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THE PICARD NUMBERS OF ELLIPTIC SURFACES
WITH MANY SYMMETRIES

PETER F. STILLER

In this paper we compute the Picard numbers of several families of
elliptic surfaces (see Example 1, §5 for a typical result.) This is equiv-
alent to the difficult problem of determining the rank of the Mordell-Weil
group of certain elliptic curves over function fields. Our method is to
study the action induced by automorphisms of these surfaces on a
relevant part of the cohomology. The cohomology classes are represented
by certain inhomogeneous differential equations—our so-called inhomo-
geneous de Rham cohomology—where the effect of the action is easily
understood.

1. An overview. A complex surface is said to be elliptic if it can be
mapped onto a curve in such a way that the general fiber is a curve of
genus one (see Kodaira [9] and [10]). In this paper we focus on computing
the Picard number of certain surfaces of this type. Recall that the Picard
number is defined to be the rank of the Neron-Severi group of the surface
—that is, the group of divisors modulo algebraic equivalence—which is
known to be a finitely generated abelian group.

Let E be an elliptic surface and denote by TΓ: £ - ^ I a projection of
E onto a curve X with generic fiber 2sgen a curve of genus one over the
function field K{X) of X. We shall assume that π: E -> X has a section
#: X^>E,π°# = lx, that the /-invariants of the fibers are not constant,
and that there are no exceptional curves of the first kind in the fibers. Let
S c l b e the finite set of points at which the family E/X degenerates—
that is, where π~\s) fails to be an elliptic curve. (Note that there are no
multiple fibers.) The degenerate fiber types are classified (see Kodaira [9])
and we shall label the types following Kodaira. We denote by NS(i?) the
Neron-Severi group of E and by pE its rank which is called the Picard
number of E.

The group NS(£) is naturally a subgroup of H2(E,Z)—both are
torsion free in our case (see Cox and Zucker [1])—and includes in
Hι(E, Ω )̂ the (1,1) part of the Hodge decomposition of the cohomology,
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H2(E,Q,ofE:

H2(E,Z)

C *

NS(£) H2(E,C)

Of course, by the Lefschetz theorem on (1, l)-classes (Griffiths and Harris
[5]), NS(£) = H\E, Z) Π H\E9 Ώ

ι

E) in H\E, C). So NS(£) is just the
group of topological complex line bundles which admit an analytic
structure.

In order to compute the Picard number, as we do in the examples
below, it will be necessary to have a thorough understanding of the
structure of the cohomology of our surfaces and an effective way of
representing it.

We begin by considering the Leray spectral sequence for π: E -> X
and the constant sheaf Q on E:

(1.1) E™ = HP(X, R^Q) => H*(£,Q).

This is well-known to degenerate at E2. Thus we have a filtration of the
rational cohomology

with

F* = ker(i/ 2(£,Q) - H°(X, R2

consisting of classes which restrict to zero on the fibers; with

F2 = im(H2(X,Q) ^H2(E,Q)) = Q[EXo], EX<> =
X<>

generated by the cohomology class of the fiber, and EQ/FQ =
H\X, Rιπ*Q). Moreover, the Hodge decomposition of the complex
cohomology H*(E,C) induces a Hodge structure on the filtration quo-
tients coming from the Leray spectral sequence over C (Cox and Zucker
[1]). The most interesting term is H\ X, Rιπ*C) and we express the Hodge
structure on it by writing

H\X, Rιπ*C) = H20 Θ H11 Θ H°>2.

Notice that H20 is in fact all of H°(E, Ω|).
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Now that we understand the structure of the cohomology of E over

X, we will need to know where the algebraic cycles fit in. We first describe

PROPOSITION 1.2 {Shioda [14]). Let EXQ = π~\x0) denote a good fiber

over some point x0 e X — S; let Ds0,..., Ds t,..., Dsnΐs_v s e S, denote

the {reduced) irreducible components {ms in number) of the singular fiber

π~λ{s) with Ds0 being the unique component meeting the image of the zero

section />\ and let sv..., sr be sections which modulo torsion form a basis for

the group of sections with tv t2 sections of order ev e2 respectively, 1 < eβ,

e2 I el9 generating the torsion subgroup of order eλe2. The Neron-Severi

group NS(is) of the elliptic surface E is generated by the divisiors:

EXQ, Dsi

and Dί = (tβ)-(*) (jS = 1,2)

where ( ) indicates the curve on E which is the image of the section. The

fundamental relations between these generators are {at most) the two

relations:

p T)' ~ p ( D ' (γ>}\ F + V ί D D

for β = 1,2 where ~ indicates algebraic equivalence and where As is the

{ms — 1) X {ms — 1) negative definite matrix whose {i, j)-entry is {Ds t

Ds ) the intersection number of the two divisors on E.

Proof. See Shioda [14]. D

COROLLARY 1.3. The Picard number ρE of the surface E is given by

where rE is the rank of the group of sections of E over X. D

In the examples below we shall focus on computing rE, but as this

formula shows, we can then determine pE provided we know the types of

the degenerate fibers. The latter are generally easy to determine in actual

practice. On the other hand, computing rE is usually very difficult.
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We consider the rational span of the algebraic cycles that He in the /th
level of the Leray filtration

and the resulting subspace of H\X,

w -

which makes sense because FQ = Q[EXQ\.

PROPOSITION 1.4. dimQ WQ = rE.

Proof. This is a straightforward consequence of Proposition 1.2 above
and a result of Cox and Zucker, Proposition 1.5, below. D

PROPOSITION 1.5 (Cox and Zucker [1]). Let s be any section of E over
X, then there exists a rational linear combination ΣsGSDs of the components
of the bad fibers (Ds = Σ ^ ό 1 asiDsi, asi e Q) so that [(s) - (#) +
Σ s e S i ) J lies in FQ. Moreover each Ds is unique up to a rational multiple of
the total fiber Es = π~\s) so that [(s) - (&) + Σs€ΞSDs] gives a well-de-
fined class in Hι( X, R^Q).

Proof. See Cox and Zucker [1]. D

2. An inhomogeneous de Rham cohomology. In order to actually
make computations our surface E must be given to us in a manageable
form—the most convenient being a Weierstrass model for the generic
fiber Egen as an elHptic curve over the function field K( X) of the base
curve X:

(2.1) Y2 = 4X3 - g2X- g3, g2,g,eK(X).

E is then just the relatively minimal compactification of the Neron model
of Egea/K(X) (see Neron [11]). (Note that the group of sections corre-
sponds to the Mordell-Weil group of K( X)-rational points on £ g e n.)

