ing then / - Λ with support on a neighborhood of 3 a so that /x(3α) =
{ p) where /? £ Ja. Mimic the proof of 3.4 with λ = Ja. Noting that since
f^λ) Π λ = 0 we can choose N so that N Πf^N) = 0 and homotope
so that g ( # ) Π # = 0 . Hence #Fix(g) < #Fix(/) as desired. To finish
this special case we now assume that r = s, f(Ja) c Ra9 and a is
expanding or contracting.

Let TV be a regular neighborhood of Da so that N ΠAS and a =
N Π / " H ^ ) are proper arcs in N. Choose an arc β in N with β Π ̂  = 0
and dβ = 3α. Write 3 ^ = 7 ^ γ2 with 7x0 72 = 3α and yλ c Lα. De-
fine g so that g = / outside of N9 g(β) c ^4J9 g maps the disk bounded
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U γx into Ra (by hypothesis /(γx) c i?α)? and the remaining disk is
mapped into La having at most one fixed point. To achieve the last
condition map N Π As into La and extend to the two disk components.
On the component between β and N Π As there must be a fixed point so
we choose an extension which has exactly one fixed point and maps the
interior into La. The remaining disk is simply mapped into La as its
boundary is.

Clearly, g = f and g~\A) = (f~\A) - a) U β. To see that #Fix(g)
< #Fix(/) we need to show that f\Da has a fixed point. To do so
choose a product structure for Ra so that As corresponds to 0 X / (see
2.2). It is easy to see that S?(f) = da and since 3α is either expanding or
contracting these two points have opposite labels. Hence, S? is reduced
and, by Lemma 2.1, we have a fixed point.

A second special case to consider is when

Ja^f-^A)-{yo<xι<yι<x2< ••• <yn_x < xn < yn < xn+ι)

where [x^yi) = M^s.s) with D8 c Da and f(Dδ) c La. We also as-
sume that either each δ, is contracting or each δ, is expanding and that if
r = s the pairs {j>0, JCX} and {yn9 xM+1} are either expanding or contract-
ing.

First apply Lemma 3.4 to each pair { yi9 x,+1} (1 < i < n iί r Φ s and
0 < i < n if r = s) so that the pair of points bounds a simple null curve,
δ/, contained in Lα. Now, if r = 5 let N be a regular neighborhood of
Da U U^o A>; chosen so that N Π As is an arc and 3iV Π / " H ^ ) = 0
(Figure 4). Define g so that g = / outside of JV and since f(Dδ) c Lα

extend to N by mapping into La so that N Cλ La contains exactly one
fixed point.

If r Φ s choose N so that Fix(/|9iV) = 0 , N Π As is an arc, and
JV Π f~\A) = α U δ, arcs containing a and Uδ, respectively (Figure 4).
Choose proper arcs βv β2 in N Π La so that 3^! = 3δ and 3̂ 82 = da.
Define g so that g = / outside of ΛΓ, g ί ^ ) c As, g{β2) <z Ar, and
g(N Γ\ As) <z La- N. Extend to the domain between βx and β2 by
mapping into Ra and to N D Ra by mapping into Lα. As g(iV Π ̂ 45) Π iV
= 0 we can extend to the domain between β2 and N Π As missing N
(assuming dN is "near" a). Finally, the remaining domain is mapped into
La so as to have at most one fixed point.

This case is completed by showing that f\Da - OD8. has a fixed
point. Choose a product structure for Ra so that As corresponds to 0 X /
and if r Φ s then Ar corresponds to 1 X /. Then S?(f) = Uf=13δz (r Φ s)
or UjL03δ/ (r = s). By hypothesis the labels alternate and so Sf is
reduced and nonempty.
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FIGURE 4

REMARK. In the case r Φ s it is quite possible that Fix( g\N) = 0.

This depends on /1 (dN Π La) which determines whether or not f\N(ΊLa

has a fixed point which cancels with the one in Da.

The general case is done by first applying Lemma 3.4 to pairs of

points in Ja. Next use the first special case where possible so that now if

Ja Π f~x(A) Φ 0 then there exists α' and δ 1 ? . . . , δ r t as in the second

special case. Remove these null curves and repeat the whole process

continuing until all curves (except possibly a) are removed from Ja. Π

LEMMA 3.6. Suppose C is a simple closed curve contained inf~1(A) with

C Π A = 0 . Then there is a map g — f relθP such that Fix(g) c Fix(/),

g~\A) c f-\A\ and C Π g'\A) = 0 .

Proof. Since C DA = 0 there is a disk D c P - A with dD = C.

Let N be a regular neighborhood of D which misses A and satisfies

f(dN) ΠN = 0 (because f(C) c A). Let E c P be a disk which con-

tains f(dN) and does not intersect N U A. Set g = / on P — N and

extend by mapping N into i?. Thus, Fix(g) = Fix(/) Π (P — N) and

i = f~\A) Γι(P-N) as desired. D

COROLLARY 3.7. i/"/: P -+ P satisfies the conclusions of Lemmas 3.4,

3.5, 3.6 thenf~λ(A) does not contain any inessential simple closed curves.

Proof. Suppose C c f~1(Ar) bounds a disk D. As ΰ Π i is a finite

collection of proper arcs in D it follows from Lemma 3.4 that C Γ\ As = 0

when s Φ r. Thus C = aλU Uα n where α,(r, r) is a simple null curve.



MINIMIZING THE NUMBER OF FIXED POINTS 95

By applying Lemma 3.5 we reduce to n = 2 and noting that f(Ja) c Ra

for one such i we have that C Π A = 0 . But this contradicts Lemma
3.6. D

4. Analysis of curves. One of the purposes of the simple crossing
reduction and null curve reduction lemmas is to gain a better understand-
ing of maps /: P -> P by concentrating on the geometric intersection of
f~\A) with A. Notice that both of these lemmas tend to reduce this
intersection. Continuing along these lines we wish to explore other ways in
which the geometric intersection of f~\A) with A may be reduced. It is
with this in mind that the following notation for certain curves in P is
introduced.

Let γ be a curve in P transverse to A such that 3γ c dP U A9

γ Π A Φ 0 , and γ Π dP = 0 . Choose h: [0,1] => γ so that h\(Ol) is
one-to-one and γ Π (A U dP) = h(Ul=Qk/n) for some n > 1. We use
the notation (x0,JCX, . . . ,JC M ) to describe the curve γ where xk e
{1,2,3,4, Δ 1 ?Δ 2,Δ 3} and xk = r, r e {1,2,3,4} iff /*(&/«) c Λr xk =
Δ,, i e {1,2,3} iff Λ(/0i) c 9, (see Figure 1 for 3,.). If γx = (x0,..., x „),
Y2 = (Λ> > ym) w i t h 9Yi Π 3γ2 ^ 0 (say Ax(l) = A2(0)) then we may
d e n o t e t h e i r u n i o n b y a n y o f ( x 0 , . . . , x n , y l 9 . . . 9 y m ) , ( x 0 , . . . , x n - l 9 γ 2 ) ,

REMARKS. (1) As orientations are not considered γ can be expressed
using either (xv..., xn) or (xn,..., xx). For example, (1,2) and (2,1) may
represent the same curve.

(2) Given (xv..., xn) by no means do we determine a unique curve
(up to isotopy, say) in P (see Figure 5). For most of our purposes this will
not pose a problem but whenever necessary additional information will be
given so as to avoid confusion.

If C is a disjoint collection of curves in P we assign to each curve a
μ-value: A function μ: C -> {1,2,3,4} such that if DC = f~\A) for some
/ then μ(γ) = r iff γ c f~\Ar) for each γ e C . Throughout this paper,
if the curve γ under consideration is clear we may write μ = r in place of
μ(γ) = r. For the following definitions we assume that the curve γ =
(xl9..., xn) is a subset of f~\A) for some /: P ~> P. If γ c P then there
is a unique curve γ = ( J C 0 , X V . . . 9 x n 9 x n + ι ) such that the closure of
γ — γ = (JC0, xλ) U (JCΛ, xw + 1). The curve γ is called the simple extension
of γ in f~\A). The simple extension of γ can also be expressed in the
form (JC0, γ, x r t + 1). In general, an extension of γ is any curve of the form
(δl9 γ, δ2). In many instances we will work with "one-sided" extensions,
i.e. when one of 8λ or δ2 is degenerate.
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To

γ o -(Δ 1 , l , l ,3,4,2,2,2,2,Δ 3 )
γ 1 =(Δ 3 ,1,3,1,1,3)
Ϊ2 = (2,4,2)

θ3

FIGURE 5. Examples

We say that γ = (xv..., xn) is a turn if xt = x. for all i, y, w is
even, and the simple extension (x09y9xn+ι) of γ satisfies x0 Φ xλ and
xw # xn+v The curve γ is a crossing if in the above definition n is odd
and in addition, μ(y) = JCX. A turn or crossing is simple iff n < 2. Notice
that turns and crossings are finite unions of null curves. Simple turns are
in fact null curves and simple crossings are degenerate curves. As with null
curves we let Jγ = Jdγ s arc of Aμ(y) joining the points of 3γ.

