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A GENERALIZATION OF A THEOREM

OF DELAUNAY TO ROTATIONAL

fF-HYPERSURFACES OF σΓTYPE IN Hn+ι AND Sn+ι

IVAN STERLING

In 1841 Delaunay proved that if one rolls a conic section on a line in
a plane and then rotates about that line the trace of a focus, one obtains
a constant mean curvature surface of revolution in R3. Conversely, all
such surfaces, except spheres, are constructed in this way. In 1981,
Hsiang and Yu generalized Delaunay's theorem to constant mean curva-
ture rotation hypersurfaces in Rn+1. In 1982, Hsiang further generalized
Delaunay's theorem to rotational W-hypersurfaces of σΓtype in Rn+1.
These are hypersurfaces such that the /th-basic symmetric polynomial of
the principal curvatures (k^x)), namely,

is constant.
Here we generalize Delaunay's theorem to rotational JF-hyper-

surfaces of σΓtype in hyperbolic (n + l)-space Hn + ι and spherical
(n + l)-space Sn+ι. Specifically we generalize the "rolling construction"
of Delaunay. Various geometrical properties of these surfaces and their
generating curves have been studied by Hsiang.

1. The reduced ODE of rotational σΓW-hypersurfaces in Rn+1,

Hn+ι

9 or Sn+ι. Following Hsiang [4], in this section we shall give a
unified treatment of the reduced ODE of rotational σ^W-hypersurfaces in
a space form of constant curvature. In order to do so, we shall first give a
unified description of the orbital geometry of the O(n) transformation on
the simply connected (n + l)-dimensional space of constant curvature c,
Mn+ι(c).

Orbital geometry of the O(n)-action on Mn+ι(c). Let Mn+ι(c) be the
simply connected (n + l)-dimensional Riemannian space of constant
sectional curvature c and O{n) be an isometric transformation group on
Mn+ι(c) fixing a given geodesic line, namely, a rotational transformation
group of the usual type fixing a rotational axis Mι. Then (O(n), Mn+ι(c))
consists of only two types of orbits, namely, fixed points and orbits of the
type Sn~ι = O(n)/O(n - 1). Let O(n - 1) be an arbitrarily chosen and
then fixed principal isotropy subgroup of (O(n), Af>π+1(c)), Z 2 =
N(O(n - 1))/O(n - 1) and M\c) = F(O(n - 1)). Then it is easy to see
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that the upper half-plane Af+(c) consists of a fundamental domain of
(O(n), Mn + 1(c)) which is perpendicular to all orbits. Hence

Mn+I(c)/O(n) = M2(c)/Z2 = Ml(c),

where F(O(n)) = Mι = the boundary of M\(c). We shall parametrize
M\(c) by the following coordinate system:

Choose a base point O e M 1 and let x be the arc length on Mι

travelling in the positive orientation of Mι = 8M2(c). To each point
p e M\{c), let pq be a geodesic arc which realizes the shortest distance
between p and Mι (such a /?# is unique except when p is the center of
M\{c), c > 0). We shall assign to the point p the coordinate (x, y) where
x is the coordinate of q in M1 and }> = the length of pq. It follows from
the above definition that

-oo < x < +00, 0 < j > < + o o i f c < 0 ,
IT IT ~ *Π . „ Λ

- - p < x < - 7 = r , 0 < j < - p i f c > 0 .
vc vc vc

(In the case c > 0, the coordinate of the center of M\(c) is (x, π/ \/c), x
arbitrary, and hence non-unique.)

Let G(p(x, y)) be the orbit of p(x, y). Then it is not difficult to
show that G(p(x, y)) is isometric to the (n - l)-sphere of radius f(y)
where

/ω-

y if c = 0 (euclidean case),

— sinyfcy if c > 0 (spherical case),

sinh{~—~cy if c < 0 (hyperboliccase).
' — c

Moreover, the orbital distance metric on Mn+ι(c)/O(n) is the same as
the restriction metric of M\(c) and hence it can be given in terms of the
coordinates (x, y) as follows:

ί
dx2 + dy2 if c = 0 (euclidean case),

cos2yfcy - dx2 + dy2 if c > 0 (spherical case),

coshV — c.y * dx2 + φ>2 if c < 0 (hyperbolic case),
Reduced ODE. Let Σ" be a given O(«)-invariant hypersurface in

Mn+\c), γ = Σn/O(n) c Mn + I(c)/O(«) = M 2(c) be the generating
curve of Σ" and II be the second fundamental form of Σn at γ(x) =
(x(s), y(s)) Φ 0. Then it is easy to see that II is O(n — l)-invariant and
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hence it has only two distinct eigenvalues corresponding to the two
non-conjugate O(n - l)-invariant subspaces of the tangent space of Σn

of y(s).