Choose a non-trivial derivation d/dx on K(X) by selecting a non-
constant function x ^ K(X). This function will provide us with a local
parameter except at a finite set of points. Denote by Λ the linear second
order differential operator with regular singular points
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which annihilates the periods of dX/Y for the model (2.1) above. This is
the so-called Picard-Fuchs equation (Gauss-Manin connection) and in our
case its monodromy can be taken to lie in SL2(Z)—see Deligne [2], Katz
and Oda [8] and/or Griffiths [4] for the Gauss-Manin connection in
general and Stiller [15] for details in this specific case. One can say a great
deal about Λ—in fact it is very easy to compute given the model
(2.1)—and we shall briefly recall a few facts.

First, if we write (see 2.1)

- _ χ-4 27/ _ 6 27/

where / = (gl/(gl - 2'Γg|)) and λ = {g^/gl is an algebraic function on
X with λ2 <=#(*) , then

where

(dj/dxf - Jd^J/dx2 d 2

JdJ/dx dx l o g Λ '

(dJ/dx)2(31/144J - 1/36) (dJ/dxf - Jd2J/dx2

~ J2(J - I)2 JdJ/dx

Second, the equation Λ depends on both the choice of model and the
choice of "parameter". If, for example, we were to choose another model

(2.1a) Y2 = AX' - g2X - g3, g2, g3 e K(X),

then for some g e K(X)* we would have

Si = g~4g2> g3 = 8~%

In effect, the periods have been multiplied by g and we find that the new
equation is the "twist" Ag of the original—that is, the new equation has
for its solutions g times those of the original equation Λ. Once the model
is fixed however, the equation Λ is uniquely determined (apart from
changing parameter) and we can select a basis ωl9 ω2 for its space of
solutions which precisely gives the periods of dX/Y and such that the
imaginary part of the quotient is positive, Im(ω1/ω2) > 0, on some
Zariski open subset of X. Note that Λ may have singularities outside the
set S which is the support of the singular fibers.
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Third, the differential equation Λ determines the surface E up to
generic isogeny (see Stiller [15] and [16]). Fortunately, all the important
numerical invariants (ρE> rE, q, pg, the betti numbers) are preserved under
generic isogeny, even though the fiber types may change (see Stiller [16]).
As this includes the Picard number, we might reasonably expect that ρE

can be determined from Λ. This is the motivation behind the inhomoge-
neous de Rham cohomology that we introduce below.

Finally we remark that the local monodromy of Λ is related to the
type of fiber present at a particular point—see Kodaira [9].

We begin with some definitions. Given the elliptic surface E over X,
we choose a model for its generic fiber as in (2.1) above and denote by Λ
the operator annihilating the periods of dX/Y for this model.

DEFINITION 2.2. We say that an inhomogeneous equation

Λ / = Z , Z

is exact if it has a global single-valued solution. Such a solution is
necessarily a rational function (because it is annihilated by the composite
operator ((d/dx) — (d/dx)logZ)° Λ which has regular singularities) so
that Z = ΛZ' for some Z' e K(X). We will denote the space of exact
equations by ΛK( X). D

DEFINITION 2.3. We say that an inhomogeneous equation

Λ/=Z, ZeK(X),

is locally exact if for every point p e X the equation restricted to a small
open neighborhood Up of p has a single-valued solution. Such a solution
is necessarily meromorphic in Up. We will denote the space of locally exact
equations by L^ara (for reasons that will become clear later). D

Clearly exact implies locally exact so that we can form the quotient
space. (In both cases, we view AK(X) and L^ara as subspaces of K(X)
via the right-hand side, Z, of the equation.)

DEFINITION 2.4. We define the inhomogeneous de Rham cohomology,
i/£)R, to be the complex vector space

= locally exact. D
exact
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We remark that this definition is essentially independent of the

choices made above. If we choose another model as in (2.1a), then for an

inhomogeneous equation Λ/ = Z, Z e K( X), we have the relation

where g e K( X) is the factor of homothety in the change of model. We

can then identify L%m = Lff**, etc., by simple (linear) equivalence send-

ing Z to gZ. In addition if we change parameter from x to say t, then we

have the relation

where Λn e w is the operator expressed in terms of t:

Anew ^ i pnewj^_ ι /-)new

- dt2 dt + Q

and / is the original solution Λ/ = Z. Thus the quadratic differential

Z(dx)2 is independent of parameter—a remark that will be useful in our

calculations.

In order to understand the conditions imposed by local exactness we

reformulate it in terms of residues.

PROPOSITION 2.5. An equation Λ/ = Z is locally exact if and only if for

every p e X and every single-valued (necessarily meromorphic) solution ώ

of A atp the differential

ώZ
-γprdx, W the Wronskian,

has zero residue. (Thus locally exact might also be properly called second
kind.)

Proof. In a small enough neighborhood Up of p, we can select a base

point xQ9 other than p itself, and via variation of parameters, write our

multivalued solution / in the form

£ I ex ω2Z J I (X
f==\j -~irdx + ci ωι + \J

\ XQ \ x0

-jfrdx +

C l , c 2 e C , x e Up-
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where ωv ω2 are a basis for the space of solutions to Λ at x0 (usually
normalized to give the periods of dX/Y and so that Imco1/ω2 > 0) and
W = ωι(dω2/dx) - ω2{dωx/dx) is the Wronskian. Note that we have
somewhat abused notation by using x for both a variable point in the
upper limit of integration and as parameter.

Now consider a simple path yp around p

and let My e SL2(Z) be the local monodromy of ωv ω2 around yp. The
condition on the residues is vacuous unless the local monodromy is (Q ?),
i.e. trivial, in which case all solutions of Γ are single-valued, or unless the
local monodromy is conjugate to (Q \) in SL2(Z) in which case there will
be a one-dimensional space of single-valued solutions. (In terms of the
surface E, the fiber will be good in the first case and have type Ib9 b > 0,
in the second—see Kodaira [9].) We caution that Λ may have cosingular
points—i.e. points with no local monodromy but at which Λ is singular
and has (possibly) meromorphic, but single-valued, solutions.

Now assume the residue condition, then analytic continuation of /
around yp gives

/ -» / + m ωx + n ω2
>p *P

with the periods my, n G C One easily calculates that
Ύp Ύp

[ Wl Yl I "*"" I y j v \ v* | Λ / I I Λ/i I \ f* /"» I i Λ/f — T I

" V ' Y 1 I 1V. i π / ' 2 V * D / I v L 1 ' 2 J V y / '

where

w ax

and

χ2\yp) ~ f w
\ π

Now if My — I is invertible, we can always choose [cl9 c2] so that
[my, ny ] = [0,0] and then that particular solution / will be single-valued.
If on the other hand M, — / is not invertible, we will have either

>P
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MΎ = (o ?) or conjugate to (Q ί), b > 0. In the first case, ωλ and ω2 will
be single-valued at p and the residue conditions then imply that [raγ, nγ ]
= [0,0] so that every solution to Λ / = Z at ^ is single-valued (but
perhaps meromorphic). Finally in the second case, we can assume without

ίy
'P

loss of generality that ωl9 ω2 were chosen so that My = (ι

0 J), b > 0. We

then have

[ m V nyP] =

As ω2 is single-valued by assumption, the residue condition gives ^(γ^)
= 0 and so by setting cλ = -x2(yp) we get a single-valued solution.