Suppose that f~\A) satisfies the conclusions of Lemmas 3.4 and 3.5.
If γ is a turn in f'\A) then it follows that γ Π Ar Φ 0 iff r = μ(y). If γ
is either a turn or a crossing then «/ γ Πγ={j7 1 </? 2 < < pn) where
each pair of points {/?7, pi+ι) is either contracting or expanding. If γ is a
turn we say γ is contracting {expanding) if {pl9p2} is contracting
(expanding). If γ is a crossing then it is contracting if /(pj <px and
expanding if f(px) > pv

A critical region, R, for / is the closure of a component of P —
(A U f~\A)) such that f(R) is contained in the component of P - A
which contains R. It is a result of Corollary 3.7 that all critical regions are
disks. Given a curve γ we say that γ meets R (vice versa) if γ Π R Φ 0.

Finally, the phrase "/ can be adjusted so that/by..." means that
there is a map g=f relθP with #Fix(g) < #Fix(/) and g satisfies the
conditions indicated in the phrase.
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LEMMA 4.1. Let R be a critical region which meets only the curves yl9

γ2 c f~ι{A). Let x = μ(γx) and let δ, δ' denote crossings. Let C denote the
component ofP — A containing R. If

(4.1.1) Yi = (Δ,,β), y2~(&i9x); or

(4.1.2) yx = (δ,j), γ 2 = (x,y) withl < y < 4 and μ(y2) Φ y\ or

(4.1.3) Ύx «(«,*), Ύ2 = ( * , * ' ) >v/^μ(γ2)=J

then f can be adjusted so that in (4.1.1) 8 is simple and contracting when
i = 3, and simple and expanding otherwise; in (4.1.2) δ is simple and
/(δ Π Ax) is contained in the component of Ax — δ which intersects the
component of C - δ containing Aμ{yi); in (4.1.3) # ( δ Π Ax) =
# ( δ ' Π ̂ ) andf(dδ) is in the same component ofC-R asf(dδ').

Proof. In (4.1.1) choose a product structure for C such that Ax,
Aμ{y2), Δf Π C correspond to 0 X /, 1 X /, / X 1 respectively and 3f(f) =
(δ Π Ax) U {p} where ; G A ( Π R. By Lemma 3.5, the points in δ Π ^^
alternate expanding and contracting and so the points of 3δ are all
labeled the same. If this label agrees with that of p then #S?' =
# ( δ Π Ax) - 1, otherwise we get # ( δ Π Ax) + 1. By Lemma 2.1, unless
the labels of 3δ and p agree and δ is simple we have a fixed point in R.
As each crossing meets exactly two critical regions we do not increase the
total number of fixed points if we adjust / to make δ simple and the
labels match. It now follows that δ Π Ax is contracting when i = 3 and
expanding otherwise.

In (4.1.2) choose a product structure for C such that Ax, Ay, Aμ(y2)

correspond to 0 X /, 1 X /, subset of / X 0 respectively and Sf(f) =
(δ Π Ax) U {p) where p e γ2. As in (4.1.1) we can make δ simple with
δ Π Ax having the same label as p. This establishes (4.1.2).

In (4.1.3) we arrange that ^ = (δ Π Ax) U (δ' Π Ay) and so no fixed
point occurs in R under the conclusion of (4.1.3). Notice that we can not
make both δ and δ' simple as this may increase the number of fixed
points. D

LEMMA 4.2. Suppose f~\A) contains the curve a = (Δ3, α, x) where a
is a turn. Let R be the critical region meeting a and σ = (Δ3, δ) where δ is
a crossing at Ax. If δ is simple—contracting then we can adjust f by pulling
the turn aoffofAμ{ay

Proof. Set up a product structure for the component of P — A
containing R so that Aμ(^a), Ax correspond to 0 X /, 1 X / respectively
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FIGURE 6. Proof of 4.2

and S?(f) = (a Π Aμ(a)) U(δ ΠAX)U {p}, p e 3 3. Since δ is simple-

contracting both p and 8 Π Ax are labeled the same. Thus, S?' = α Π

^ μ ( α ) is reduced and so R contains a fixed point. By a homotopy with

support on a neighborhood of α we replace α by α' = (Δ 3 ,x) . As the

resulting critical region (corresponding to R) need not contain a fixed

point the total number of fixed points has not increased. D

LEMMA 4.3. Suppose f~ι{A) contains the curve 5 = (Δz, α, x), Z'G

{1,2}, where a is a turn. Let R be the critical region meeting a and

σ = (Δ / ? δ) where 8 is a crossing at Ax. If 8 is simple-expanding then we

can adjust f by pulling the turn a off of Aμ(α).

Proof. Same as Lemma 4.2. D

LEMMA 4.4. Let a be a turn in f \A) with μ(α) = x. Let γ1? γ 2 be

(x,y) curves with μ(γ x) Φ μ(γ 2 ) and (x,y) being one of (1,3), (2,4),

(1,2), or (3.4). Suppose f has a critical region, i?, meeting α, γ l 9 and γ 2 but

no other curves. If μ(yj) = y implies that the crossing at Ay is simple and

maps into the component of Pc — R which contains A ^ ,^ j ' Φj9 then we

can adjust f by pulling the turn a off of A x.

Proof. Because μ(γ x) Φ μ(y2) the region R is contained in Pc. Set up

a product structure for Pc so that Ax, Ay correspond to 0 X /, 1 X /

respectively and S?(f) = (α Π Ax) U { p v p2} where pj c yΓ If μ(γ /) =

y, then pj is the crossing at Ay and by hypothesis is labeled the same as

pr. If μ(γ y) Φy for each 7, the condition that (x, y) Φ (1,4) or (2,3)

implies that ρv p2 have the same label. Hence, S?' = a Π Ax so we may

remove α without increasing the number of fixed points. D
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Given a collection of curves C let C" denote the collection of curves
obtained from C by replacing each turn and crossing in C by a simple
turn or crossing. Thus, the turn (xv..., xn) is replaced by (xv xn) and the
simple extension ( x , y v . . . 9 y m 9 z ) of a crossing is replaced by (x,yl9z).
This replacement does not, in general, help reduce the number of fixed
points for a map / (C = f~\A)) but will be useful when dealing with
extensions of curves.

Let Ω(C) = { α | α i s a turn in C}. There is a natural correspondence
between Ω(C) and Ω(C') so that given a e Ω(C) we let a! denote the
corresponding element of Ω(C")

Define a relation < on Ω(C) as follows: Given a, β & Q,(C) then
α < β iff there exists a sequence /%, β[y...9β'n of curves satisfying: (1)
β' = /% (2) for each /, β/ is a simple extension of β-_λ in C" such that
dfil c ^4r for some r and /?/ contains exactly one turn, namely /% (3) α' is
contained in the disk bounded by β'n U Jdβ,.

We use the notation a <z β iί the above definition holds with n = 1.
It follows from Lemma 3.4 that if β e Ω(/"1(^4)) has a simple extension
of the form (x, /?, x), 1 < x < 4, then there is a unique turn a e Ω(/~1(^4))
with μ(α) = x and α «: β.

See Figure 7 for examples illustrating < and «: . The example
δ <tc γ <^ δ displays one of the problems which may arise—"cyclic be-
havior". In order to avoid problems caused by this behavior we have the
following lemma.

LEMMA 4.5. {Spiral Elimination) Suppose f: P -> P satisfies the
conclusions of all previous lemmas. Then f can be adjusted so that given any
sequence al9..., am in Ω(/"1(^4)) with at < ai+ι for each i, then aλ Φ am.

FIGURE 7. a < β and δ <^ γ «: δ
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Proof. Consider the special case ax <$c α2 α1# For

each k, let α^ be the simple extension of ak\ a!k the curve obtained by
pulling ak off of Aμ{otk)\ Dk the disk bounded by ak U J^ Όr

h the disk
bounded by a'k U /^ N & regular neighborhood of U Dk chosen close to
UDk; Ck the component of P — A containing Dk\ and Ek the component
of N — A which contains Dk. See Figure 8 for an illustration.

