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ANOTHER CHARACTERIZATION OF AE(0)-SPACES

VESKO M. VaLov

We prove that a space X is an absolute extensor for the class of all
zero-dimensional spaces if and only if X is an upper semi-continuous
compact-valued retract of a power of the real line.

1. Introduction. Dugundji spaces were introduced by Pelczynski
[S]. Later Haydon [4] proved that the class of Dugundji spaces coincides
with the class of all compact absolute extensors for zero-dimensional
compact spaces (briefly, AE(0)). After Haydon’s paper, compact AE(0)-
spaces have been extensively studied (see Séepin’s review [9]); let us note
the following result of Dranishnikov [3]: a compact X is an AE(0)-space if
and only if for every embedding of X in a Tychonoff cube I” there exists
an upper semi-continuous compact-valued (br. usco) mapping r from I”
to X such that r(x) = {x}, for each x € X (such a usco mapping will be
called a usco retraction).

Chigogidze [2] extended the notion of AE(0) from the class of
compact spaces to that of completely regular spaces and gave a characteri-
zation of such AE(0)-spaces.

The aim of the present paper is to give another characterization of
completely regular AE(0)-spaces which is similar to the above mentioned
result of Dranishnikov. We prove that X € AE(0) iff X is a usco retract
of R™ for some 7, where R is the real line with the usual topology. Our
technique is different from Dranishnikov’s.

The author is indebted to S. Nedev and M. Ganster for useful
discussions.

2. Notations and terminology. All spaces considered are completely
regular and all single-valued mappings are continuous. A set-valued
mapping r from X to Y is called upper semi-continuous (br. u.s.c.) if the
set r¥(U) = {x € X: r(x) € U} is open in X whenever U is open in Y.
We say that a usco mapping r is minimal if every usco selection for r
coincides with r. It follows from the Kuratowski-Zorn lemma that every
usco mapping has a minimal usco selection.

A mapping f from Y to X, where Y C Z, is called Z-normal if, for
every continuous function g on X, the function geo f is continuously
extendable to Z. A space X is called an absolute extensor for zero-dimen-
sional spaces [2], if every Z-normal mapping f from Y to X, where Y C Z
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and dim Z = 0, is continuously extendable to Z; if f is continuously
extendable only to a neighbourhood of Y in Z, the space X is called an
absolute neighbourhood extensor for 0-dimensional space, briefly ANE(0).
Here, dim stands for the dimension defined by finite functionally open
COVers.

A mapping f from X to Y will be called 0-soft [2], if for every
0-dimensional space Z and every two Z-normal mappings g: Z, — X, h:
Z, > Y with Z,Cc Z, CZ and fog= h|Z,, there exists a Z-normal
mapping k: Z, = X such that g = k|Z, and f ok = h. In the case Z is
paracompact and Z, and Z, are closed subsets of Z, one gets Séepin’s
notion [8] of a 0-soft mapping, defined earlier.

A space X is said to be a multivalued absolute (resp. neighbourhood)
extensor (br. X € MA(N)E) if every Z-normal mapping f: Z, = X with
Z,C Z, can be extended to a usco mapping from Z (resp. from a
neighbourhood of Z; in Z) to X.

A mapping f: X — Y is said to be functionally open if f(U) is
functionally open in Y for every functionally open subset U of X.

Let A be a subset of X. We dentoe by G;(A4) the Gsclosure of A4 in
X; i.e. the set { x € X: every Ggsubset of X containing x intersects A4}.
Finally, let X =II{X;: s€ S} and B C S. Then py stands for the
natural projection from X onto X =II{ X;: s € B}. If U is a subset of
X, then k(U) denotes the family { B: pz*(pp(U)) = U}.

3. AE(0)-spaces.

LEMMA 1. Let X =TI{ X;: s € S} be a product of separable metric
spaces and let U be a Ggset in X. Then there exists a countable set B C S
such that pp(U) is a Gyset in Xy and Gy(U) = Xg\ p X pp(U). If U is
open in X then G4(U) is functionally open in X.

