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SPECIAL GENERATING SETS OF PURELY
INSEPARABLE EXTENSION FIELDS OF
UNBOUNDED EXPONENT

B. 1. EKE

The present paper considers the problem of choosing a maximum
subfield having a subbasis over X among subextensions of L/K, when
L/K is purely inseparable but of unbounded exponent.

Throughout L will be a purely inseparable extension field of a field K
of characteristic p # 0. For the case when L/K is of bounded exponent
e > 0 Weisfeld [6, Theorem 3, p. 442] has shown that among the subfields
of L having a subbasis over K there is a maximal subfield with respect to
set inclusion. This theorem fails in the unbounded exponent case since
such a maximal subfield would not always exist [6, p. 442]. An open
problem was, therefore, posed in Weisfeld’s paper regarding a necessary
and sufficient condition for the theorem to hold for extensions L/K of
unbounded exponent. The present paper seeks to provide a solution to
this problem.

Let M be a given subset of L. The subset M will be said to be in
canonical form when M is put in the form M = 4, U A, U --- where 4,
consists of the elements of M having exponent i over K. M is called a
canonical generating set over K if M is a minimal generating set for K(M)
and when M =4, U 4, U --- in canonical form, then the subsets M,
defined by M, = U%_,,,4;,i = 0,1,..., M, = M, satisfy M/' is a minimal
generating set for K(M?') /K. The set M is called a distinguished subset of
L/K if M is a canonical generating set over K and, for each nonnegative
integer n, KN L?" C KP(A? U A2, U ---)where M = A, U A, U ---
in canonical form. Finally, M is called a subbasis over K if for every finite
subset {a,,...,a,} of M, K(a,,...,a,) is the tensor product of the
simple extensions K(a,), i = 1,...,r, and when this happens, the exten-
sion K(M) is called an extension having a subbasis over K.

The main result is that if L/K is any purely inseparable extension,
then L/K has a maximal subfield J having a subbasis over X if and only
if L/K has a distinguished subset M.

LemMA 1. If L/K has a subbasis, then every subbasis for L/K is
distinguished.
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Proof. Let L/K have a subbasis B =B, U B, U --- in canonical
form. Let u be any element of L with exponent n over K. Then
n—1

u?"' € K(B”"') = K(U2,B?"") which shows that the exponent of u
over K(U® , B,) is less than n. Hence B is distinguished.

i=n"i

LEMMA 2. If the subset M of L is a canonical generating set over K,
then M is a subbasis over K.

Proof. Suppose M is a canonical generating set over K but M is not a
subbasis over K. Let M = A; U 4, U --- in canonical form and let e be
the smallest positive integer such that there exists an element b € 4, for
which 7" € K(M — b). Clearly e # 1 otherwise we contradict the
minimality of M over K. There exists a smallest positive integer ¢ such
that

(1) b*" € K(M,_, — b)

where M,_, =U7_,A;. Also there exists an element a € 4, such that
b* e K(M,_, b) but

(2) b & K(M,_, —{a,b}).
Let s be the highest integer such that
(3) bF" 1»':'K( {a b},a”).

s+1

Then a” € K(M,_, — {a,b},a” “"). Consequently a”’ is separable
and purely inseparable over K(M,_; — {a b}, b?""") which says that

(4) a” € K(M,_, —{a,b},b"").

In expression (1) above it must be the case that e > ¢ and in (4) it is the
case that s > ¢ both because of [3, Cor. 1.31, p. 28]. But if s > ¢, then
in expression (3) we have K(M,_, — {a,b},a?)=K(M,_, — {a,b})
so that b? ' e K(M,_, — {a,b}) contradicting the expression (2).
Therefore s = ¢. So, we have s = t < e. But then (4) implies that a”' €
K(M,_, — a) € K(M — a) where ¢ < e contradicting the minimality of
e for this purpose. This contradiction proves the assertion.

THEOREM 3 (Main result). The extension L/K has a maximal subfield
J having a subbasis over K if and only if L /K has a distinguished subset M.