PROPOSITION 1 [4]. The principal curvatures of Σn at y(s) are given as
follows:

. dO r,,/ \ dX » . f. . -i

& 0 = — - / (y)-fc, multiplicity I,

kλ = — cosσ } v , multiplicity (n — 1),

where σ is the angle between d/dx and the tangent vector of γ.
Suppose Σn is a rotational σrW-hypersurface in Mn+1(c). Then its

generating curve γ = Σn/O(n) is a curve in M\{c) which is characterized
by the following ODE, namely

[ -l\ht, \ < l < n - \ ,

/T \ ί f ' ( y ) \ " Ida , s d x \ ( 1 λ « , ,
( " M ~ c o s σ 7 ω " J u " / ω ^ ) = ("1)Λ"' /=n>

where Λ; is the normalized Ith mean curvature of the σrW-hypersurface Σn.

REMARK. In the case of / odd, the normalized /th mean curvature, hh

changes its sign if one reverses the orientation of the hypersurface. Here
we shall always choose the orientation so that hι > 0.

2. The rolling construction and a generalization of Delaunay's theo-
rem in Hn+1 and Sn+1.

REMARK. The constructions, theorems, and proofs are similar for the
hyperbolic and spherical cases. Hence we carry out the details only in the
hyperbolic case. After the main theorem we will state the corresponding
result for the spherical case.

REMARK. For simplicity and comparison we follow the format of
Hsiang[2,§3].
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Since all Mn+ι(c), c < 0, are obviously homothetically equivalent, it
is easy to reduce our investigation to the special case of c = — 1. There-
fore, in this section, we shall always assume that c = - 1 and denote
Mn+\-l) simply by Hn+ι.

Rolling construction. Suppose Γ is a curve in M%( — 1) given as a
geodesic polar coordinate graph of r = r(θ). If one rolls Γ along the
x-axis, then the locus of the origin of the geodesic polar coordinate system
attached to Γ plots another curve Ω. As indicated in Figure B, one has the
following geometric relationship between Γ and Ω:

FIGURE B

Let s and £ be the respective arc length parameters of Ω and Γ
starting at a pair of corresponding points Po and Qo. Let φ be the angle
between Ox and QP and φ' be the angle between - 3/3y and PQ. Then

(2.0)
dy Λ dx
-j- = smσ, cosh v — = cosσ,
ds J ds
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thus dy/dx = cosh j> tanσ and by hyperbolic trigonometry,

(A) cosφ = tanh(x - ξ) cothr

(B) sinhj; = sinφ sinhr

(C) dr= - cos φdξ

^ ' ' (D) coshr = cotφ cotφ'

(E) cos φ' = tanh y - coth r

(F) cosφ = sinφ' cosh y.

Differentiating (A) and (B) gives

(A') -sinφdφ = ~tanh(x - ξ) csch2rdr + sech2(x - ξ)

cothr(dx - dξ)

(Br) coshy dy = sinφ coshrdr + cosφ sinhr dφ.

Substituting (A) in (Ar) and (B) in (B') gives

(A") — sinφdφ = —cosφ sechr cschrdr

4-(cothr - tanhr cos2)(<ix - dξ)

(B") cosφdφ = cschr coshydy — sinφ cothrdr.

(A") and (B") combined give

(*)

(-cosφ sechr cschr dr 4-(cothr - tanhr cos2φ) \dx - dξ))cosφ

4-(cschr cosh ydy — sinφ cothrdr)sinφ = 0.

Using (C), the coefficient of dr in (*) becomes

— cos2φ sechr cschr + cothr — tanhr cos2φ — sin2φ cothr

which by a simple computation is 0. Hence (*) becomes

(*') (cothr — tanhr cos2φ)cosφίfcc + cschr coshj sinφdy = 0.