Conversely, if we assume that locally single-valued solutions exist,
then we can check the residue conditions at the points where the local
monodromy Mγp is (Q J) or conjugate to (ι

0 J), 6 > 0, by reversing the
above argument. D

We would like to identify H^R with the relevant part of # 2 ( £ , C ) ;
namely the filtration quotient H\X9 iϊV#Q. In order to do this, we offer
another interpretation of H^R.

As usual let S c X denote the set of true singularities of Λ; that is,
the set of singular points where the local monodromy is non-trivial. We
can define a local system VA (see Deligne [2]) on the Zariski open set
Xo = X - S by considering the locally constant sheaf on Xo whose
sections (in small open sets) are the single-valued solutions to Λ (which, as
we have pointed out several times, may be meromorphic). Consider now a
locally exact equation Λ/ = Z, and the composite third order equation

The residue conditions for local exactness assure us that at every point
p e Xo the equation A has trivial local monodromy, i.e. that all the
solutions at p are single-valued. Thus we can associate to Λ a local system
V~κ as we did above for Λ and it is clear that we have a canonical inclusion

with cokernel the trivial local system C (essentialy CZ). Thus each
element of L^ara defines an extension in Ext1(C, VA) over XQ.

DEFINITION 2.6. An extension of local systems on Xo c X

o - vA - vλ - c - o
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(or more generally) is said to be locally split if for every point p e X the
extension becomes trivial (i.e. splits) on some punctured neighborhood
Up-{p} of p. •

We can now characterize H^R as the set of locally split extensions;
which we denote by Ls.Ext1(C, VA).

PROPOSITION 2.7. The inhomogeneous de Rham cohomology HpR is

naturally isomorphic to the space of locally split extensions of C by VA,

Ls.ExtHC, VA).

Proof. As above each locally exact inhomogeneous equation Λ/ = Z
gives rise to an extension so that we have a map

Λ/= Z -> 0 VA Vλ
0.

The extension can be characterized by the monodromy of A with respect
to the specific basis /, ωl9 ω2 for any choice of particular solution /. That
monodromy takes the form

mγ nγ

where My e SL2(Z) is the monodromy of Λ with respect to ωl9 ω2

around γ and /-»/ + myωx + nyω2 around γ so that mγ, ny are the
periods as before. Given a point | ) G l w e can always choose a branch of
/ which is locally single-valued at p because we have assumed local
exactness. Thus we can arrange that in a punctured neighborhood of p the
monodromy will be

0 0

for a simple circuit around p. This means that our extension is locally
split. Thus we have that our map goes into locally split extensions

-> l.s.Ext^C, VA) c Ext^C, VA).
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It is obvious that an exact equation gives rise to the trivial (globally split)
extension on XQ9 and conversely. Thus we have an injection

Hι

ΌR -> Ls.Ext^C, vA) c Ext^C, VA).

Finally any extension over Xo

can be given by some differential equation A, V = V~A, (see Deligne [2])
and it is clear that by a proper choice of frame we can arrange that the
solutions of A also be solutions of A. We then choose any section of V
lifting I G C , view it as a solution of A via our choice of frame and apply
A to it to get a Z. Moreover, if the extension was locally split it is easy to
see that

Λ / = Z

is then locally exact. In other words, every locally split extension over Xo

arises from some inhomogeneous equation which is locally exact. Thus our
map is surjective and

i / ^ - l . s . E x t H C , ^ ) . D

We remark that geometrically the third order equation A will be the
differential equation satisfied by a normal function in suitable cases.

To complete our identification of H^R with H\ X, Rιπ*C), note that
on Xo the group Ext^C, VA) is isomorphic to Hl(^(X0, x0), VAfXo) where
Hι is the ordinary group cohomology and mx acts on the fiber of VA at x0

via the monodromy. (In fact H1 is often defined to be Ext\(A, VXo) where
A is the group algebra/C of mx and V is viewed as an A -module in the
obvious way.) In terms of cocycles: given an extension on Xo

or equivalently an inhomogeneous equation

Λ / = Z ,

the assignment

γ G IΓ^XQ, X0) -> [mγ, ny] G C 2,

where my and nγ are the periods of /, gives rise to a cocycle in group
cohomology— it satisfies the usual relation

[ m γ τ , nyτ] = [ m γ , ny]Mτ + [ m τ , nT].
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It is easily checked that such an assignment is a coboundary, i.e.

[mΎ, nΎ] = [c1? c2](Mγ - i) for every γ e ir^X^ x0),

if and only if A/ = Z is exact.
Now on Xo the sheaf (local system) Rιπ*C\x = R\π\v-ι^x^)^C is

just VA9 and it follows that

H\X0, Rιπ*C\Xa) > ^ ( ' l ί ^ o . *o). FA. J .

The left-hand side is the cohomology with "twisted coefficients", and the
isomorphism results from the fact that Xo is a K(π, 1). Thus

Considering the inclusion i: Xo -> X, we see that the exact sequence
of low order terms in the Leray spectral sequence for Rιπ*C\Xo is

but it is well known that i*(Rιπ*C\x) = Rιπ*C (see Kodaira [9] or Cox
and Zucker [1]) and moreover that the last sheaf jR1/+(i?17r^C|Zo) = Rλi*VA

is supported at only a finite number of points in S. Thus the sequence
reads

0 -* H\X, Rl<n*C) -> Hι(X0, Rιπ*C\Xo) A H°{X, R

a n d w e see t h a t H\ X, Rιπ*C) is a s u b g r o u p of H\X0, Λ V ^
E x t 1 ( £ , ^ Λ ) d e t e r m i n e d b y c o n d i t i o n s a t s o m e of t h e p o i n t s in S. A s
e x p e c t e d w e h a v e :

THEOREM 2.8. The inhomogeneous de Rham cohomology H^ is natu-
rally isomorphic to H\X, Rιπ*C).