Proof. Put M = X\ G4(U). By a result of R. Pol and E. Pol [6] there
exists a countable set B C S such that py(U) is a Ggset in X, and
pe(U) N pp(M) = @. Hence p;'(pp(U)) N M = &. Since pyg(Gy(U))
= pp(U), we have B € k(G4(U)), so G5(U) = pp(U) X Xg\p. If U is
open in X then py(U) is functionally open in Xz Thus, G5(U) is
functionally open too.

The proof of the follwing (actually known) lemma is an easy exercise
on the definition of a minimal usco mapping.

LEMMA 2. Let r be a minimal usco mapping from X to Y and let U be an
open set in Y. Then the following holds:
() r(x) € cl(U) for every x € Int(cl(r*(U)));
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@) cl(r~Y(U)) = cl(r*(U)), where r*™ (U)={x€ X: r(x)NU +#
z).

Let Y =TI{Y;: s € S} be a product of separable metric spaces and
let X C Y. Let r be a u.s.c. mapping from Y to X. A subset B of S is
called r-admissible if B € k(cl(r#*(U N X))) for every standard open
subset U of Y with B € k(U). The above definition is a simple modifica-
tion of the definition of e-admissible set, given by Shirokov [11]. The
following lemma was actually proved by Shirokov [11].

LEMMA 3. Let Y =TI{Y;: s € S} be a product of separable metric
spaces, X C Y and let r be a u.s.c. mapping from Y to X. Then we have:

(i) for every set B C S there is a r-admissible set A containing B and
card 4 = card B;

(ii) a union of r-admissible subsets of S is r-admissible too.

LEMMA 4. Let Y =11{Y,: s € S} be a product of separable metric
spaces, X C Y and let r be a minimal usco mapping from Y to X. Suppose B
is a r-admissible subset of S. Then the following conditions are fulfilled:

(i) B € k(cl(r*(Ur_,U N X))) for every finite family {U: i=
1,...,n} of standard open subsets of Y with B € N, k(U,);
(ii) ps(r(x)) = pa(r(y)) whenever p(x) = py(y).

Proof. (i) Let U = U, U.. By Lemma 2(ii) we have

Ad(r*(Un X)) =c(r"{(Un X)) = cl( U r YU N X))

- O cl(r"l(U. N X)) = LnJ Cl(r#(Ui N X))

Since B is r-admissible, B € k(cl(r*(U, N X))) for each i. Thus, B €
k(cl(r*(U N X))).

(i1) Let pg(x) = pg(y) and pg(r(y)) C pg(V'), where V is open in Y.
Since r(y) is compact, ¥ can be considered as a finite union U, V; of
standard open subsets of Y with B € N"_, k(V;). Then, by (i), we have
B € k(cl(r¥(V N X))). Consequently, B € k(Int(cl(r*(V N X)))). Thus,
x € Int(cl(r#(V N X))) because y € r¥(V N X). Hence, by Lemma 2(i),
r(x) C c(VN X) ie. pg(r(x)) C cl( pg(V)). The last inclusion shows
that py(r(x)) C pg(r(y)). Analogously, pg(r(y)) € pg(r(x)). Therefore
pe(r(x)) = pp(r(y)).
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A mapping f: X — Y is said to have a polish kernel [2], if there exists
a polish (i.e. complete separable metric) space P such that X is C-em-
bedded in Y X P and f coincides with the restriction p,|X, where p,:
Y X P — Y is the natural projection. The following lemma is proved by
Chigogidze [2].

LEMMA 5. Let the mapping f from X to Y have a polish kernel, where X
and Y are AE(0)-spaces. Then f is O-soft if and only if f is functionally open.