Define a map g by setting g = /on P - N and so that g(ot'k) c ^ μ ( α Λ ) .
By Lemma 3.5 it follows that f(Dk — Dk_1) c Ck and as Dk, is to replace
Dk — Dk_λ we extend g to 2)£ by mapping into (Ck — Dk). Finally,
extend to Ek — Dk by mapping into the appropriate component of (P —
A) - Ck. Note that Fix(g) Π N = 0 . Now reduce g - 1 (^) by applying
Lemmas 3.4 through 4.4 obtaining Λ. If h~\A) contains βλ «: <sc ^
<: jβx repeat the above procedure noting that since g~\A)Γ)A =
{f-\A) ΠA)-Όak then h~\A) Π ̂ 1 is a proper subset of f'\A) Π A
and so we need only repeat a finite number of times. To see that the result
is the desired map we finish by showing that aλ < < aλ implies that
there are turns al9.. -, «π so that aλ «: a2 ^ <^ an <^: av

The cyclic behavior of < is closely related to isotopy classes of
simple closed curves in P. This relationship is obtained by collapsing a
turn γ to the midpoint of Jγ and when a < β the extensions of β which
define a < β collapse to an arc which joins the midpoints of Ja and Jβ.
As there are only three simple closed curves in P; namely (2,4,2), (1,3,1),
and (1,2,4,3,1) the possibilities for curves aλ < < ax are limited.
Now, starting with a = ax let λ1? λ 2 be the two curves in Ra (see §3)
which meet Aμ{ά) adjacent to a. Since aλ< < aλ these curves exist
and λ. = (μ(α), y) for some y. From the above discussion each of λ1? λ 2
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collapses to an arc contained in a simple closed curve and thus (μ(α), y)
is one of (1,3), (2,4), (1,2), or (3,4). By Lemma 4.4 (if necessary) we have
vΌ^i) = y a n c * by Lemma 3.4, λx and λ 2 must join to form a! with
a «: a'. Set a2 = a! and repeat this process using a = α2, α 3 , . . . until the
resulting α' is equal to αx. D

As a consequence of Lemma 4.5 we can partition ϊl(f~ι(A)) into
chains ax < a2 < < am where at = α iff i = j or into maximal
chains βx «c β2 <c <: βπ where β = βy iff / = j . In the latter case βλ

is a minimal turn and /?„ is a maximal turn. It follows from Lemma 3.4
that the boundary of the simple extension of βλ is not contained in some
Ar. Notice that as βn is maximal there is no turn γ satisfying j β π < γ but
it is quite possible that there is a turn α with βn < a. In the next section
we will see that this need not occur (although it is quite feasible). In fact,
we can arrange that Ω has at most one nontrivial chain—consisting of at
most four turns.

5. Choosing a representative, II. The main objective of this section is
Proposition 5.8 which, when used together with the results of Section 6,
gives a description of Cf= (f~ι(A))' (see §4). This is done by; first,
Lemmas 5.1, 5.2 which relate Cf and f~ι(A)9 and then Lemmas 5.3-5.7
which help reduce Ω(f~ι(A)). Besides being used in the proof of 5.8 these
lemmas will appear again in §7. For each lemma, we assume that /:
P -» P is given satisfying the conclusions of all previous lemmas.

A full Δf spiral is a curve, γ, containing no full turns, with 3γ either
empty or contained in some Ar and γ U Jdy is a simple closed curve in P
isotopic to 3Z. A Δrspiral is either a full Δ-spiral or a curve γ = γ0 U yx

where γ0 is either empty or a proper subcurve of a full Δ-spiral and
yλ = (x, Δ,.). In the latter case Jd denotes the arc of Ar joining 3γ0 — 3γx

to 3,. Two Δ .-spirals γ and γ' are adjacent if 3γ Π P and 3γ' Π P are
contained in the same Ar and no curves occur in the region between the
two. Let A(y) denote the union of all arcs, /, in A satisfying 3/ c 3. u γ
and / Π γ = 0. Let C(γ) denote the component of P — (γ U Jdγ) which
does not intersect dj for all j Φ i.

LEMMA 5.1. Let γ , 1 <j < 4, be disjoint Δ3-spirals such that γ is
adjacent to yJ+1 with yλ nearest 33 and dyj Π P a Ar for eachj. Iff(A)
does not have any turns meeting A(y4) then f can be adjusted so that all
crossings meeting A(y1) U / 8 γ i are simple and contracting.
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REMARK. The proof of 5.1 is actually more important than the lemma

itself. The method employed will be used in future lemmas (proof of 5.2

and parts of 5.4, 5.5 for instance) which may have slightly different

hypothesis but, nonetheless, strong enough to use the same style proof.

One purpose of the statement of 5.1 is to serve as an illustration of the

method. For comparison we state without proof Lemma 5.2 the proof of

which differs only in how 4.1 is applied (see proof of 5.1).

LEMMA 5.2. Let γ, γ ' be adjacent Δrspirals, i e {1,2}, with y nearer

3;. Iff~ι(A) does not have any turns meeting A{y') then f can be adjusted

so that all crossings meeting A(y) U Jdy are simple and expanding.

Proof of 5.1. Let δ 0 be a crossing which meets A(y1). Let i? 0 , . . .,Rk

be a sequence of disjoint critical regions satisfying;

(i) δ 0 meets Ro.

(ii) For each 1 < i < k, Rt lies in C(γ 4 ).

(iii) For each i < k, there is a crossing, δ / + 1 , meeting both Rt and

The construction of such a sequence is easy. In fact, starting with δ 0 there

are two choices for Ro (except when δ 0 meets Jdγi) and once a choice is

made Rl9 i ? 2 , . . . are then determined. Now, if RQ,...,Rk satisfies

(i)-(iii) then for any k' < k, Rθ9...,Rk, does as well so we consider a

maximal k and concentrate on the critical region Rk.

The hypothesis in the lemma imply that any curve which starts on JBγi

and extends into C(γ 4) must "spiral" outwards until it joins 33. As a

result we have the following possibilities for Rk depending on the turns

and crossings which Rk meets; (1) JR^ meets only δ^, (2) Rk meets δ^ and

δ 0 (here k = 3), (3) Rk meets δ' where δ' is either a turn or a crossing

which meets JdΎι and a critical region not in C(γ 4 ). Eliminate (3) by

noting that there is another choice for a maximal sequence and by

hypothesis this choice satisfies either (1) or (2). In (2), adjust / so that

each of δ 0 , . . . , δ^ is simple and contracting so by 4.1.3 none of i ? 0 , . . . , Rk

contains a fixed point. Finally, in case of (1) use 4.1.1 (when Rk Π 33 Φ 0)

or 4.1.2 to arrange that δ^ is simple and contracting. Successive applica-

tions of 4.1.3 can then be used to get each of 8k_v...,δ0 simple and

contracting. D

LEMMA 5.3. Let γ be a Afspiral9 i e {1,2}, in f~ι(A). Then f can be

adjusted so that no turns meetA(y) U Jdy.
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Proof, Without loss of generality we take i = 1 and Jdy c Av If γ is
not a full Arspiral then γ = (1, Δx) or (1,3, Δx). Since X is reduced there
are no turns meeting A(y) ΠAι in the former and ^4(γ)Π^43 in the
latter. Also, in the latter case a turn meeting Jdγ must be contained in Pc.
Let a be such a turn and R the critical region in Pc meeting a. Let λ1? λ2

be the curves in C(γ) meeting Aλ adjacent to a. If λy Φ γ for each j or if
μ(y) Φ 3 then by 5.2 all crossings meeting A(y) ΠA3 are simple and
expanding. It follows that R contains a fixed point (see 4.4) and so we can
pull a off of Ax without increasing the number of fixed points. In the
special case λx = γ with μ = 3 consider the curve, σ, which meets A3 just
outside of γ and extends into PL. Certainly, μ(σ) = 1 and either σ =
(3, Δx) or it joins a at Av In the former, by 4.1.1 we have γ Π A3

simple-expanding and thus a fixed point in R. In the latter we replace
(σ, α, Δx) by (σ, Δx) and make the crossing γ Π A3 simple-expanding.
This does not increasing the fixed point count as the resulting critical
regions do not contain fixed points.

Now, suppose γ is a full Δ^spiral. If α0 is a minimal turn which
meets A(y) U Jdy then either 4.3, 4.4, or the preceding paragraph applies
and so we can remove α0. If no minimal turns occur then each chain of
turns "spirals" inwards in C(γ) towards dv Let a denote the maximal
turn in an innermost such chain (there may be two) and R the critical
region meeting a. By 5.2, all crossings meeting R are simple-expanding
and thus R contains a fixed point. In this manner we remove all turns
meeting A(y) U Jby. D

For the next three lemmas we need the following fact concerning
curves in f~ι{A). The reader is referred to §6 for the validation.

Fact 5.3.1. If yl9 y2 af'\A) are arcs with 9γ c 91 u θ2 then γ, is
isotopic (relθP) to either (Δ1? 1,3, Δx) or (Δ1? 3,4, Δ2) and yλ is isotopic
toγ 2 .

LEMMA 5.4. / can be adjusted so that if f~\A) contains a curve of the
form (Δ3, α, x) where a is a turn then x = Δ/9 / e (1,2}.

Proof. Without loss of generality we assume μ(a0) = 1. Suppose
x = 3 and consider the various possibilities for (Δ3, α, x, y).

Case 1. If y = 1 then by 4.1 and 5.3 there are no turns with μ = 3.
Since f(A3) is a null loop based at a point in Pc we must have that
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/ \A) ΠA3=0 (otherwise there is an adjacent pair of points in f~\A)
ΓιA3 with the same μ-values, but Lemma 3.4 implies that these points are

joined by a turn). But this contradicts the fact that x = 3.

Case 2. If y = 2 let λ denote the curve meeting Ax next to a0 with
λ Π Ax < a Π Av If no such λ exists then by 4.1 there are no turns
meeting A3, contradicting x = 3 (as in Case 1). Traversing λ in Pc we
next reach A2 (else no turns meeting A3). Let λ' denote the (l,2)-curve
paired with λ and δ = (1,2) the other curve (if one exists) adjacent to a.