Proof. We have see that H\X0, R^C\Xo) can be identified with the
ordinary group cohomology ^(^(XQ, XO),VAXQ) and it is known
that Hλ(X, i?V+C) corresponds to the parabolic cohomology
H^^TT^XQ, X0), VAXQ) (think of πλ as a Fuchsian group Γ c PSL2(R)
acting on ί) the complex upper-half plane which is the universal cover of
Xo)—see Zucker [19]. In fact one has the following lemma due to Zucker:
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Let V be any locally constant sheaf on the non-singular algebraic
curve Xθ9 with fundamental group Γ c PSL2(R), V the associated Γ-
module, and

/: Xo -* X

the inclusion of Xo in its smooth completion. Then there is a commutative
diagram with exact rows:

0 -> H\X,i*V) -> H\X^V) -> QH\bf{s)9V)

ill III

o - >

where Γo runs over the conjugacy classes of parabolic subgroups of Γ and
Δ*(s) is a small punctured disc about s.

This is of course exactly our situation—at the cocycle level a para-
bolic cocycle is one which satisfies the extra condition that

[mΎ,nΎ] = [al9 a2](MΎ - I)

for some [av a2] e C2 (possibly depending on γ) whenever γ e Γ (= τrx)
is parabolic.

As a parabolic element corresponds to a multiple of a circuit around
one of our missing points, it is easy to see that in terms of extensions, we
have a locally split extension and conversely. Thus

corresponds to locally split extensions which is isomorphic to # D R . •

It only remains to determine the Hodge filtration on i/^R and we will
be ready to do some examples.

3. The filtration. Now that we have identified H\X, ϋV^C) with
H^R it is important to know what the Hodge filtration given by the
Hodge structure on H\ X, Rιπ*C) looks like in ifpR. The Hodge decom-
position of Hι(X, Rιπ*C) is constructed in Zucker [19] and it is shown to
coincide with the one induced from H2(E,C) via the Leray spectral
sequence. Moreover Hoyt [7] and Cox and Zucker [1] have given an
interpretation of the Hodge filtration levels as spaces of Hoyt's gener-
alized automorphic forms. Our goal is to identify these filtration levels in
H^κ. As we are interested in using this information for the calculation of
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Picard numbers, we will only sketch the results. Further details can be
found in Stiller [17], Hoyt [7], and Cox and Zucker [1].

As before we fix our model (2.1) of £ g e n over K(X). We denote the
resulting Picard-Fuchs equation by Λ and the space of locally exact
elements in K{X) by L^. Our goal is to define two divisors 210 < 21 on
X, in terms of the local behavior of A, with the property that the (sub-)
linear systems

and

L(2I) Π L ^ a c L(2I) c K(X)

consist of locally exact elements which are never exact and which corre-
spond to the levels of Hodge filtration,

H20 and i / ^ θ i / 1 ' 1

respectively, on Hι(X, Rlιπ*C) = H^R. This will give us a set of unique
representatives for the elements in these levels of the Hodge filtration.

In order to define 210 and 2ί, we introduce a local normal form for a
locally exact equation

Λ/ = Z, Z G LΓ\

At a point p G X where Λ has exponents r, s; r < s (necessarily r,
s e Q), choose a local parameter ί. We first express (3.1) in terms of t

dt)

and then " twist" by t~[t], where [r] is the greatest integer < r, to get:

(*) A r [ f l ( r [ r I / ) = r[r]z(^\ (seepage 163 above)
where Λr[r] now has the normalized exponents rnorm = r — [r] < snoτm = s

— [r] with 0 < rn o r m < 1. The expression (*) is called the local normal

form for Kf = Zatp e X.
The possibilities for rnorm and *snorm, together with the resulting fiber

type (Kodaira [9]), are given in tables below. This list can be obtained by
simple calculation using the explicit form of Λ given in Stiller [15]. In
addition, for p e X we define two numerical quantities, ap and bp, for
later use. They depend on the local normal form of Λ at the chosen point
p G X. A quantity ip is also defined and its meaning explained, but no use
will be made of this particular item. It is included merely for the sake of
completeness.
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where
/ G Z , / > 0 ,
rnorm ^ n̂orm a r e ^e normalized exponents at p e X;
type is just the fiber type as designated by Kodaira in [9];
kp = s - r = snoΐm - rnorm is the exponent difference at p\

e is the ramification of #, the functional invariant (Kodaira [9]),

at p viewed as a map X -» P^;

oτάp Wnoτm is the order of the Wronskian Wnoτm of Ar[r] which is
easily seen to be t~2[r]W(dx/dt) where W is the Wronskian of
Λ;

ip is called the index at p—it represents the dimension contributed
to the 1,1-part of H\X, R^C) i.e.

DEFINITION 3.1. We define two divisors 2ί0 and 2ί by:

tor p G A ,

where r is the smaller exponent of Λ at p. For Z e L ( 2 ί o ) = ( Z
s.t. divZ + 2ί0 > 0} we have ord^ Γ[r]Z(dx/dt)2 > bp and similarly for
Z e L( 3ί). This in turn allows us to define two linear systems

by taking the locally exact elements in L( 2ί0) and L( 2ί) respectively. D

We have the following facts:

PROPOSITION 3.2. (i) L(3ί0) c L ^ a (ii) L^ a (3i) n AA:(A") = 0. In
particular no element in L%m( 31) or LJf»"( 3ί 0 ) = L( 9ί 0 ) is exact.

Proof. The proof of (i) is quite easy. We consider

Λ / = Z f o r Z e L ( 9 ί 0 ) .

By Proposition 2.5 above, we must show that for every p e X and every
single-valued solution ώ of Λ (Λώ = 0) at p the differential

ώZ
-ψdx
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has zero residue. Choose a local parameter t at p e X. We then have

( ( $ ) )

Observe that ί~[r]ώ is a single-valued solution to Λr[r] (i.e. Λr[π/~[r]ώ = 0)
so ord, Γ[r]ώ > rnorm > 0 at p. Also Γ2[r]W(dx/dt) = Wnorm the
Wronskian of ΛrM, so its order can be found in the tables above. Finally
because Z e L ( » o ) w e h a v e o r d t'[r]Z(dx/ώ)2 > bp.

As a single-valued solutions ώ exist only at points where the local
monodromy is (Q ?) or conjugate to (Q J), 6 > 0, a simple computation
using the entries in Tables 2 and 3 shows that in these cases

d

is actually holomorphic at /?. This proves (i).
To prove (ii), we assume for some Z e L^ara(9ί) that there exists

Z/ GK(X) with AZ' = Z.

Claim. For any point p ^ X, ord^ Zf >r where Λ has exponents
r < ^ at /?.