Using (2.0), another simple computation yields

(*") coshr = -cotφ cotσ.

This combined with (D) finally gives

(2.2) σ = - φ ' .

Geometrically this corresponds to the fact, as in the euclidean case, that
the tangent vector to Ω is orthogonal to PQ.

Hence

t tanh v tanh y
tanh r = — = —

cos φ' cos σ
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and

dr = -sinφ' cosYvydζ = sinσ cosh>>d£.

By differentiating with respect to s, one obtains

dr = cosh2r tanσ sech2y + tanhr -7- I ώ,

(2.3) d£ = sech >> cosh2r sec σ sech27 + tanhr -7- ίfe,

d0 = — r — sech2 v 4- tanh r -3- 1 ds.
tanh r \ ^ ds J

PROPOSITION 2. Suppose Ω is 0 C2-curve given by y = f(x) > 0. If the
center of curvature of Ω never lies on the x-axis, then there exists a unique
geodesic polar coordinate graph Γ such that Ω is the trace of the "pole "by
rolling Γ along the x-axis.

Proof, Under the assumption of the proposition, one always has
sech2 y + tanh r dσ/ds Φ 0. Therefore it never changes its sign. Choose a
starting point (x0, y0) and assign the corresponding values of s = 0,
θ = 0, r = r0 = arctanh(tanh j>0/cosσ0), then

Jo
s e c h 2 ; ; + tanhrf ( s e c h;; + tanhr ^

Jo tanhr \ J ds
is clearly a strictly monotonic function of s. Hence one may solve for s in
terms of θ and substitute it into r = arctanh(tanh>>/cosσ) = r(s). It is
rather straightforward to verify that if one rolls the curve Γ (defined by
the above geodesic polar coordinate graph r = r(θ)) on the x-axis, then
the trace of the origin of its attached geodesic polar coordinate system is
exactly the given Ω. D

Rolling construction of solution curves of (I/). Let γ be the generating
curve of an O(«)-invariant hypersurface Σn in Hn+ι satisfying the
W-condition σi(kv..., kn) = h. Then γ is a solution of (I/), namely

/T \ ί w - l l / cosh Λ'-Vέ/σ . u cosσ \
(I/) \i ϊ -cosσ . , -7 s m h v — 7 —

L / — 1 J V smhj>/ \ds ' coshj/

1 < / < « - 1 ,

ί c o s h j Λ ^ V d σ . cosσ \ . Λ,n, Ί-cosσ . ' \ -7—smhj—r— = (-1) Λn, / = «.
\ smhy/ \ ds J cosh^/ v y n
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Note that (I,) (resp. (Iπ)) has the "circular" solution tanh r =
{{n/{n - Z))/*,)1/' (resp. tanhr = (A J 1 / n ) .

LEMMA 1. Let γ be a solution curve of (I/). // there exists a point,
γ(sQ), on γ whose center of curvature lies on the x-axis, then γ is a circular
solution.

Proof. Suppose y(s0) = (x0, y0) is such a point of γ. Let Qo = (£,0)
be the center of curvature and Ro be the radius of curvature of γ at
(JC0, y0). Then it follows easily from equation (I,) that Ro =
arctanh((ΛJ1/w) if / = n and Ro = arctanh(((«/(« - I))/*,)17') if /<
n— 1. Therefore, the circular solution of radius Ro and center at Qo is a
solution curve of (I,) which tangents γ at (x0, y0). Hence it follows from
the uniqueness of (I,) that γ must coincide with the above circular
solution. D

THEOREM 1. Suppose γ is a non-circular solution curve of (I7). Then γ
can be obtained by the above rolling construction with respect to the geodesic
polar coordinate graph Tofr = r(θ), where 1/tanhr is the inverse function
of the following integral, namely

θ = ±fbι(w)~1/2dw, w = 1/tanhr,

where

{a\nW

ι-{n-l)h,\Vn-{W

2-\), 1 < / < n - 1,

\a\wn-l\2/n-(w2-l), l=n.