LEMMA 6. Let Y =11{Y,;: s € S} be a product of separable metric
spaces and let r be a minimal usco retraction from Y to X. Then for every
r-admissible set B C S the following conditions are fulfilled:

(1) the restriction pg| X is functionally open;

(i1) pz(X) is a usco retract of Yg.

Proof. (i) First we prove that for every C C S the projection p is
functionally open. Let U be a functionally open subset of Y. Then, by
Lemma 1, there exists a countable set D C S such that U = p,( pp(U)).
This permits us to present U as a countable union U? , U, of standard
open subsets of Y with D € k(U,), for each i. Hence, p-(U) =
U2, pc(U)). Since every po(U,) is a standard open subset of Y., the set
pc(U) is a countable union of functionally open subsets of Y. Therefore
pc(U) is functionally open.

Now, suppose B is r-admissible and U is functionally open in X.
Since Gg(r*(U)) is functionally open in Y (by Lemam 1), in order to
prove that pp|X is functionally open it suffices to show that py(U) =
Pu(Gs(r*(U)) Npy(X). Let x € X and let py(x) = py(y) for some
y € Gs(r*(U)). If we assume r(y) € X\ U then y € r*(X\ U). How-
ever r¥( X\ U) is a Gsset in Y because X\ U is a zero-set in X. Hence,
r¥(X\ U) N r#U)+ @, which is impossible. Thus, r(y) N U # &. By
Lemma 4(ii), we have pg(x) = ps(r(x)) = ps(r(»)), 50 ps(x) € py(U).
Therefore py(Gs(r*(U))) N pr(X) C pp(U). The inverse inclusion is ob-
vious.

(i1) Let B be a r-admissible set. Define a compact-valued mapping r;:
Yy = pp(X) by letting r,( pp(x)) = pp(r(x)). Lemma 4(ii) implies that
this definition is correct and that r( pg(x)) = pp(x) for every x € X. It
remains to prove that r; is u.s.c. Let r( pg(x,)) C U for some x, € Y,
where U is open in Y, Then, by Lemma 4(i), we have B €
k(cl(r¥*(pzY(U) N X))). Consequently, B € k(V), where V =
Int(cl(r#*( pz }(U) N X))). The set pyz(V) is a neighbourhood of p,(x,)
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because x, € r¥(pz (U) N X). Let pp(x) € pp(V). Then x € V and, by
Lemma 2(i), r(x) € cl( pz(U) N X); so ri( pg(x)) € cl(U). Therefore, r,
isu.s.c.

LEMMA 7. Let Y =Tl{Y;: s € S} be a product of separable metric
spaces and let X be a usco retract of Y. Then the following conditions are
fulfilled:

(i) X is C-embedded in Y;

(ii) there exists a set B C S of cardinality w(X) such that pg|X is a
homeomorphism and pg( X) is a usco retract of Y.

Proof. (i) Suppose f is a continuous function on X. Consider the
family % of all open intervals in R with rational endpoints. Using Lemma
1, for every U € £ choose a countable set B(U) C S such that B(U) €
k(G5(r*(f~Y(U))), where r is a minimal usco retraction from Y to X. It
follows from Lemma 3(i) that there exists a countable r-admissible set C
containing U{ B(U): U € Z}. One can easily see that p.(x) = p-(y)
implies f(x) = f(y) for every x, y € X. Since p.| X is open, there exists a
continuous function g on p.(X) such that f(x) = g(p-(x)), for each
x € X. Since p-( X) is a usco retract of Y, it is closed in Y. Hence, g is
continuously extendable on Y; so f is continuously extendable on Y.