If μ(λ) Φ 2 then by 4.4 there is a fixed point in the critical region
meeting α. Pull a off of Ax without increasing the number of fixed points.
If μ(λ) Φ 2 and μ(δ) = 2 then extend δ to one of (δ,Δ2), (δ,4,2),
(δ, Δ3), or (δ, 4,3, Δ3). The first two cases give us a Δ2-spiral and by 4.1,
5.3 their would be no turns meeting A2. In the latter two cases apply 5.1
to get δ Π A 2 simple-contracting and using 4.4 detect a fixed point in the
critical region meeting α. The case μ(λ) = 2, μ(δ) Φ 2 is handled in the
same way which leaves us with μ(λ) = μ(δ) = 2.

Here λ and δ join to form ax with α < αx as indicated in Figure 9.
Extend \x to one of (λ1? Δ2), (λ1? 4,4), or (λv4,3, Δ3). Let am denote the
maximal turn with a < am. Note that μ(am) = 2 or 4. Let ψ denote the
curve in Pc meeting A2 next to λx and extend to one of (ψ, Δ2), (ψ, 4,2),
or (ψ,4,3, Δ3) depending on the extension of λv In case of (ψ,4,3, Δ3)
apply 4.4 and 5.1 to detect a fixed point in the critical region meeting am

which allows us to remove the chain of turns α,. . . , am. In the other cases
we note that their are no turns meeting A2 besides aλ and thus, at most
one turn, β, meeting A3. We conclude that β must be minimal for if not
there exists a curve isotopic to (Δ l 5 (3,1)Λ, 3,2, (4,2)J2

9 Δ2). But β minimal

FIGURE 9. Case μ(8) = μ(λ) = 2
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extends to either (Δ1? 1, β, 2, Δ2) or (Δ1? β, 1,2, Δ2). (Although these curves
are not allowed (see 5.3.1), in the case μ(a) = 3 or 4 these would be
isotopic to (Δ1? 3,4, Δ2) which can occur.) Also, any curve meeting A3

inside of β must extend to (Δ1? 1,3, Δx). This finishes the case y = 2 for if
β does not exist we contradict the choice of x = 3 and if β exists there
must be curves meeting A3 inside of β contradicting 5.3.1.

Case 3. If y = 4 let σ = (Δ3,3,4) denote the curve adjacent to
(Δ 3,α, 3,4) and consider its possible extensions. In case of (σ, Δ3) or
(σ,2,1, Δ3) use 5.1 to get σ Π A3 simple-contracting and by 4.2 we
remove α. With (σ, Δ2) or (σ, 2,4) there are no turns meeting A4 inside of
σ (5.3). Now, it follows from 5.1 and 4.4 that there is at most one turn
meeting A4 outside of σ. In fact, such a turn must be adjacent to σ. In the
present situation, the other curve adjacent to this turn must have the same
μ-value as σ which contradicts the fact that X is reduced.

Finally, in case of (σ, 2,3) or (σ, 2,1, z), z Φ Δ3, consider the curve λ
meeting Ax adjacent to and inside of a. Such a λ exists for if not then
(Δ3, α, 3,4) must extend to (Δ3, α, 3,4,2,3, Δx) and by 4.1 there would be
no turns meeting A3. Proceed as in case 2 except when μ(λ) = μ(δ) = 2
and the extension, (ψ,4,3, Δ3), of ψ is the same curve as the extension of
σ. In this instance consider the four critical regions; Rλ c PL meeting σ
and α, R2 c Pc meeting a and al9 R3 c PR meeting aλ and λx Π A4,
and R4 c Pc meeting λx Π A4 (possibly a turn α2). Notice that in this
situation R4 also meets the crossing σ Π A3. We finish by adjusting / as
follows: Pull the turns α, aλ off of Al9 A2 respectively, make the crossing
σ Γ\ A3 simple-contracting, and at A4 pull off the turn am or make the
crossing λx Π A4 simple-contracting as necessary. In doing so each Rt is
replaced by a new critical region R\ which does not contain a fixed point
(4.1,4.2). D

LEMMA 5.5. Suppose a e Ω(/"1(^4)) is maximal and contained in Pc.
γx, γ2 are curves in Pc which meet Aμ^ adjacent to a with yi = (1,2) if
μ(a) e {1,2} or yt = (3,4) // μ(a) G {3,4}. Suppose also that if γ,. Π
τ4 ( γ ) # 0 ίΛ̂ w γf extends (from ^4μ(γ)) ^ ^ Δ3-spiral, y, *SΌ ^^^ « is the

only turn outside of γ U / 9 γ . 77*e# we can adjust f by removing the turn a.

REMARK. If no such yi occurs outside of a the lemma is still valid as
the proof is identical.

Proof. Without loss of generality we assume μ(α) = 1 and γ2 Π Aγ <
yλ Π Av Let R be the critical region in Pc which meets a. We arrange so
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that / has a fixed point in R and thus a can be pulled off of Ax without
increasing the number of fixed points.

If /x(γ1) = 2 then by hypothesis yλ extends to the Δ3-spiral γ. Using
the method of proof of 5.1 we can arrange that yλ Π A2 is simple and
contracting and hence R contains a fixed point (4.4).

If μ(γ2) = 2 and extends to γ the curve meeting A2 just inside of γ
extends to a Δ3-spiral, y', adjacent to γ with μ(γ') = 4. Since no turns
meet A4 outside of γ there must be one inside of γ'. From Lemma 5.3 it
then follows that the curve which crosses A4 just inside of γ' must extend
to a Δ3-spiral, γ", adjacent to γ'. If μ(γ") Φ 3 then by the proof of 5.1 we
can make γ2 Π A2 simple-contracting otherwise there exists y"' adjacent
to γ" with μ(γ'") = 1. By 5.1 we arrange that γ2 Π A2 is simple and
contracting. Thus, in case μ(γ2) = 2, R contains a fixed point. Finally, if
μ(γz) Φ 2 for each i, then by Lemma 4.4 we can remove α. D

LEMMA 5.6. Suppose a e Q(f~ι(A)) is maximal and contained in
PL U PR. Let γ1? γ2 denote the curves in PL U PR which meet A ^ on either
side of α, γx Π Aμ(a) < y2 Π Aμ^ay Then f can be adjusted so that yλ =
(μ(α),Δ,)> i G {1,2}, and y2 = (μ(α),Δ3).

Proof. We assume μ(a) = 1. There are three possibilities; (i) yλ =
(1,3), γ2 = (1, Δ3); (ϋ) Ύl = (1, Δx), γ2 = (1,3) or (iii) Ύl = (1, Δx), γ2 =
(1, Δ3) as desired. Elimination of (i) is almost identical to the proof of 5.4
the reason being that the curves α, γ1? γ2 and T = (Δ3,3) in this case are
virtually the same as the curves (Δ3, α, 3) and (Δ3,3) in 5.4.

We consider (ii) with the curve τ = (Δ1? 3) crossing A3 adjacent to γ2,
μ(τ) = 1. Let (Δl939x9y9z) denote the extension of T. The various
possibilities for (JC, y, z) are handled as follows:

Case 1. x = 1. Then γ2 extends to a full ΔΓspiral and by Lemma 5.3
we can remove a.

Case 2. (x, y) = (2,4). By 5.3.1, z = 3 and by using 5.4, 5.5, 5.6(i) it
follows that no maximal nor minimal turns meet A outside of the curve
(γ2,2,4,3). As a result there are no turns outside of (γ2,2,4,3). Hence,
the only turns meeting A3 are on Jdτ, where T' = (3,2,4,3) c r. But, by
5.4 and 5.6(i), no such turns exist contradicting A3 Π f~\A) Φ 0.

Case 3. (x, y) = (2, Δ3). Using 5.3-5.5 there are no turns on Ax

outside of a and hence, from 5.4 and 5.6(i), no turns on A3 outside of T.
Again, contradicting A3 Π f~λ(A) Φ 0.
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Case 4. (x, y) = (4, A3). By 4.2, 4.4, 5.5 there are no turns on A3.

Case 5. (JC, y) = (4,2). This is similar to Case 2.

Case 6. (x, y) = (4, Δ2). If a is not minimal then, by 5.3, 5.4, we
must have Ω = { α, α'} with a! «: α. Hence, no turns meeting A3. If a is
minimal then, from 5.3.1, a extends to either (3,α,2,4), (3,α,2,Δ3), or
(3, α, 4, Δ2). In each instance, extend γ2 and finish as in Case 2.

These six cases cover all allowable possibilities for T which concludes
the proof of 5.6. •

LEMMA 5.7. f can be adjusted so that given a e Ώ(f-\A)) extending
to the curve (x, α, y) with xΦy then either (x, y) = (Δ,, Δ3), i £ {1,2},
orx G {1,3} andy e {2,4}.

Proof. Let (x,a,y) be given. We assume μ(a) = 1. There are only
two possibilities which must be eliminated, namely (x,α, y) = (Δ1?α,3)
or(2,α,4).

The case (Δ,α, 3) can be taken care of in the same manner as the
maximal turn in 5.6(ϋ) (the settings look almost identical—even the curve
T = (Δ1? 3)). In case of (2, α, 4), by using the proof of 5.3, we can remove
all turns crossing A2oτA4 inside of (2, α, 4) and by 5.2 all crossings inside
of (2,α,4) are simple and contracting. It now follows that the critical
region in Pc which meets (2, α, 4) must contain a fixed point and we finish
by pulling a off of Ax without increasing the number of fixed points. D

REMARK. If a c Pc then there exists T = (Δ1,Δ3) or (Δ1?3,3, Δ3),
μ(τ) = 3. If a c PL then a extends to (Δv(3,l)k,3,a, y), k > 0, j G
{2,4}.