In order to verify this, we work locally. Choose a local parameter t at
p ^ X and observe that AZ' = Z implies that

We consider two cases. First, take the case of a good fiber or a fiber of
type Ib9 b > 1, at p. From Tables 2 and 3 we see that

On the other hand Λ,-M looks alike

Γtiorm^norm

If ord^ r [ r ] Z ' were negative then the d2/dt2 term would force

to have too large a pole. Thus ord^ t~[r]Z' > 0 from which it follows that
ord Z ' > [r]. However, in the case we are considering, the exponents r, s
of Λ are integers, and so r = [r]. In the case of an additive fiber type at
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/?e l ,we again use the facts that

i I norm ^norm , I ι ί norm^norm

' ' ' ) I ^

and

A i I norm ^norm , I ι ί norm^norm .

As in the first case above, Table 1 shows that

(1)

from which it follows that / [ r ] Z ' must be holomorphic at p. However, in
the additive case both rnoτm and snoΐm are non-zero. Thus the final term in
Λrtr], namely (rnoτmsnoτm/t2 + ), actually has a pole of order 2. If
t~[r]Z' did not vanish at /?, then Ar[r)t~[r]Z' would have a second order
pole which contradicts (1). Thus

ord^ Γlr]Z' > 1 and ord^ Z' > 1 + [r] > r.

This establishes the claim.
To finish the proof we use the trivial fact that the sum of the lower

exponents of Λ is > 0, namely

*•* rp~ VΪ w ^ e r e P = degree of the map X -* P^.

We conclude that divZ' would have to have positive degree—a contra-
diction. D

We now state the main fact of this section:

PROPOSITION 3.3. The subspaces of H\>κ determined by the linear
systems LJf^St) and L(2ί0) = L ^ S t o ) correspond to the first (H20 Θ
i / u ) and second (H2>°) levels of the Hodge filtration on H\X, Rιπ*C) via
the natural isomorphism between Hι(X, Rιπ*C) andH^κ.

Proof. The (2,0)-part of H\ X, Rιπ*C) is readily identified with
H°(E, Ω|), the space of global holomorphic two forms on E. We shall
sketch here the correspondence between £(2ί 0) and H°(E, Ω|).

Let S a X denote the support of the singular fibers of π: E -» X. We
set Xo = X - S and Eo = π~ι(Xo). Choose a base point x0 e Xo (which
is not a cosingular point for Λ) and a basis of solutions ωl9 ω2 to Λ/ = 0
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which gives precisely the periods of dX/Y. In particular we will have
Imω 1/ω 2 > 0 on Xθ9 J(ω1/ω2) will be the functional invariant # where
/ is the elliptic modular function, and the monodromy representation
WΊ( JC0, JC0) -> SL2(Z) will be the homological invariant of Kodaira [9].
Note that ω1? ω2 will perhaps be meromorphic on Xθ9 but that the
quotient co1/ω2 will be holomorphic.

We recall Kodaira's construction of E over X from [9]. First one
constructs Eo over Xo and then compactifies.

The universal cover of Xo will be the complex upper-half-plane ί) and
we define an action on ί) X C by

(y»«i> ni)

ί )XC Λ ί , x c

(z, 0 -> (γz, (cγω(z) + dy)~\t + Λ l ω(z) + n2))

where γ e Γ c PSL2(R) corresponds to an element of πι(Xθ9 xo)'9 ni e Z;
ω(z) is the period function obtained by lifting ω(x) = ωι(x)/ω2(x) to
the upper-half-plane via the universal covering map ΐ), z0 -» Xθ9 xo; and
finally

is the monodromy of ωv ω2 around the path corresponding to γ.
This turns out to be a group action and the quotient is easily seen to

give Eo over Xo.
We consider now the multivalued meromorphic differential forms on

forZGL(9i 0 ) ,

where W = ω1(dω2/dx) — ω2(dω2/dx) is the Wronskian. A local calcu-
lation (see the proof of Proposition 3.2) shows that this differential is
actually holomorphic on Xo. We pull it back to ί) and wedge with dt

-ω2Z
-φ- dx A dt

to get a holomorphic two form on ί) X C which is easily seen to be
invariant under the action. It therefore gives a holomorphic two form on
Eo. We now use Kodaira's description of the compactification, and in
particular the local coordinates he gives, to check that the form extends to
a holomorphic form on all of E. This requires the use of the estimates on
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the order of pole for Z e L(9l0). (The calculations for fiber types IV*,
Ib9 /6* are carried out in Shioda [14].) The converse is also true because
any holomorphic two form on E when restricted to Eo necessarily takes
the form h{z)dz A dt because of invariance under elements of the form
(1, nl9 n2). The function

Hz)-fc ' ^~> W, x,ω2 pulled-back to f),

on ί) is Γ-invariant and the resulting single-valued function on Xo is
easily checked to be in L( 910).

For L^(%) the proof is more involved (see Stiller [17]) and we
content ourselves with the remark that the normal function

for & e E&n(K(X)) can be shown to have Z e L J ^ S ί ) by local consid-
eration of the singularities of Λ (see Stiller [17]) and to correspond to the
(l,l)-class given by [(^) - (Θ) + ΣseSDs] where the correction factors
are as mentioned in Proposition 1.5 above, and & is thought of as a
section of E over X.

One can also prove this result using Hoyt's generalized automorphic
forms—see Shioda [14], Hoyt [6], Cox and Zucker [1] and Endo [3] for
this interpretation. D

Lastly we remark that if we have a morphism of another curve Xf

onto X

X'

then for the elliptic surface Ef induced by pulling E back via /, the
resulting maps on cohomology (expressed as Ή\^) are easily determined.
[The reader should note that Er is not E X x X\ but rather it is the
relatively minimal compactification of the Neron model of the generic
fiber of E X x X' over Spec^(X')- Because of this, there may not in
general be a regular map from E' to E over /, but there are maps induced
on H^R and H2, as a simple Mayer-Vietoris argument shows.] We will
examine this in the particular case where Xr = X, / is an automorphism,
and E' = E in the next section.
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4, Examples. In order to compute Picard numbers we will need to
consider the effect of an automorphism of E on Hj>K. Let φ be an
automorphism of the base curve X which is compatible with an automor-
phism Φ of E which preserves the action

Φ
E > E

\
I

U x

Specifically, if E is given by a Weierstrass model

Y2 = 4X3 - g2X - g3

then g2, g3 should be invariant under the action φ*: K( X) -> K{X)
induced by φ on the function field of X. Φ will in general identify the
(good) fiber over J C G I with the (good) fiber over φ( c) e X by either the
identity or by the involution Y-+ -Y. These are the only possibilities
because generically there is no complex multiplication.