(ii) Suppose r is a minimal usco retraction from Y to X. Let 2 be a
family of standard open subsets of Y such that card 2 = w(X) and
{(UN X: Ue 2} is a base for X. Put B, =U{m(U): U € 2}, where
m(U) = {s € S: p(U) # Y,}. Clearly, card B; = w(X). By Lemma 3(i),
pick a r-admissible set B containing B; and such that card B = w( X).
Observe that pg|X is one-to-one. Since py| X is open (by Lemma 6(i), we
conclude that pg| X is a homeomorphism. Next, by Lemma 6(ii), pz( X) is
a usco retract of Y. '

THEOREM 1. For a space X, the following conditions are equivalent:
(i) X € AE(0);

(il) X € MAE;

(iii) X is a usco retract of R, for some A.

Proof. (i) — (i) Let f: H— X be a Z-normal mapping, where
H c Z. Consider the absolute aZ of Z and the natural projection g:
aZ — Z.Put Y = g Y(H). Observe that f o g is aZ-normal. Since dim aZ
= 0 and X € AE(0), there exists an extension h: aZ — X of fog. Then
the usco mapping r: Z — X, defined by r(z) = h(g~'(2)), is an exten-
sion of f. Thus, X € MAE.
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(i1) — (iii) Denote by C(X) the family of all continuous functions on
X. Consider X as a C-embedded subset of R€™. Hence, there exists a
usco retraction from R to X.

(ii)) — (i) Let X" be the class of all spaces Y with the following
property: Y is a usco retract of R“, for some A. We will prove (by
transfinite induction) that every element of ¢ is an AE(0)-space. Let
X € X and w(X) = 8. In this case, by Lemma 7(i1), X is a usco retract
of R¥, Hence, X is a polish space and, by a result of Chigogidze [2],
X € AE(0). Assume that 7 > N, and that for every X € ¥ withw(X) < 7
we have X € AE(0). Consider a space X € )" with w(X) = 7. By Lemma
7(i1), X is a usco retract of R" =[I{ R, a < w(7)}, where w(7) is the
initial ordinal of cardinality 7. Let r be a minimal usco retraction from R”
to X. By Lemma 3(i), for every a < w(7) there exists a countable
r-admissible set B, containing a. Next, denote A(a) =U{B;: B < a},
4o = PaylX and X, = q,(X) for each a <w(r). If a>p we put
Ps = qg° g, " Thus, we actually construct a continuous inverse system
S ={X, g5 B<a<Q(r)}, in the sense of Scepin [8], such that X

= IEP S. According to Lemmas 3(ii) and 6, we have that, for every

a < w(1), X, € X and ¢, is functionally open. Hence, ¢2*! is function-

ally open. But w(X,) <7, so X, € AE(0) for each a < w(7). Finally,
Lemma 7(i) implies that ¢2*! has a polish kernel. Therefore, it follows
from Lemma 5 that ¢2*! is 0-soft for every a < w(7). So, all spaces X,

a
a+1

and all mappings g**! are AE(0) and 0-soft, respectively. Therefore,
X € AE(0).

LEMMA 8. Let r be a usco mapping from M to a compact space X and let
M be a dense subset of Y. Then r can be extended to a usco mapping from Y
to X.

Proof. For every y € Y denote by U(y) the local base at y in Y.
Then the usco mapping r;, defined by r,(y) = {c(r(UN M)): U e
U(y)}, is the required extension.

LEMMA 9. Suppose Z =TI{ Z: s € S} is a product of separable metric
spaces and Y is closed in Z. Let r be a minimal usco mapping from Z to Y
and let X be a subset of Y such that r(x) = {x} for every x € X. Then the
following holds:

(i) r(x) = {x} for every x € G4( X);

(i) 7(G5(M)) C G5(H) for every H C Y and every M C r*(H).
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Proof. (i) Suppose r(x,) # x, for some x, € Gs(x). Take a point
y € r(xy)\ {x,} and a countable r-admissible set B C S such that
Ps(¥) # py(x,). Since pz'(py(x,)) N X # @, choose x € pz(py(x,))
N X. Lemma 4(ii) implies py(x) = pp(r(x,))- This is impossible because
Xy, ¥ € r(x,) and py(x,) # pp(y). Hence, r(x) = {x} for every x €
Gs( X).