« c Pc α c PL (PR)

FIGURE 10. Possibilities for minimal turns (/ι(α) = l
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Given f: P -* P let Cf denote the collection of curves obtained from
f~ι(A) by replacing turns and crossings by simple turns and crossings
respectively (as in §4).

PROPOSITION 5.8. Suppose f — ί j l y ) satisfies the conclusions of all
previous lemmas and that (X, Y) has a type. Then there exist an integer
0 < n < 4, a disjoint collection of curves {ft}"=1 in Cf, curves {γ, }ί!=i, and
an isotopy H: P X / -» P such that

(1) H = id on (P X {0}) U (3P X /) U (Cf- lift)
(2) ft contains exactly one turn, at

(3) 8γ, = 3ft caPU^ t c P - ^

(5) ^( f t ) = γ,
(6) Hλ(Cf) contains no turns and all crossings are simple.

REMARK. If n = 0 then {ft} = 0 in which case H = id.

Proof. We claim that if α, β e Ω ( φ with μ(α) = /x(β) then α = ft
As a result, Ω contains at most four turns. These are the {a,}. Also, for
e a c h i, t h e r e is a u n i q u e c u r v e β t = ( x [ , . . . , x ι

k , a ι , y ι

k , . . . , y{) w h e r e
x[ Φ y{ and xj = >>j for 1 < 7 < k. As μ(α,) ¥= μ(αy) when 1 # 7 we know
that ft Π βj; = 0 when / Φ j . Set γz = (x{, y[) then the isotopy /ί is
simply one which takes the collection {ft} to the collection {yi} leaving
dPU(Cf- lift) fixed.

To establish the claim we consider two cases:

Case 1. There exists minimal α0 contained in Pc. We assume μ(a0) is
odd then by Lemma 5.7, α0 extends to the curve (Δ1? α0, Δ3) and from 4.1
it is easy to see that Aλ and A3 each have at most one turn. Suppose now
that β is a turn with μ(β) even. Either β c PR is maximal or /? c Pc is
minimal (in which case the claim is established) or there is a unique turn,
β', with μ(β') even and either β <c β' or /?' «: ft Consider all such pairs
{ β, β'} where /? <̂  β'. If there is at most one such pair then the claim is
established.

Suppose not and let (β,βf) be the pair nearest 32 with μ(β) = 2. If /?
is not minimal then there exists a «: β with μ(α) odd. But, if μ(α) = 1,
by 5.5, there are no turns on A2 outside of β and if μ(a) = 3 there are no
turns outside of βf on A4 contradicting our assumption. So we have that
β is minimal and must then extend to β = (Δ1? 3, β,4, Δ2). Similarly, β'
must be maximal. Now, let σ = (3,4) be the curve which crosses A4 just
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outside of β' and σ its maximal extension (see Figure 11). If (A3, σ) c σ
we are done as there are no turns meeting A2, A4 outside of β, βf

respectively. As ( Δ 1 ? . . . , Δx) cannot occur this only leaves σ =
(Δ1,σ,2,2,4,3,Δ3). But as μ(σ) = μ(β) = 2, by 3.4, there is a curve
λ = (Δ l 5 3,4, Δ2) meeting A3 between σ and β. In fact, all curves between
β axe of this form. As a result, X = Γ " 1 ^ — with | 7 | > 2 contradicting
(X, Y) having a type.

Case 2. All minimal turns are contained in PL\J PR. By 5.7, there are
at most two minimal turns one in PL one in PR. Also, one cannot be
maximal so we consider a0 <c α1? μ(α0) = 1, μ(«x) = 3, α0 minimal, and
β 0 (if it exists) with μ(β0) e {2,4}. By 5.3 and 5.5 it is not hard to show
that there are no other turns on Aλ U A3. Likewise when β0 exists and is
not maximal. If β0 is maximal then by 5.6 we have at most one turn on
each of A2, A4 and finally by 5.3, 5.5 a single chain cannot have two
turns meeting the same Ar. Π

FIGURE 11. "No type'

REMARK. Proposition 5.8 will be applied in the following manner.
Given Hλ(Cf) consider those arcs in A - Hx(Cf) which satisfy the hy-
pothesis of Lemma 3.4. In order to satisfy the conclusion of 3.4 each of
these arcs must be "covered" by a turn. As a result of 5.8, there must be at
most one such arc on each Ar. Now, given such a turn in Cf when
searching for a candidate for the corresponding γ we need only consider
curves (Δ1? Δ3), (Δ2, Δ3), or (x, y) in Pc such that when γ is replaced by
//1"

1(γ) the resulting collection has at most one arc as mentioned above on
each Ar and none on AμM.



110 MICHAEL R. KELLY

Given yi there is possibly two ways to "push" γf. in order to obtain
the curve βt. If Ar is the first of Al9..., A4 to be crossed when isotoping
γ. to βt we say that γ,. is pushed across Ar. For example, γ = (3,4) can be
pushed across either Ax or A2.

6. Isotopy classification of f~ι(A). In order to gain an understanding
of f~ι{A) we begin by considering possibilities, up to isotopy, for this
1-dimensional manifold. The purpose of this section is to classify all such
possibilities. In view of the language of this paper we need only consider
curves which do not contain any turns.

Let (X, Y) have a type and let / be homotopic to F^x^γ) relθP with
f"\A) being a 1-dimensional proper submanifold of P. Suppose further
that Lemmas 3.4 through 3.6 apply to / and so, by Corollary 3.7, f~\A)
does not contain any inessential simple closed curves. For the following
let Tf denote the collection of curves which is isotopic (relθP) to f~\A)
and contains no turns. The relative position of the points in Tf Π A will
not be important. As Γ̂  depends on the type of (X, Y) we proceed with a
case-by-case study. Let α0 = (Δ1? Δ3), aλ = (Δ1? 3,2,4,3, Δ)? and α(_1} =
(Δ1? 1,4,2,1, Δ3). For n > 1, an is obtained from an_1 by replacing (3,2)
with (3,1,3,2,4,3,1,2) and for n < - 1 , an is obtained from α n + 1 by
replacing (1,4) with (1,3,1,4,2,1,3,4).

PROPOSITION 6.1. If (X9Y) is of type Tx then there are integers n, m
with 0 < m < 2\X\ such that Tf = I\ U Γ2 U Γ3 where

I\ consists of 2\X\ — m curves isotopic to an

Γ2 consists ofm curves isotopic to an+ι

Γ3 consists of simple closed curves isotopic to 32.
Moreover, adjacent curves in Γ3 have different μ-values.

REMARKS. (1) The μ-values for curves in Tλ u Γ2 are determined as
/— ,F ( x y )rel3P. If adjacent curves in Γ3 have different μ-values these
values are determined by considering Γ3 Π A4 and noting that f(A4) is a
null loop based at a point in Pc. Thus the outermost simple closed curve
has the same μ-value as the curve in I\ U Γ2 which crosses AΛ nearest to
32. The rest are paired accordingly. (2) It can be shown that

'(Δ1,(3,1)II"1,3,2,4,3,(1,2,4,3)""1,Δ3) if n > 1

k(Δ1,(l,3) |- |-1,l,4,2,l,(3,4,2,l) |- |-1,Δ3) if n < - 1 .

Proof. For each g =s F^X1) relθP, let τ(g) denote the minimum
cardinality possible for the set T in Lemma 3.3 (among homotopies
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between g and F{X1)). Thus, 0 < τ(g) < oo. The proposition is proved by
induction on the integer r.

For the starting case let / be given so that τ(/) = 0. Let H be a
homotopy rel3P between / and F{Xl) so that H~\A) is a manifold for
all r. Clearly, Ho satisfies the conclusion of 6.1 as ΓF = I\. Since
H~\A) is a manifold and H is relθP it follows that each (Δ1? Δ3)-curve
in Ho is isotopic to a unique curve in Hv Hence, Tf consists of 2\X\
(Δ l 5 Δ3)-curves and a finite number of simple closed curves isotopic to 32.

Suppose that 8V 82 are simple closed curves in f~\A) (isotopic to 32)
bounding an annulus C whose interior misses f~\A). If μ(8λ) = μ(δ2)
we can choose s e {2,4} so that s Φ μ(δ,). As δz is isotopic to 32,
8i Π ASΦ 0 and so there exists an arc component, /, of C Π As. But
Lemma 3.4 says that 3/ Π f'\A) = 0, a contradiction as 3/ c 8λ U δ2.
Hence, ^ ( 5 ^ Φ μ(82) which establishes the case T = 0. Note that Γ3 = 0
in this case (Remark (1)).