In computing the Picard numbers in the examples below, it is im-
material whether Φ is taken to act as the identity or the involution in the
fiber. We shall usually take it to be the identity. Also Φ need not be
everywhere regular, but it should be regular after removing a finite
number of fibers supported over a finite set S c X with the property that
Φ(S) = S. In all of our examples below however, Φ is everywhere regular.
One that we shall shortly analyze is

^L χ 2Ί

with φ: x -> ξx over the x-sphere P£ where ξ = elηΊi/vlk.
Such automorphisms Φ occur in a natural setting. Given E over X,

suppose that (~Q _̂ ) is not in the global monodromy group M c SL2(Z)
and that X is Galois over the /-line or Galois over the modular curve
XM = $*/M where f)* is the extended upper half-plane ί) U Q U {100}.
(XM is the natural image for the period map on X given by ω = ωι/ω2,
where ω( are suitable solutions to Λ, the Picard-Fuchs equation; see Stiller
[16].) We have
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and it is known that E over X is then induced by pulling-back the
canonical elliptic modular surface over the modular curve XM. Elements
of the Galois group of X over XM will then induce the desired type of
automorphism.

Now because Φ: E -> E is compatible with an automorphism of the
base it determines an automorphism

which clearly preserves Hodge type and is defined over Q:

Hι(X, Rιπ*Q) c Hι(X, R^C) = i/^R.

More simply stated, Φ* gives an automorphism of the rational cohomol-
ogy H2(E,Q) which preserves the Hodge decomposition H20 Θ H1'1 Θ
H°'2oί H2(E, C). We happen to be dealing with only a particular portion
of the cohomology (see the remarks preceding Proposition 1.2 above)
where a similar statement holds. In the examples, we shall examine the
eigenspaces (which will turn out to be one-dimensional) and the Q-irre-
ducible subspaces for the action of Φ* on H^R and thereby determine the
Picard number. The technique is best illustrated by specific examples.

Our first set of examples was originally discussed by Sasai (Sasai [12]).
In his paper he computes the global monodromy representation. The base
curve X will be the sphere and we will denote the parameter by x (i.e. X
is the x-sphere). A model for E over K(X) = C(x) is given by

Let ζ be the primitive 12kth root of unity e(
2πi/l2k\ One sees immediately

that (1) defines an elliptic surface over X — (0, oo} whose singular fibers
are of type Iλ at ξ*, i = 0,..., 12 A: — 1. The fibers over 0 and oo are good
elliptic curves.

PROPOSITION 4.1. For the model (1) above the operator annihilating the
periods of dX/ Y is:

_ ^ (1 - x12k) - 12k d {21k2 + 4k2x12k)
dx2 x(l-x12k) dx+ χ2(l-χ^) '

Proof. Calculation (see Stiller [15] for the notation, terminology, and
the formula for such equations). D
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This equation is regular except at:
(i) 0 where Λ has exponents 3k, 9k;

(ii) oo where Λ has exponents -2k, 2k;
(iii) £', i = 0,..., Ylk - 1, where Λ has exponents 0, 0.
The elliptic surface corresponding to the model 1) has geometric

genus pg = k — 1, irregularity q = 0, and χ{ΘE) = k. The monodromy
representation is actually easy to compute (see Sasai [12]). The global
monodromy group turns out to be SL2(Z) and it follows that Egen(K(X)),
the group of K( X)-rational points on the generic fiber, is torsion free. We
wish to prove:

THEOREM 4.2. Let r denote the rank of the Mordell-Weil group
E&n(C(x)) ofEgcn: Y2 = 4X3 - (Π/xuk)X - 27/JC1 2* and let p be the
Picard number of the associated elliptic surface, then

d\\2k d\\2k
d>l de {7,8,10,15,18,20,42}

d admissible

where φ is Euler's function, so φ(d) is the number of positive divisors of d
relatively prime to d, and d is admissible if no primitive dth root of unity has
argument between π/3 and m/2 inclusive. One can show that d is admissi-
ble if and only if d equals 1, 2, 3, 7, 8,10,12,15,18, 20, 42. It follows that

p = 2+ Σ Φ(d) = 10+ Σ Φ(d)
d\Vλk d\Ylk
d7>l de {7,8,10,15,18,20,42}

d admissible

Note p < 58 (r < 56) with equality if and only if 210 | k. D

We postpone the proof for a moment to examine if^R in more detail.
Further results of this sort for other surfaces appear in the next section.
We begin by considering H^R and the spaces L^(%), JL(2I 0).

Recall that given a section of E over X or equivalently a K( X)-ra-
tional point (X(x), Y(x)) on the generic fiber of E/X, we can produce an
element of K(X) via Manin's map (see Stiller [18])

K(X)
d x Λ f(X{χ) Y(χ)'V dX

J0 Σ :0)

This map gives an injective homomoφhism from the group of sections
(there is no torsion in this instance) to the additive group K( X) and the
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image lies in LJξara(9ί) where

12A:-1

3ί= Σ (l)Γ"+(-3ifc+l)0

(see Tables 2 and 3 and Definition 3.1 above). A typical element of L(2ί)
can be written

_ x3*"1 (polynomial of degree < Ilk - 2)

(1 - xl2k) "

In order for Z to be in L%*\%) c L(2ί) the residue conditions must
hold at the cosingular points 0, oo. Near x = 0 this is the condition that

-jTrdx, W the Wronskian,

have zero residue for any solution Λω = 0 at 0. Now up to a constant

and so we must consider the differential

/ polynomial of degree < 11A: — 2 \ ,

" l ^ ( 7 Ϊ 2 ^ ) d x

^ ^ r f x , άe%p(x)<l\k-2.

Near x = 0 the differential equation can be seen to have a basis of
solutions of the form

x9*(holomorphic).

As a result, if

P(x) = «iu-2^1 U"2 + ••

we must have a6k_λ = 0 to assure zero residues at x = 0. A similar
calculation at oo shows we must have alk_x = 0 to assure zero residues at
x = oo.

Thus a typical element of L ^ a ( 21) c L( 9ί) is of the form

- xl2k)
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Next we determine the space of elements of the "first kind" which is
L(2I0) (see Definition 3.1 above). In this example we get

12k-l

2ί0 = Σ (l)r'+(-9fc + l)0 + (-2*-3)oo.
z = 0

And a typical element Z e L( 210) is of the form

3k-l( Ylk~2 4- . .

(1 - xl2k)

that is

JC 9 / C - 1 (polynomial of degree < k — 2)

- x
uk)

We can now give the proof of Theorem 4.2.

Proof. Consider the automorphism Φ: E -> E compatible with the
map x -> ζx9 ζ = <?27Π/m on the base curve X = P^. Explicitly, E minus
the fibers over 0 and oo is cut out in (C - {0}) X P<? by the equation
0 = -ZY2 + 4X3 - (27/xuκ)XZ2 - (27/xuk)Z3 and Φ is given by

Φ

(x; X:Y:Z) -> (ξx; X:Y:Z). This Φ actually extends to a regular auto-
morphism of E which when restricted to the fiber over 0 or oo is a
complex multiplication. The resulting automorphism on cohomology, in
particular on H2(E,C), preserves the Leray filtration (recall that the
Leray spectral sequence for π: E -> X and the constant sheaf C on E
degenerates at Eξq) and the Hodge decomposition.