Proof. Suppose L/K has a distinguished subset M. By Lemma 2 M
is a subbasis over K. Moreover, M is distinguished in L/K implies that
any element of L having exponent r over K must have exponent less than
rover K(U® ,A,) where M = 4, U A, U --- in canonical form.

i=r<ti
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Denote K(M) by J. Let F be any modular subfield of L over K
containing J and suppose u € F — J has exponent r over k. Then one
can write

(5) u? =auf + - +auf

where a,,...,a,€ K, uy,...,u, €J, s <r, and n is chosen minimal.
Using arguments similar to those of Weisfeld in [6, Theorem 4, p. 442]
and the concept of p-freedom as defined in that paper one can get a
maximal p-free subset {a;,...,a,} of {a,,...,a,} relative to J? and a
maximal p-free subset {a,,...,a;} of {a;,...,a,} relative to F? where
Jj < k. Consequently we have a relation

©) @ =X{pp.,ab - ably,., €F,

OSim<p,m=1,...,j}.

Let B be the set consisting of the coefficients y, ..,. Let F; be the
modular closure of K(B) as defined in [4, p. 408], and let F,=FNEF,.
Then F, must have a subbasis over K. Therefore by [4, Theorem 1, p. 403]
there exists a higher derivation D of F, relative to which K is the field of
constants. Using this in (6), one can violate the p-freedom of {a;,...,a;}
relative to F?. Therefore J = F.

Conversely let N be a maximal subfield of L/K having a subbasis
over K and let M = A, U 4, U --- (in canonical form) be any subbasis
for N/K. As usual, for i = 0,1,... welet M; = U7_,,;4;. We must show
that M is a distinguished subset of L/K. Clearly M is a canonical
generating set over K. We shall prove, by induction, the statement P(n):
If u is any element of L having exponent n over K, then the exponent of
u over K(M,_,) is less than n. Now P(1) is trivial. Hence assume
P(n — 1) holds and suppose an element u € L has exponent n over K
and same exponent over K(M,_,). Let A = {u} UM,_,. Then 4 is a
subbasis over K. Let 7"V = (B C A, , U A|B 2 A and B is a subba-
sis over K}. Clearly 4 is in T""D. So, T""D % &. Let MV be a
maximal element (with respect to set inclusion) of the set 7=V, We now
proceed to let M ("~? be a maximal element of

T-2={BCA, ,UuM"DY|B2M"Dand B is a subbasis over X }.
In general, for1 < k < n — 1, welet M® be a maximal element of
T® ={Bc A4, UM D|B2M*D and B is a subbasis over K }.

It is our ambition to show that K(M®) = N.
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Let v be an element of M and suppose v € 4, (1 <r <n). If
v & K(M), then it must be the case that v has an exponent s < r over
K(M®) by the definition of M". Consequently we can write
(7) P =l + - e, pf
where ¢,,...,c,, € K, vy,...,0,,€ K(M"), s <r, and m is minimal.
This relation now allows us to apply an argument similar to that in the
first part of this proof between K(M (") as J and the modular closure of
K(M® v)as F (F and J in this case both contained in their composite
F(J) as L). The contradiction which will then arise as in the first part
shows that v € K(M ™). Consequently, K(M®) contains K(M) = N,
and, by the maximality of N, K(M®) = N. This shows that u € N. By
Lemma 1 the exponent of u over K(M, _,) is less than n. This shows that
M is a distinguished subset of L/K.

COROLLARY 4. Let J be a subfield of L/K having a subbasis over K.
Then J is a maximal subfield of L/K having a subbasis over K if and only if
J N KP" is a maximal subfield of L N K?"' having a subbasis over K,
=1,....

Proof. Let J be a maximal subfield of L/K having a subbasis over
K, and let B= B, U B, U --- (in canonical form) be a subbasis for
J/K. Fix the integer i > 1 and let B, = {a” '|a € B, and s > i}. Then
W =B, U---UB U B, is asubset of J N K7 which is also a subba-
sis over K. We shall show that W is a distinguished subset of L N K?~' /K.
Let u € L N K” have exponent e < i over K. We note that by Theorem
3 the subbasis B is a distinguished subset of L /K. Let

i

PF = i gyl
u chl inull u,

where 0 < i, < p%, e, = exponent of u, over K, and u, € U7 B,.
Since u”" € K it must be the case that i, > p%~! and since e, — i <
e, — 1, it must be the case that p%~' < p%~! < i, < p% whenever e, >
i. Hence up € K(B;) when e, > i and, of course, u, € B, if e, <.
This shows that if W =B, U --- UB, in canonical form, then u?" &
K(B,U --- UB,). Consequently W is distinguished in L N K”"'/K
and, by Theorem 3, K(W) is a maximal subfield of L N K7 having a
subbasis over K. Now it is obvious that K(W) c J N K? . Now let x €
J N K7 Then x = Xa, ., v} -~ vy where 0 </ < p%, e = exponent
of v, over K, and v, € B, 1 <j < m. Since x” € K we must have,
for each j, I, > p%~" and hence vy € K(W). This shows J N K”" C
K (W), and equality follows.