Now, assume that the proposition holds for any map g with τ(g) < k
and let H be a homotopy rel3P between i/0 = i 7 ^ ^ and Hλ= f with
Γ = ίx < /2 < < tk. Also, we assume that H is chosen so that
H;\A) is proper for some z e (^_1? ίΛ). Then, by the inductive hypothe-
sis, there exist n, m so that fl/H^) = Γ ί UΓ^U Γ3'. Since H~ι(A) has
only one non-manifold point and adjacent curves in Γ{ U Γ2 have differ-
ent μ-values it follows that at least 2\X\ — T of these curves are isotopic
(reJ3P) to corresponding curves in Γ̂ . Thus, I\ contains 2\X\ - 1 curves
isotopic to either an or an+ι. The isotopy type for the remaining arc, γ,
depends on the other 2\X\ - 1. If all are isotopic to aj9 j = n or n + 1,

FIGURE 12. aλ and a2.

If 3 γ = {x, y } then γ is either ax or α 2 .

If 9y = {Λ,fc},/e {1,2}, then γ = α,.
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then γ = OLJ_V aj9 or aJ+v If both an and α π + 1 curves appear in Γ̂  then
γ = αw or α π + 1 (see Figure 12 for an illustration). Thus, I\ and Γ2 are as
desired. As before, all simple closed curves must be isotopic to 92 and the
argument given in the T = 0 case establishes Γ3. D

The key to the proof of Proposition 6.1 is that once the inductive
hypothesis is applied to H~1(A) the isotopy type of all but one proper arc
in Γy is determined. To find the last one we just consider all possibilities.
For types T29.. -, T5 the idea is exactly the same. The difference being that
here there are no essential simple closed curves and in the inductive step
all but two proper arcs are determined for Γ̂ . For the remaining two
(which have the same μ-values) there are only two choices to be made.
This is simply a result of the classification of pairs (X, Y) into types
7\,...,Γ5.

With this in mind we obtain Propositions 6.2,..., 6.5, the proofs of
which are the same in spirit as that of 6.1. Due to the complexity of an
explicit formula for curves when (X, Y) is type T3 only an implicit
description is given. Of course, one which contains the information
needed for counting fixed points.

PROPOSITION 6.2. If (X,Y) is of type T2 then there is an integer m,
0 < m < 2\U\ so that Γ / = Γ 1 U Γ 2 U Γ 3 U Γ4 where:

I\ consists of 2\X\+ 4|U\ — 2m curves isotopic to (Δ1? Δ3),

Γ2 consists ofm curves isotopic to (Δ1,3,1,Δ1),

Γ3 consists of m curves isotopic to (Δ 3,3,1,Δ 3),

Γ4 consists of 2 \ Y \ curves isotopic to (Δ 2, Δ 3 ) .

Moreover, as f — jP ( χ y )rel3P the v-values of all the curves in Tf are
determined.

Let Γ° = F(χY){A) and for certain integers n define Tn inductively
as follows:

For n > 0 we assume for now that Γ""1 is defined and satisfies alll
conditions mentioned below. Let γx be either the (Δ l 9 Δ3)-curve in Γ""1

nearest (in PL) to A3 or, if no such curve exists, the (3,2)-curve nearest (in
Pc) to Av Similarly, γ2 is either the (Δ2, Δ3)-curve nearest A2 or the
(3,2)-curve nearest A4. Let / be an arc with interior in P — Tn~ι which
joins yλ to γ2 and has minimal intersection with A. We remark that / is
unique up to isotopy and must contain a (3,2)-curve. Let Iv I2 be arcs
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FIGURE 13

with interior missing / U Γ" ι chosen close to / U γ 1 U γ 2 and with
3(/! U 72) = d(yx U γ2) (see Figure 13). If μ(γx) = μ(y2) (see μ-values
below) we set Γπ = (Γ"" 1 - (γx U γ2)) U (Iλ U I2) otherwise we do not
define Tn.

For n < 0 we assume that Tn+ι is given and define γ1? γ2, /, 71? I2 in
the same manner except that A3 and Aλ (respectively A4 and A2) are
interchanged and (3,2) is replaced by (1,4). Γπ is then defined analo-
gously.

REMARK. It is easy to verify that the assumptions on Γ""1 are valid.
Also, if γ e Γ " is not equal to (Δy, Δ3) then γ can be expressed in the
form (βvx,y,β2) where one of βvβ2 is a Δ3-spiral and the other is a
ΔΓspiral, /e{ l ,2} , and (x, y) is either (3,2) or (1,4).

We assign μ-values to the curves in Yn as follows. Let Cl9..., C2m

denote the μ-values of the (Δ l 9 Δ3)-curves in Γ° (from F{xγ)) given in
order starting with the curve nearest A3. The μ-values of a (Δf , Δ3)-curve
in Γ" is the same as the corresponding curve in Γo. For n > 0, the
μ-values for the (3,2)-curves in Γ" are (as they meet A3 starting from 3 :):

,Cn9...,Cin •2|Wj + l ) i f 2 | f F | < n <2\X\;

i f 2 | X | < « .

For n > 2\X\ we set Cn = Cn_2wv Also, * denotes the placement of
I Π A3. For n < 0 the μ-values for (l,4)-curves are obtained as above
with Ax replacing A3.
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It is an easy exercise in induction to check that this assignment yields
the same μ-values for Γ" as those induced by Γ*"1 (or Tn+ι when n < 0)
where μ{yx) = μ(y2)

 = M(̂ i) = M^)- Also, as the construction of the
Tn 's is modeled on the proof of 6.1 we have,

PROPOSITION 6.3. // (X, Y) is of type T3 then Tf = Tn for some integer
n.

REMARK, n > 2\W\ implies that Y = 1; n > 2\X\ implies that X = 1;
and n < 0 implies that X = Vk\ Y = Vk\ 0 < k2 < kv for some V.

PROPOSITION 6.4. // (X9Y) is of type T4 then there is an integer
0 < m < 2\W\ so that 1} = Γx U Γ2 U Γ3 U Γ4 where

I\ consists of 2\X\+ 2\W\— m curves isotopic to (Δ1? Δ3)

Γ2 consists ofm curves isotopic to (Δ1? 3,4, Δ2)

Γ3 consists ofm curves isotopic to (Δ3,3,4,Δ3)

Γ4 consists of 2\Y\+ 2| W\ — m curves isotopic to (Δ 2, Δ3).

Moreover, f — F(Xγ)τt\ΰP determines all μ-values.

PROPOSITION 6.5. // (X, Y) is of type T5 then T,is as in Proposition
6.4 except that \W\ = 1, | ? | = 0, and \12X\ replaces \X\.

7. Calculation of MF(F(XY)). The proof of Theorem 1.1 will now be
concluded. Let (Xy Γ), having a type, and / =* F(χ,γ) rel3P, satisfying the
conclusions of all previously stated Lemmas, be given. Depending on the
type for (X, Y) proceed to the appropriate one of (7.1)-(7.5). In each case
the proof goes as follows. First, a description of f~ι(A) is given (in terms
of Tf) together with necessary conditions on the pair (X, Y) for this to
occur. Then using Lemma 2.1, we show that #Fix(/) > M(X, Y). Equal-
ity is established by noting that each critical region which is not men-
tioned in the proof need not have a fixed point. The verification of this
last statement is, in each of (7.1)-(7.5), a simple application of Lemma 2.1
and is (in general) omitted.

(7.1) (X,Y) has type Tv Let I}= I\ U Γ2 U Γ3 be as given in
Proposition 6.1. A detailed analysis is given below in the case n > 0 and
brief summaries follow for n < 0.

The first thing to do is to find all possibilities for the {γj of
Proposition 5.8. First note that a (2,4)-curve in Γ3 is not a candidate as
this would mean that Cf contains the curve (2,3,3,4) contradicting
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Lemma 5.7. Similarly, (1,3)-curves are eliminated. By the remark after 5.8
we cannot push (1,2), (3,4), and (3,2)-curves across A3, A2, and A4

respectively. As a result the only possibility for forming a turn in Cf is by
pushing a (3,2)-curve across Aλ and thus that Ω(Cy) consists of a single
chain of four turns. We set γx = (3,2)-curve which crosses A3 nearest to
dλ and γ2, γ3, γ4 successively parallel (3,2)-curves. Then βx =
(3,1,3, λ, 3,1,2) where λ = (2,4,4,2) or (4,2,2,4) and βi9 1 < i < 4, are
determined accordingly. It follows that μ(γx) and μ(γ2) are even, μ(y3) =
3, and μ(y4) = 1 which implies that X = X1b

±ιaX2 or aXxb
±ι.

Since each curve in Γx U Γ2 contains exactly one (3,2)-curve there are
Φa(X) such curves having μ = 1, one being γ4 and the rest appearing as
in Cf. Each one of the latter meets a distinct critical region contained in
Pc. This case is finished by showing that each such region contains a fixed
point of /.

Let R denote one of these regions with β = (3,2) c dR, μ(β) = 1.
There are two possibilities to consider: (i) dR Γ\ f~\A) consists of two
(3,2)-curves, β and δ with μ(8) Φ 1 and (ϋ) dR contains the maximal
turn, α, of Q(f~ι(A)) with μ(a) = 2. In (i) use Lemmas 5.1, 5.2 to show
that if μ(δ) = 3 then the crossing 8 Π A3 is simple-expanding and if
μ(δ) = 2 simple-contracting. To detect a fixed point in R set up a
product structure for Pc so that S?= {P>4} with J? = j8 Π i 3 and
q e 3δ. From the preceding discussion it follows that />, q have opposite
labels and so R contains a fixed point. In (ii) use the same product
structure so that SP consists of a Π A2, p = β Π A3, and a point q in ^t4.
Since f(q) c ^42 both /? and q are labeled the same and so &" = a n A2

Φ 0 . Hence / 1 R has a fixed point.