We shall analyze this automorphism in terms of the action on
L^ara( 21) c H}yR. This action is easily seen to be

Z(x) * Z{ζx)ζ2 ξ = e2

(the extra factors of ξ are because one should work with Z(dx)2 in order
to get a parameter invariant description).

One could trace back through our description of the parabolic
cohomology class determined by a locally exact equation to see that this
corresponds to the action of our automorphism on the 2,0 and 1,1 parts
of E\λ = Hι(X9 i?V*C), but the reader can see this in a more direct
fashion.
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Suppose we consider an inhomogeneous equation

where we have subscripted Λ with an x to indicate the parameter used in
forming Λ

Denote by Aξx the differential operator

Γ + Q(ξχ)

and observe that in our case

A fr = r2Ax.

Viewing things on a suitable domain (e.g. slit the plane radially from the
12A:th roots of unity to oo), consider the functions ω^ξx) and f(ζx). We
have that co1(^;c), u>2(ζx) are linear combinations of ω^x), ω2(jc), because

and we see that

Axf(ζx) = ζ2Aixf(ξx) = ξ2Z{ξx).

This describes the action of our automorphism. For example, consider the
effect on £gen(C(jc))—if (X(x): Y(x): 1) is a solution to (1) above, then
(X(ξx): Y(ξx): 1) is also, and if

r(X(x) : Y(x) : 1) dX^ _

XJ(0 : 1 : 0 )

we have

(X«x) : Y(ζx) : 1)

0) Y

because if we let

r(X(x):Y(x):l) dX
f(x) = / "y-

y ( 0 :1 : 0) L:0)

be the normal function, then

[X(ix) : Y(ζx) ::

): 1 : 0)
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Thus we have the diagram:

(X(x):Y(x):ί) e E&n(C(x)) -» C(JC) 3 Z(X)

τ i τ
(X(ξx):Y(ξx):l) e

where the vertical left hand arrow is the map induced on sections by our
automorphism and the horizontal arrows are Manin's map as described
above.

Also consider the effect on two-forms. Recall that the space L(2l0)
can be identified with H°(E, Ω2) via

Z •-> —jjjT— dx A dt (see Proposition 3.3).

But remember that the Wronskian W depends on the choice of derivation
d/dx. A parameter free version would be

Wdx

Now W{x)dx is invariant under x -» ξ.x and we can see from the
construction on pages 175-176 that ω2(x) and dt transform in essentially
the opposite way: analytic continuation around γ e iΓι(X0,xQ) where
Xo = P£ - {12A:th roots of unity} yields

2(x) -> (cyω(x) + dγ)ω2{x)

dt •-> (cγω(x) + dy) dt Λ- other terms involving dx.

Now x •-» ζx is not, strictly speaking, monodromy, but it can be thought
of in that way. It corresponds to a simple loop around 1 on the /-line, and
we need only observe that the elliptic surface we are considering happens
to be the pull-back (see pg. 176) of an elliptic surface over the /-line. In
fact ω2(x)dt is locally ±dX/Y in the fiber. It follows that the effect on
2-forms corresponds to the given action Z(x) -> Z(ζx)ξ2 on L(2t0) c
Lp a r a(3t).

Now consider the eigenspaces for the action of our automorphism on
Lff**. All the eigenvalues are 12kth roots of unity, and we see that the
eigenspaces are all of the form

1 - xYlk
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with eigenvalue ζi+2. (This follows from our description of LJζ^Sί) on
page 180 and our description of the action of our automorphism on page
181.) We also get the important fact that the eigenvalues of our automor-
phism on Hι( X, ΛVfcC) occur with multiplicity one and all the eigen-
spaces are one dimensional. Now our automorphism preserves type, so the
(2,0), (1,1) and (0,2) pieces are sums of distinct eigenspaces. The relevant
picture is:

π/2 ττ/3

I
3τr/2

This diagram is arrived at by observing that the (2,0) part, which
corresponds to

/ v _ (x9*"1 (polynomial of degree < k - 2)

{ 1 - xLZ

is made up of the eigenspaces whose eigenvalues, ζ'9 i = 9k + 1,..., 10A:
— 1, are precisely the 12Λ:th roots of unity whose arguments are between
37r/2 and 5ττ/3. Of course the (0,2) part must he in the conjugate region.
This gives us the Hodge decomposition of L^ara(9i) into the (2,0) part
(namely L( 210)) and the complementary (1,1) part. As our automorphism
preserves rational cohomology, it can be decomposed over Q into irre-
ducible subspaces indexed by primitive dth roots of unity for those
d 112/:. Now if the eigenspaces corresponding to all primitive dth roots
fall in H1*1 then they span an irreducible rational subspace of dimension
φ(d), where φ is Euler's function, and we have a rational component of
Hι>ι. The result follows. D

5. Additional examples.

EXAMPLE 1. We consider over the sphere P£ the elliptic surfaces Ek

given by

which have functional invariant

/ = T ^ I and λ'-g2/g,-^.
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The equation annihilating the periods of dX/Y for this model of Egen is

^ (2k + l)xk -(k + ΐ) d 35k2xk/36 - 21k2/144
x(xk-l) dx+dx x2(χk-ί)

Depending on the congruence of k modulo 12 we have:

lr —
K —

12/+ 1
12/+2
12/+ 3
12/+ 4
12/+ 5
12/+ 6
12/+ 7
12/+ 8
12/+ 9
12/ + 10
12/+ 11
12/+ 12

fiber
over oo

II

IV

Io*
IV*
I I *

good
II

IV

I*
IV*
I I *
good

fiber
overO

III*

Io*
III

good
III*
Io*
III

good
III*

Io
III

good

fiber over
k th roots of 1

Ii

Ii

Ii

Ii

Ii

Ii

Ii

Ii

Ii

Ii

Ii

Ii

Pg

I
I
I
I

/+ 1
I
I
I

/+ 1
/+ 1
/+ 1

/

P

r + 9
r + 8
r + 7
r + 8
r+ 17
r + 6
r + 3
r + 4
r + 13
r + 12
r + 11
r + 2

/ > 0 , / G Z , where r is the rank of the Mordell-Weil group
and p is the Picard number.