(ii) Assume H C Y and M C r*(H). Let r(x,)\ Gs(H) # @ for
some x, € Gs(M). Take a point y € r(x,)\ Gs(H) and a countable
r-admissible set B C S such that pg(y) & pp(H). Next choose a point
x € pz(pp(x,)) N M. Then, by Lemma 4(ii), we have pg(r(x))=
pr(r(x,)). But r(x) C H; so pg(r(x,)) € pp(H). This contradicts py(y)
& pp(H). Therefore, r(G;(M)) C Gy(H).

THEOREM 2. For a space X, the following conditions are equivalent:
(i) X € ANE(0);
(i) X € MANE;
(iil) X is open in its Hewitt-realcompactification vX and vX € AE(0).

Proof. (i) — (ii) This implication can be proved as the implication
(i) — (ii) of Theorem 1.

(i) — (iii) Consider X as a C-embedded subset of R*, where 4 is the
family of all continuous functions on X. Clearly, »X = cl( X). Since
X € MANE there exists a usco retraction 7, from an open subset U of R
to X. It is easily seen that U N »X = X i.e. X is open in »X. Identifying
R with (0, 1), we consider R* as a dense subset of I, where I = [0, 1]. Put
Y = cl;«(X). By Lemma 8, there exists a usco extension r,:
Int,«(cl,«(U)) = Y of r;. Let r, be a usco mapping from I to Y defined
by letting r;(y) = ry(y), for y € Intu(cl;«(U)), and ry(y) = Y, other-
wise. Denote by r a minimal usco selection for r;. Since each point
z € I*\ R" is contained in a Gs-subset H(z) of I with H(z) N R* = &,
the Gg-closure G5( X) of X in I coincides with » X. So, by Lemma 9, r is
a usco retraction from Gs(U) to vX. Here, G5(U) is the G,-closure of U
in R4. It follows from Lemma 1 that there exists a countable set B C 4
such that G4(U) = pz(U) X R\B, The space p,(U), being a polish
space, is an AE(0). Hence, G4;(U) € AE(0) as a product of AE(0)-spaces.
Thus, »X is a usco retract of an AE(0)-space. Therefore, by Theorem 1,
v X € AE(0).

(ii1) — (i) This implication is obvious.
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COROLLARY 1. Let X € A(N)E(0) and let F be a Gg-subset of X. Then
the Gg-closure of F in X is also an A(N)E(0)-space.

Proof. Let X € ANE(0). Since »X € AE(0) there is a minimal usco
retraction r from R* to vX for some A. The set F is'Gy in »X because X
is open in »X. Hence, r*(F) is a Gssubset of R*. By Lemma 1,
G,5(r¥#(F)) is a product of polish spaces, so Gs(r*(F)) € AE(0). Next,
Lemma 9 implies that the Gg-closure Gs(F) of F in »X is a usco retract
of Gg(r¥*(F)). Thus, G5(F) is also an AE(0)-space. But Gs5(F) N X is
open and dense in Gg( F'). Consequently G5(F) N X € ANE(0). However,
Gs(F) N X is the Gg-closure of F in X.

By the same arguments one can prove that the Gg-closure of F in X is
an AE(0)-space if X € AE(0).

THEOREM 3. Let X be a pinnate in the sense of Arhangel’skii [1]
ANE(0)-space. Then v X is Lindelof and Cech-complete.

Proof. First we will prove that X is Cech-complete. Consider the
Stone-Cech compactification 8X of X. Denote by Z the space obtained
from BX by means of making the points of SX \ X isolated. We observe
that X is a closed C-embedded subset of Z. Since X € ANE(0), there is a
usco retraction from U to X, where U is an open set in Z containing X.
Now, to prove that X is Cech-complete one can use the arguments of
Przymusinski [7, the proof of Lemma 2].