To summarize n < 0, first consider the case when n = 0 and m > 0.
Here {γ,} are taken from I\ starting with the (Δ1? Δ3)-curve nearest A3.
(If m = 2\X\ — 2 then we take γ3, γ4 = (3,2)-curves from Γ2.) Here, we
must have X = X1b

±aX2 and the Φa(X) — 1 fixed points are found in
critical regions meeting either (3,2) or (Δx, Δ3)-curves with μ = 1 (except
γ4). When n < 0 the argument is the same as above with the roles of 1
and 3 (2 and 4) interchanged. In this case, X = X1ab±1X2 or b±xXxa.

Finally, the case n = m = 0 has two possibilities, either Ω(/~1(^4))
has a chain consisting of three turns or there is at most two turns each
being minimal. In the former, the detection of Φa(X) — 1 fixed points
(X = Xxab±ι or b±laX^) is done as in the previous cases. In the latter,
there are no conditions on X and the number of minimal turns can be
taken to be pa(X)* It is easy to find Φa(X) — pa(X) fixed points in PL

and when ρa(X) Φ 1 there is an additional fixed point found in the only
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critical region in Pc. Notice that since ρb(l) = 0 that / has at least
Φa( X) + σ( AT, 1) fixed points.

Finally, all other critical regions in the argument above need not
contain fixed points and so we have established that MF(F{xr)) =

(7.2) (X, Y) has type Γ2. Let Tf be given as in Proposition 6.2.

Case: m = 2|t/|, U Φ 1. By 5.7, 5.8, Q(f'\A)) only contains minimal
turns and since we must have turns at Ax and A3 resulting from the
outermost curves in Γx it follows that Xb = α, Xe = a, and \X\ > 1 (in
case I = ύ i w e can remove one of the turns without increasing the number
of fixed points—hence a different case is used). This is precisely the case
when ρa(X) = 2 in the formula for M{X, Y). To count fixed points first
arrange that all turns are simple-contracting, crossings in Γ2 are simple-
expanding, and crossings in Γ3 are simple-contracting. Let β denote the
curve in Γ3 which is nearest 92. We count fixed points in the components
of P - β.

To the right: The number of fixed points depends on the μ-values of
the two curves 8V 82 in Γ4 adjacent to A2, A4 respectively and on μ(β).
It is easy to verify that we must have Φb(Y) + σ(X,Y) + Φa(Ub) such
fixed points. Notice that the value of a(X, Y) only depends on μ(jS),
μ(8λ) and μ(δ2).

To the left: In PL we detect Φa(X) - 2 fixed points. In Pc a fixed
point in the critical region meeting the turns at Ax and A3 as well as one
fixed point for each critical region bounded by a pair of curves from Γ3;
one of which has an odd μ-value the other even. Totaling, there are
Φa(X) - 1 + Φ{βM*-ifβ-iM-i*-i}(I/) such regions.

Case: 0 < m < 2|t/|. Here no turns arise from curves in Γ2 and Γ3

and so the count "to the right" is as in the first case. Let av a2 denote the
curves in I\ adjacent to Al9 A3 respectively. Clearly, μ(αx) = μ(α2) and
so there are only two ways to form turns at Aλ and Av The first is if
γx = ax is pushed across A3 (μίo^) = 3) and γ2 is the (Δ1? Δ3)-curve
adjacent to γx with μ(γ2) = 1. This corresponds to the condition that aa
appears in XJU'1. The second occurs when y1 = a2 (μiyj = 1) and
μ(γ2) = 3 which corresponds to the condition that aa appears in UXb.

To calculate the number of fixed points we concentrate on the case in
which γx = av The other is handled in the same manner. Following the
procedure for m = 2|ί/| we need to find fixed points "to the left" of β.
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This breaks into two cases depending on the correspondence between the
curves yv y2 and the word XeU~ι (equivalently—the value of m).

When 0 < m < 2\U\ - 1, aa appears in U'1 and we write U~ι =
UιaaU2 where Uλ corresponds to Γx curves and U2 corresponds to Γ2 U Γ3

curves.
For each δ e I\ — { γ2} with μ(δ) = 1 we find a critical region in PL

containing a fixed point. In P c , fixed points are located between Γ3 curves
as in the first case. Hence, there are

fixed points " to the left" of β. This equals

2Φα(<r1tff1) - 1 + Φ(β6,β*-.,β-.M-i6-.}(lίf1fl-1) + Φa(X)

and by the inequality

2Φa{a-'U^) > Φ^a^-^a-^ia-'Ui1) + Φa(Ue) + 1

(equality iff Φββ(ϋi~*) = 0. Note that Ue = (a^Uf1),) we have

Φa(X)

fixed points. When m = 2\U\ — 1 we have XJJ~X = aa and counting as
we did above there are

fixed points " to the left" of β. Notice that when combined with the fixed
points " to the right" these calculations match the formula for M( X, Y) in
the respective cases Φaa(U) > 0, XeU~ι = aa.

Case: m = 0. For this Γ̂  there are no conditions on X and Y. Here
ti(f~ι(A)) has ρa(X) + Pa(Y) πiinimal turns (depending on Ub9 Yb, and
Ye) which leads to Φa(X) 4- Φ^(7) + σ(X, Y) fixed points.

Finally, given the pair (X, Y) more than one of the above mentioned
conditions may be satisfied. The one which yields the fewest number of
fixed points will give the value of MF(F(XY)). This is achieved by the
following set of priorities: First, UeXb = aa or XeU~ι = aa or ρa(X) = 2;
second, Φaa(U) > 0 (here write U = U^aa)*1^ where Φaa(U2) = 0 to
obtain the formula); third, all others. The validity of the formula now
follows using the inequality

2Φa(U) Ξ> Φ { f l M i-., f l- l M- l f c- 1 }(ί/) + Φa(Ub).
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(7.3) (X, Y) has type T3. Let 1} = Tn as given in Proposition 6.3. In
order to verify the formula in this case the following lemma will be used
to reduce the number of possibilities that may occur and also as an aid in
counting fixed points.

LEMMA 7.3. Suppose f~λ( A) has a critical region, R, in Pc meeting a
(3,2)-curve ((l,4)-curve), β, and a turn, a, at either Ax or A4 (A2 or A3)
with μ(a) Φ μ(β). Then f\R has a fixed point. Moreover, if a is not
minimal one can apply the lemmas of the preceding sections to replace Tn

with Ynf where \n'\<\n\.

Proof. Apply 5.1, 5.2 where necessary so that crossings are simple and
contracting/expanding as desired. A fixed point can now be detected in
R. By pulling the turn a off of Aμ{a) we do not increase the number of
fixed points and by applying methods of previous sections we obtain Γπ/. D

Below is a list of all the possibilities (i.e. the {γ } of Proposition 5.8)
for obtaining f~ι(A) from Γ̂ . Included in each are the corresponding
conditions on the pair (X, Y) and a count of the number of fixed points
which arise. As this count is roughly the same in each instance the details
are only given in (2) and (6). In (2)-(8) this count is given in the form
Φa(X) + Φb(Y) + λ3 where λ3 e {-2,-1, +1}.

For n = 0;
(1) All turns are minimal with no conditions on (X, Y). As in 7.2 we

have Φa(X) + Φb(Y) + σ(X, 7) fixed points.

For 0 < n < 2\W\;
(2) yx = (Δ1? Δ3)-curve nearest A3, μ(yλ) = 2. γ2 next to yl9 μ(γ2) =

3.
CONDITION: b~γa appears in WXh.
FIXED POINT COUNT: Set WXb = W1b-1aW2. Fixed points are

found in the following critical regions; in PL those bounded by a
(Δ1? Δ3)-curve with μ = 1, in PR those bounded by a (Δ2, Δ3)-curve with
μ = 4, and in Pc those bounded by (3,2)-curves with μ = 1 if the curve
meets A3 on 3X side of A3 — I and μ = 4 on the 33 side. From Proposition
6.3 and Lemma 7.3 there are respectively, Φa(W2Xb

1X), Φb{W2Xζι)
(except when W2 = 1), and ΦjiW-J)'1) + ΦtiW-jΓ1) such regions. Com-
bine to obtain

Φa(Wxb-ιaW2X?X) - 1 + Φ^Wφ-'aWzX;1) = Φa(X) + Φb(Y) - 1

fixed points. Hence λ3 = - 1 .
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(3) Ύι = (Δ2, Δ3)-curve nearest A2, μ(γx) = 3. Either γ2 is next to yl9

μ = 2 or γ2 = (3,2)-curve nearest ^ 4 , μ = 2, and γ3 is next to γ2, μ = 4.

CONDITION: α^6 appears in ί*% or F = 1 and W = ό a~\
COUNT: λ3 = -1 (exactly as in (2)).