Proof. By Proposition 3 and Lemma 1, there exists a unique geodesic
polar coordinate graph Γ of a suitable function r = r(θ) such that γ can
be obtained by the rolling construction of Γ. It follows from (2.2) and
(2.3) that

' u tanhj;
tanhr =

cosσ
Ar

(2.4)

do tanhr do /ds

dr . Λ Λ d ,, Λ v-7^ = smhr coshr tanσ, or -j^(/n tanhr) = tanσ
au au

dθ 1 4- tanh r {do/ds + sinh y cos σ/cosh y} *
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Since cosσ = cosφ' = tanh y coth/% (Iz), / < n — 1, becomes

or

- / , (do

or

— / do . , cos σ I , / T

7 r t a n h n — smh v — : — } + 1 = tannr h,
(n - I) \ ds J coshjj ι

i ί do . Έ cosσ \ n — I (Λ U Ί \
tanh r{ —, smh y r— > = — : — (1 - tanh' r hλ.

\ ds * cosh>'j / v u

Also:

do n - I
tanh r -j- = — : — ( l - tanh ;r h.) + tanh2r cos2σ.

ds I v }

Combining all the above relations, one obtains the following corre-

sponding ODE of r = r(θ) by differentiation and substitution.

d ~> do ( (do \
(II,) — - ( I n tanhr) = (1 + tan σ) -γjr = {1 -I- x-j^ In tanhr

dθ dθ \ [dθ I

((n - / )//)( ! - tanh'r λ,) + tanh2r cos2σ
X •

Next, let us proceed to integrate the above ODE explicitly by a suitable

substitution of variables. Set

/* c\ i Λ du 1 dr
(2.5) u = In tanhr, υ = -jτ = z—ΐΓ~ ~TΞ
v } dθ tanhr dθ
Then

d2

 Ί Λ dv du dv dv
—-In tanhr = -JK = -TH * τ ~ = υ ~r
dθ2 dθ dθ du du

and hence (IIj) becomes

υ ^L = fi + ^2\ (n ~ l)(ι ~ elu ' hι) + e

V du V n-(n- l)elu -hι
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or

dv _ { v2 | le2u (n - /)(! - elu - ht)
V du V (n - /)(i - e

/u h) n ~{n - l)elu ht

or

Integrating both sides of (2.6), one gets

(2.7) //i(l + v2 - e2M) =

That is,

2/"(2.8) 1 + Ό2 - e2u = ae2M{e-/M|w - ( π - /)e/w Λ7 |}
2/",

α = e

Solving for

1 d tanh r

dθ

tanh r
tanh r dθ

= ϋ = ±(αe 2 "(e~ / M |π - ( π - /)e/M h$/n - ( 1 - e 2 t

= ± la tanh 2 r (tanh ~ιr\n —{n — /)tan / r - Λ7|)

- ( 1 - t a n h 2 r ) } V 2 .

Set H> = 1/tanh r. Then

dw __ J( l/tanhr) _ 1 dtanhr

dθ " (i^ ~~ tanh2r ^^

= +{a\nw - ( Λ - /)Λ7|
2/n -

Therefore, ^ = μj b^wy^dw, where ό;(w) = a\nw - (n - /)Λ7|
2/n -

(w2 - 1). The case / = n is similar. D
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The spherical case. Similarly, in the spherical case we may assume
c = 1, and we have

THEOREM Γ. Suppose γ is a non-circular solution curve of (Iz), in
M 2 ( l ) . Then γ can be obtained by a spherical rolling construction with
respect to a spherical geodesic polar coordinate graph Γ of r = r(θ), where
1/tan r is the inverse function of the following integral, namely, θ =
±J bι(w)~ι/2dw, w = 1/tanr, where

. ί α | π w / - ( « - / ) Λ / | 2 A - ( w 2 + 1 ) , l<l<n-l,

\ α | ι v w - l | 2 A - ( w 2 + l) , / = «.

Proof. Similar to that of Theorem 1 and hence omitted.

REMARK. For the case n = 2, / = 1, i.e. constant mean curvature
hypersurfaces in H3 we have

bλ(w) = (2w - hx) - w2 + 1 or (hλ - 2w) - w2 + 1

which can easily be integrated to obtain the equation for the rolling curve

— — = w = a + bcos(θ + c), a, b, c constants,

i.e.

1
tanhr = a + bcos(θ + c) '

Similarly for S3 we have

tanr = a + bcos(θ + c) '

Recall in i?3, in the classical Delaunay theorem, the rolling curve is a
conic, which in polar coordinates is

1
r — a 4- 6cos(0 + c) '
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