In all cases it can be shown that

r- Σ Φ(d)

d admissible

where d admissible means that no primitive Jth root of unity has
argument between 3ττ/2 and 5ττ/3 inclusive. For example, the surface is
an elliptic K3 surface for k = 5,9, 10, 11, 13, 14, 15, 16, 18, 19, 20 , and
24, and we have:

k

5
9

10

11
13

14
15

16

18
19
20
24

fiber type at 0

III*
III*

Io*
III

III*

Io*
III

good

Io*
III
good
good

fiber type at oo

I I *

Io*
IV*

I I *
II

IV

Io*
IV*

good
II
IV

good

fiber over k th roots 1

Ii

Ii

1

1

1

1

1

1

1

1

1

1

r

1
3
6
1

1

8
11

6
10

1
14

12

P

18

16
18

12
10

16
18
14

16
4

18
14

EXAMPLE 2. Over the x-sphere P^ we consider the elliptic surfaces Ek9

k > 0, given in terms of a model for the generic fiber E^n over C(JC) by:

- 3xkX- x Ik
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Depending on the congruence of k modulo 12 we have:

ϊ, _
K —

12/+ 1
12/+2
12/+ 3
12/+4
12/+ 5
12/+6
12/+ 7
12/+ 8
12/+ 9
12/ + 10
12/+ 11
12/ + 12

fiber
over oo

IV*
IV
good
IV*
IV
good
IV*
IV
good
IV*
IV
good

fiber
overO

III
T*

III*
good
III

Iί
III*
good
III

iί
III*
good

fiber over
k th roots of 1

]

]

]

]

]

]

1

1

1

1

1

1

1

1

1

1

1

1

1

Pg

I
I
I
I
I
1

/+ 1
/
/

/+ 1
/+ 1

/

P

r + 9
r + 8
r + 9
r + 8
r+ 5
r + 6
r+ 15
r + 4
r + 3
r+ 12
r + 11
r + 2

/ > 0, / e Z, and in all cases:

r- Σ Φ(d)
d\k
d>\

d admissible

where d admissible means that no primitive Jth root of unity has
argument between ττ/2 and 27r/3 inclusive. For example, the resulting
surface is an elliptic K3 surface for k = 7, 10, 11, 13, 14, 15, 16, 17, 18,
20, 21, 24 and the resulting Picard numbers are p = 16,18, 12,10,16,10,
14, 6,18,16,14 respectively because r = 1, 6,1,1, 8,1, 6,1,10,14,13,12.
(Note that for k even these surfaces are isomorphic to the ones in
Example 1 above. The reader may wonder when k is even why the
eigenvalues have changed sign:

Example 1 versus Example 2

ττ/2 tf° 2 , 2π/3

#1,1 H11

#2,0

#2,0

N

#0,2

flr/2

#1,1

3τr/2

The reason is that after identifying the models for the generic fibers, one
finds the maps Φ differ by the involution X -> X, Y -> -Y.)

EXAMPLE 3. Over the x-sphere P£ we consider the elliptic surfaces Ek

k > 0 given in terms of a model for the generic fiber Egen over C(x) by:

72 = _ s/9)X+x4kίx2k - ^xk + 8/27).
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Depending on the congruence of k modulo 3 we have:
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k =

3/+ 1

3/+ 2

3/+ 3

fiber

overO

IV*

IV

good

fiber

over oo

hk

hk

hk

fibers over

k th roots

of l

Ii

Ii

Ii

P*

I

I

I

r rank of

Mordell-Weil

group

0 if / even
1 if / odd
1 if / even
0 if / odd
0 if / even
1 if / odd

p Picard

number

9/ + 10 if / even
9/ + 11 if / odd
9/ + 10 if / even
9/ + 9 if / odd
9/ + 10 if / even
9/+ 11 if/odd

/ > 0, / G Z. Note that / = 129xk{xk - %/9γ/64{xk - 1). Also, Eλ is
the elliptic modular surface for I\(3) = {{a

c

 b

d) G SL2(Z) s.t. a = d =
1 mod 3 and c = 0 mod 3} and E3 is a rational elliptic modular surface for
some Γ' (Φ Γ(3)) of index 3 in I\(3).

EXAMPLE 4. We consider surfaces Ek, k
a model for the generic fiber over C(x) by

Z, k > 0 given in terms of

If we write k = 6/ + r with 0 < r < 6, then the geometric genus is pg = /
and the surface has a singular fiber of type Ik over 00, singular fibers of
type Ix over the Λ th roots of unity, and a singular fiber of type II (resp.
IV*, I*, IV, II, good) over O a s f c s l (resp. 2, 3, 4, 5, 0) modulo 6. One
can show that for these surfaces we have the following:

k

6/+ 1
/ > 0

6/+ 2

/ > o

6/+ 3

/ > o

6/+ 4

/ > o

6/+ 5

/ > o

6/+ 6

/ > o

over

00

h

h

h

h

h

I*

over
kth
roots

ofl

Ii

Ii

Ii

Ii

Ii

Ii

over

0

II*

IV*

Io*

IV

II

good,

but
cosing.

rank of Mordell-Weil group

r = ί A ύ l~ 4 m o d 5

\ 0 otherwise

/ 7 i f 3 / + 1 = OmodlO
1 5 if 3/+ 1 = 5modlO
\ 3 if 3/+ 1 = 2,4,6,8modl0
I 1 otherwise

r = /6if / = 2mod5
\ 2 otherwise

/ 7 i f 3 / + 3 = OmodlO
_ 1 5 if 3/ + 2 s 5 mod 10

\ 3 if 3/+ 2 = 2,4,6,8modlO
\ 1 otherwise

r = / 4 i f / = 0mod5
\ 0 otherwise

/ 9 if / s 9 mod 10
1 7 if / = 4modlO
j 5 if / s l,3,5,7woί/10
I 3 otherwise

Picard
number

/A; + 1
p = U + 9

/A: = 14
1 k + 12

p = U + 10
lA: + 8

/ * + 11
P = \ A + 7

/it + 10
1 A + 8

P = U + 6
U + 4

/A + 5
P = \ A + 1

/ A + 10
I k + 8

P = U + 6
U + 4
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Note: pg = /, q = 0 in all cases, and when pg = 0 we get p = 10 as we
should.

EXAMPLE 5. Again our base curve X will be the sphere P^ and we will
denote the parameter by x (i.e. X = P£ is the x-sphere). We consider the
elliptic surfaces Ek9 k e Z, k > 0 given in terms of a model for the
generic fiber £ | e n over C(x) by

1/8).

These surfaces have singular fibers of type Ix at the 4k + 1st roots of
unity, I%k+2 at oo and III* at 0. The geometric genus is pg = k and one
can show that the surface Ek has Picard number

(8λ; + 10, k = 0,
\8fc4-12, k = 2 mod 3,

or equivalently the rank of the Mordell-Weil group is|en(C(x)) is

, k = 0,1 mod 3,
, k ΞΞ 2 mod3.
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