For 2\W\ <n< 2\X\;

(4) n = 2\W\, yτ = (Δx, Δ3)-curve, μ = 3, γ2 = (Δ 2, Δ3)-curve, μ = 2.
CONDITION: Xb = a and Yb = />.

COUNT: λ3 = -2 (exactly as in (2)).

(5) γx = (A1?A3)-curve, μ = 3; γ2, γ3 are (3,2)-curves, μ = 2, 4
respectively. _

CONDITION: Y=l,Xb = a, and (W~ιW)b = 6.
COUNT: λ3 = -2 (same as (2) except that the (3,2)-curves "below"

/ correspond to a permutation of W which contributes Φ (̂ W) — 1 fixed
points).

Forn > 2\W\;
(6) γx = (Δ l 5 Δ3) or (3,2)-curve nearest A3 (resp. ^i), μ = 4; γ2, γ3,

γ4 following with μ-values 2, 3,1 respectively. _ _
CONDITION: 7 = 1 , and b'xa appears in WΉ-χWXb or Z = 1 and

WNW = a b'\
COUNT: Consider the case n > 2\X\ (hence X= 1). n < 2|X| is

calculated in the same manner. From 6.3, the μ-values of (3,2)-curves in
Γ" are Q + 1 , . . . ,C Π , * ,<?„, . . . ,C n _ 2 w + 1 where n = n - 2\X\. By hy-
pothesis, Cn+V..., Q+4 are respectively 4, 2, 3,1. Obtaining / " x ( ^ ) from
Tn rearranges (3,2)-curves to give

Note that those before * correspond to Xb~ι where b~ιaX is a permuta-
tion of X (length (n - 2\X\)/2 prefix is moved to end); the latter to Wb~ι

where W is the same permutation of W. By Lemma 7.3, CM_2 |^ j + 1 = 4
and so Wb = 2Γ1. Counting fixed points as in (2) we have Φa(X) above *
and Φb{Wb~λ) — 1 below (the region meeting Cn_2m+ι need not have a
fixed point). Combine to obtain λ3 = - 1 .

(7) Yi = (3,2)-curve nearest A4, μ = 1; γ2, γ3, γ4 following with
μ-values 3, 2, 4 respectively.
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CONDITION: Ϋ = 1, and aΓxb appears in Wox W_= b—~a~\
COUNT: λ3 = -1 (exactly as in (6)). For n< 0; (Y = 1, X = 1, and

Xe = Ye)

(8) Situations symmetrical to (2), (3), (6), and (7) occur. The fact that
Xkl = Ykl for some kv k2 ehminates (4) and (5).

CONDITIONS: ab'1 appears in WNW = X, X = Zr1 a, ba~γ

appears ϊnW,oτW= a~ι b are the corresponding conditions.
COUNT: λ3 = - 1 .

Now, the value of MF{F^xγ)) is just the smallest possible count for
those of (l)-(8) which apply to the pair (X, Y). Hence, the value of λ3 in
the statement of the formula should be the minimum over cases (2)-(8).
This is the case except for the following three discrepancies. First, when
W= b a'1 or WNW = a b~ι we should have λ3 = -1 not 1. But
as σ = -1 in this case the value of M{ X, Y) is correct as stated. Secondly,
in (6) the condition that b~ιa appears in WN~ιW is not accounted for in
the statement of M(X, Y) but in this case either b~ιa appears in W or
W"= a b'1. Hence, either Φa-ιb(W) > 0 or σ = -1 as was needed.
Similarly, if the conditions for (8) are satisfied then it is easy to check that
either σ = -1 or Φa-ιb(W) > 0 as well.

(7.4) (X, Y) has type T4. Let Tf be as given in Proposition 6.4 and
consider cases depending on the value of m;

For m = 0;
(1) All turns are minimal with no conditions on (X,Y). There are

Φa(X) + Φb(Y) + σ(X, Y) fixed points in this case.

For 0 < m < 2\W\;
(2) γx = (Δ1? Δ3)-curves nearest A3, μ = 4; γ2 next with μ = 3.
CONDITION: ba appears in WXb.
COUNT: In case m < 2\W\ - 1 write W = WλbaW2, Count fixed

points as in (7.1)-(7.3) to obtain;

Φa(W2X) -I1 ιi*e = " f i x e d p o i n t s i n p L

\ 0 otherwise

lί^b = b fixed points in PR9
0 otherwise
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and one fixed point for each critical region in Pc which meets two
(3,4)-curves (which extend to (Δ1?3,4, Δ2)); one with μ e {1,2} and the
other in {3,4}. There are Φ{^)^,flZ>-i,^-i,α-iz>,z,-iβ}(W^i^) such regions.
Also, there is a fixed point in the critical region in Pc bounded by the
upper (3,4)-curve except when exactly one of Xe = a, Yb = b, Wb = a or
b'1 holds true. Using the fact that

= Φ.faba) + Φ^ba) - 1
and combining the three "conditionals" into λ 4 (X' = X\ Yf = y) we
obtain Φa(X) + Φb(Y) + λ 4 - Φ { β M β ) ( Wi&α) - 1 fixed points. This cor-
responds to (II) in formula for M(X, Y).

In case m = 2\W\ — 1, write W = Wλb and count as above to obtain
Φa(X) + Φb(Y) + λ 4 - Φ{abM]{W) - 2 fixed points (see (I) in formula).

(3) yx = (Δ2, Δ3)-curve nearest ^44, μ = 3; γ2 next with μ = 4.
CONDITION: Z>α appears in F ^ 1 .
COUNT: for m < 2\W\ - 1 write PF = Wλa-λb-χW2 to obtain (II) in

statement (exactly as in (2) above). For m = 2\W\ - 1 we obtain (I).

(4) γx = (Δ1? Δ3)-curvenearest A3, μ = 3; γ2 = (Δ2, Δ3)-curvenearest

^ M = 4.
CONDITION: X& = α and Ye = 6.
COUNT: As in (2) to obtain (I).

REMARKS, (i) The reason for Xf and Y' in the statement of the
formula is to avoid counting problems in case X = a or Y = b.

(ii) If (X, Y) satisfies conditions for both (I) and (II) the smaller must
be chosen for MF{F{XY)). The value of λ 4 may be different in the two
cases but, nevertheless, the value in (I) is less than or equal to the value in
(II). Similarly, if Φba(W) > 1 then the last appearance of either ba or
a~ιb~ι yields the fewest number of fixed points. Hence, the condition
Φba(W2) = 0 in the statement of (II).

(7.5) (X, Y) has type Γ5. Let 1} be as given in Proposition 6.5. The
flavor of this part will be slightly different than the preceding in that
knowledge of /x/2 will restrict the number of possibilities for {γj which
could have otherwise occurred. We consider cases depending on the value
of m.
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Case m = 0: As usual there are no conditions on (X, Y) and there are
Φa(X) + Φb(Y) + σ(X, Y) fixed points.

Case m = 1: First consider yλ = (Δ2, Δ3)-curve. If μ = 1 then lλ = a
and γx forms a non-minimal turn at Av We must have μ(γ2) = 2 but the
only choice for γ2 is the (Δ1? Δ3)-curve nearest A3 which has μ = 1. If
μ = 3 then lλ = a'1 and γx forms a turn at ^43. Here we must have
γ2 = (Δ l 5 Δ3)-curve nearest Ax with μ(γ2) = 4 but this would contradict
the fact that Xe = Zr1. As a result, we are left with the choice; y1 =
(Δ l 9 Δ3)-curve nearest A3, μ = 4 and γ2 next with μ = 3.

CONDITION: /x = 6 and hence /2 = α
COUNT: If X = 1 there is exactly one fixed point (in Pc). If X Φ 1

then Xe = α and there are Φa(X) - 1 fixed points (all in PL). In all,
Φa(X) - 2pa(Xe).

Case m = 2: The possibilities for γx are; (i) (3,4)-curve nearest 3X

with μ = 4, lλ = Z?"1, (ii) (Δ1? Δ3)-curve nearest Av μ = 4, /2 = fe, (iii)
(Δ l 9 Δ3)-curve nearest ^43, μ = 3, /2 = α, and (iv) (Δ1? Δ3)-curve nearest
^ί3, μ = 2, /2 = b. In (i), /2 = a'1 and so there is no turn at A3. In (ii),
there is also no turn at A3 and in (iii) there is no turn at A4. Hence,
(i)-(iii) cannot possibly occur which only leaves (iv). In this case, γ2 is
next to γx and γ3 is either the next (Δ1? Δ3) or, if no more exist, the
(3,4)-curve nearest θ1? μ(γ3) = 3.

CONDITION: /2 = b and either X = 1 or Xb = a.
COUNT: The critical region in Pc meeting the maximal turn at A2

and either a (3,4) or (4, l)-curve must contain a fixed point. Also, the turn
at A 2 can be removed without increasing the number of fixed points. As a
result, all turns can be removed and we reduce to the case m = 0 with
Φa(X) + Φb(Y) + σ(X, Y) fixed points.

Finally, to verify the formula for type T5 we need only consider the
letter lγ = Xh. If lλ Φ b then the case m = 0 applies and since pa(Xe) = 0
the formula is correct. When lx = b we use the case m = 1 which checks
as Φ^(7) + σ(X,7) = 0.
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