EXTENSION FIELDS OF UNBOUNDED EXPONENT 77

Conversely suppose J N K?”" is a maximal subfield of L N K7~
having a subbasis over K. Let T be any subfield of L/K having a
subbasis over K and suppose T 2 J. Then foreach i TN K?" 2J N K*?™.
If TN K?' #JNK?' we contradict the maximality of J N K7™ as
stated earlier since 7N K?™' is also a subfield of L N K?" having a
subbasis over K. Consequently J = T. O

It was shown in Lemma 1 that if L/K has a subbasis over K, then
that subbasis must be a distinguished subset of L/K. It is not true,
however, that an extension L/K must be modular in order to have a
distinguished subset as the following example shows.

ExampLe. Let K = Z,(xy, X,,...) where the x, are algebraically
independent indeterminates over Z,. Let

L= K(xf’_le_2 +x87, x87 x87 x27 x87 )
First, we show that L/K is not modular. We note that
L? = K"’(xlxg"1 + x5, x87, x27, xg’_B,...)
= Zp(xf’, xZ, %, %0 + xp, x8, x2 7, x87,. )
KNL?=2Z,(x,x8,%3,%4,...) = KP(x3, X4, Xs,...).

Now the set {1,x§”1, x,x" + x,} is a subset of L? which is linearly
independent over K N L?. For suppose ¢, + ¢,x? + ¢,x,;x2" + ¢,x, =
0,c; € K N L? and not both ¢, and ¢, are zero. We have

cf +cfxy+ cixfx; +c4xf =0
or

(ef + cfxf)x; = ~(cfx§ + cf).
If ¢f + cfxf # 0, then

_ ~(efxf + cf)

X, = € K? =27 (xf,x5,x%,...).
’ cf + cExf ) LS )

There exists a finite n such that
X3 € Z,(xF,...,x2) € Z,(x1, %5, %{, X4, .., X,).

Consequently x, is separable algebraic over Z,(x,, X,, Xy, ..., X,) violat-
ing the algebraic independence of the x, over Z,. Therefore ¢f + cfx{ = 0.
This again leads to a contradiction unless ¢; = ¢, = 0. Consequently we
must have ¢, = ¢; = ¢, = 0 as required. On the other hand, it is obvious
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that the given set {1, x{", xx2”" + x,} is linearly dependent over K. This
shows that L/K is not modular.

Now the set S = {x£, x%,x£",...} is a subbasis over K. Besides,
S is distinguished in L/K.

DEFINITION. An extension field F/K is called Galois if it is modular
and N, K(F?) = K.

LEMMA 5. If a purely inseparable extension F/K has a subbasis then it
is Calois.

Proof. Let M = B, U B, U --- (in canonical form) be a subbasis for
F/K. Let x € N2, K(F?). Then x = g(b¥,...,b7) for some b,,...,b,
€ M, =U%_,,,B; and n is chosen minimum. Since M = U7_, B, is part of
a linear basis for F/K the set { b, ..., b,} must be contained in every M,
otherwise we contradict the unique representation of x relative to the said

linear basis. This shows that

xeK(aFﬂ‘)=K(F)Mg"')=K

i=1 i=1
since N2, M, = &. This shows N2 K(F”) = K and F/K is Galois. O

THEOREM 6. The purely inseparable extension L/K has a maximal
subfield F having a subbasis over K, if and only if there exist in L a maximal
modular subfield F which is Galois over K.

Proof. Suppose F is a maximal modular subfield of L/K which is
also Galois over K. Let A,, 4,,... be subsets of F constructed in the
manner of [2, Theorem 11, p. 339]. Let

w .
0= ﬂK(F”')®K(A1UA2U )
i=1
as defined in [2, Theorem 13)]. Then F is relatively perfect over Q and has

a subbasis over Q. By Lemma 5, F = N2,Q(F?') = Q. From the fact that
F/K is also Galois we have

F=Q= ﬁK(F”’)@K(AIUAZU e )=K(4,UA4,U ---).

i=1

Consequently F has a subbasis over K. The converse is immediate.
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