Next, let 7, be a usco mapping from R to »X for some 4. Consider
R* as a dense subset of I¥ by identifying R with (0,1), and put
Y = cl«(vX). By Lemma 8§, r, is extendable to a usco mapping r from
I to Y. Wlog, we assume that r is minimal. Put H = r*(X). H is a
Gysubset of I? because X is Cech-complete. Since Gy(X) = X, it
follows from Lemma 9 that r is a usco retraction from Ggz( H) to »X. So,
v X is closed in G5x( H). But, by Lemma 1, G4;( H) is a Lindelof Gs-subset
of I“4. Therefore, »X is Lindelof and Cech-complete.

COROLLARY 2. Every pinnate AE(0)-space is Lindelof and Cech-com-
plete.

An embedding j of X in Y is said to be d-regular [11] (br. a
d-embedding) if for every open subset U of j( X) there exists an open
subset e(U) of Y such that the following conditions are fulfilled:

(1) e(2) = 7;

(2) e(U) nj(X)=U;

B)e(U)yne(V)y=e(UnN V),
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Shirokov [11] proved that X is a Dugundji space if and only if every
embedding of X in a Tychonoff cube is a d-embedding. We give a similar
characterization of Cech-complete AE(0)-spaces.

THEOREM 4. For a Cech-complete space X the following conditions are
equivalent:
(i) X is a Cech-complete Lindelof AE(0)-space;
(i1) every C-embedding of X in any space is a d-embedding;
(iii) X is a d-embedded subset of R, for some A.

Proof. (i) — (ii) Suppose X is a C-embedded subsert of a space Y.
Then there exists a mapping h: Y = R“X) such that 4| X is a homeomor-
phism and clzen(A( X)) = vX. Let r be a usco retraction from R® to
vX. For every open set U in X, we let e(U) = h~}(r*(V(U))), where
V(U) =U{W: Wisopenin vX and W N h(X) = h(U)}. It is easily seen
that this operator satisfies the above three conditions. Thus, X is d-em-
bedded in Y.

(i) — (iii) This implication is obvious.

(ii)) = (i) Let X be a d-embedded subset of R* for some A. So, there
exists a d-regular operator e from the topology of X to the topology of
RA. Consider R* as a dense subset of I* and put Y = cl,4( X). Define a
usco mapping r; from R* to Y by letting r,(x) = N{cly(V): x € e(U)},
for x € U{e(U): U is open in X}, and r(x) = Y, otherwise. Clearly,
ri(x) = {x} for every x € X. Next, by Lemma 8, r, is extendable to a
usco mapping r from I* to Y. We assume that r is minimal. Since X is
Cech-complete, the set H = r*(X)is G, in I*. Lemma 9 implies that r is
a usco retraction from Gy(H) to Gs(X). By Lemma 1, Gs(H) is a
Lindelof Cech-complete AE(0)-space. Therefore, Gy(X) being a usco
retract of G5( H), is a Lindelof Cech-complete AE(0)-space too. It remains
to prove that G4( X) is the Hewitt-realcompactification of X. It is known
[2] that every AE(0)-space is perfectly k-normal in the space of §éepin [10]
and that every Gg-dense subset of a perfectly k-normal space Z is
C-embedded in Z [12]. Hence, X is C-embedded in Gg( X). Therefore,
G5( X) 1s the Hewitt-realcompactification of X.

COROLLARY 3. For a Cech-complete realcompact space X the following
conditions are equivalent:
(1) X is a Lindelof AE(0)-space;
(i1) every C-embedding of X in any space is a d-embedding;
(iii) X is a d-embedded subset of R*, for some A.
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Let us note that the completeness in Theorem and Corollary 3 is

essential. Indeed, every non-complete subspace of R¥0 is d-embedded in
R™° but is not an AE(0)-space.

We have been unable to decide the following problems: Is every

Lindelof AE(0)-space Cech-complete? Is every normal AE(0)-space Lin-
delof?
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