SPACES OF SECTIONS OF EILENBERG-MAC LANE FIBRATIONS

JESPER MICHAEL MØLLER

We show first that the space of sections of a fibration with an Eilenberg-Mac Lane space as fibre has the weak homotopy type of a product of Eilenberg-Mac Lane spaces. Secondly, mapping spaces with twisted Eilenberg-Mac Lane spaces as targets are shown to be generalized twisted Eilenberg-Mac Lane spaces.

1. Introduction. Let $p: Y \to B$ be a (Serre) fibration, $i: A \hookrightarrow X$ a cofibration and $u: X \to Y$ a (continuous) map. Using Switzer's notation from [14], let

$$F_u(X, A; Y, B)$$

be the space of all maps $f: X \to Y$ such that $f \circ i = u \circ i$ and $p \circ f = p \circ u$. In other words, $F_u(X, A; Y, B)$ is the solution space for the lifting extension problem

$$\begin{array}{cccc}
A & \stackrel{ui}{\rightarrow} & Y \\
\downarrow i & & \downarrow p \\
X & \stackrel{}{\rightarrow} & B
\end{array}$$

with data $u \mid A: A \rightarrow Y$ and $pu: X \rightarrow B$.

We shall be concerned with decompositions of $F_u(X, A; Y, B)$ when $p: Y \to B$ has an Eilenberg-Mac Lane space as fibre. Suppose for instance that $p: K(G, n) \to *$ is the trivial fibration mapping an Eilenberg-Mac Lane space onto a point. Then

(*)
$$F_u(X, \varnothing; K(G, n), *) = \prod_{i=0}^n K(H^{n-i}(X; G), i)$$

by Haefliger's sharpened version [7] of a theorem of Thom [15] and independently Federer [4]. The main purpose of this paper is to establish a twisted version of (*)

2. Preliminaries. We shall work in the category of compactly generated spaces. For any two compactly generated spaces X and Y, we let $X \times Y$ and F(X; Y) denote the compactly generated spaces associated to

the Cartesian product of X and Y and the space of maps of X into Y with the compact-open topology, respectively. These constructions assure the continuity of the evaluation map e: $F(X;Y) \times X \to Y$ and the validity of the Exponential Law ([16], pp. 17-21) and thus eliminate the difficulties with the topology of function spaces as pointed out by Thom in the first paragraphs of [15].

Throughout this paper we let (X, A) denote an NDR-pair ([16], p. 22) with X 0-connected and $p: Y \to B$ a fibration with 0-connected base space B. Then $F_u(X, A; Y, B)$ is a closed subset of F(X; Y) and thus compactly generated in the (usual) subspace topology.

Composition with maps from the right or from the left defines maps of function spaces. If for instance $A \subset X' \subset X$ is a nested sequence of NDR-pairs and $j: X' \to X$ the inclusion, then the induced map

$$\bar{j}$$
: $F_u(X, A; Y, B) \rightarrow F_{ui}(X', A; Y, B)$

is a fibration with $F_u(X, X'; Y, B)$ as fibre. Similarly, if $Y \to Y' \to B$ is a sequence of fibrations and $q: Y \to Y'$ the projection, then the induced map

$$\underline{q}\colon F_u(X,A;Y,B)\to F_{qu}(X,A;Y',B)$$

is a fibration with $F_u(X, A; Y, Y')$ as fibre ([14], Proposition, p. 528).

Let π be an abelian group. We shall be particularly interested in the $K(\pi, 1)$ -sectioned spaces [10] that arise in the following way. Suppose that G is a system of local coefficients in the Eilenberg-Mac Lane space $K(\pi, 1)$ given by a homomorphism φ : $\pi_1(K(\pi, 1)) = \pi \to \operatorname{Aut}(G_0)$ of π into the automorphism group of a typical group G_0 of G. For any integer n > 0, G may be realized, see ([5], Ch. III) or ([10], p. 7), as the system of local coefficients defined by the n-dimensional homotopy groups of the fibres of a sectioned fibration

$$K(G_0, n) \to K(G_0, n; \varphi) \stackrel{\stackrel{\lambda}{\rightleftharpoons}}{\underset{\stackrel{\iota}{\longleftarrow}}{\rightleftharpoons}} K(\pi, 1)$$

over $K(\pi, 1)$. This fibration, which we shall denote by $\kappa(G, n)$, classifies cohomology with local coefficients in the sense that by the Classification Theorem ([16], Theorem 6.13, p. 302), ([13], Theorem 3.6), ([12], Theorem II),

$$\pi_0(F_n(X, A; K(G_0, n, \varphi), K(\pi, 1))) = H^n(X, A; u_1^*G)$$

for any map $u: X \to K(G_0, n; \varphi)$ with $u_1 = \hat{k}u$. Via pull-back of the path-space fibration in the category of $K(\pi, 1)$ -sectioned spaces [10],

$$K(G_0, n-1) \rightarrow \overline{P}K(G_0, n; \varphi) \rightarrow K(G_0, n; \varphi),$$

this equality may be interpreted as a bijective correspondence between fibre homotopy equivalence classes of $K(G_0, n-1)$ -fibrations over X with u_1^*G as associated system of local coefficients and the cohomology group $H^n(X; u_1^*G)$.

As a final subject of this mixed section we shall now discuss Künneth theorems for cohomology with local coefficients. First an algebraic lemma ([1], Theorem 2.8).

LEMMA 2.2. Let \underline{P} be a free positive and \underline{N} a negative chain complex over \mathbf{Z} . Then there is an isomorphism

$$\Phi_N : H(\operatorname{Hom}(\underline{P}, \underline{N})) \to H(\operatorname{Hom}(\underline{P}, H(\underline{N})))$$

which is natural in the first variable.

Proof. Choose a free negative complex \underline{N}' and chain maps

$$H(\underline{N}) \stackrel{\beta}{\leftarrow} \underline{N}' \stackrel{\alpha}{\rightarrow} \underline{N}$$

such that α is a quasi-isomorphism and $\beta_* = \alpha_*$: $H(\underline{N}') \to H(\underline{N})$; cf. ([3], p. 169). Since \underline{P} is free (projective), the induced chain maps

$$\operatorname{Hom}(1, \alpha) \colon \operatorname{Hom}(\underline{P}, \underline{N}') \to \operatorname{Hom}(\underline{P}, \underline{N}),$$

 $\operatorname{Hom}(1, \beta) \colon \operatorname{Hom}(\underline{P}, \underline{N}') \to \operatorname{Hom}(\underline{P}, H(\underline{N}))$

are again quasi-isomorphisms. Thus

$$\Phi_{\underline{N}} = \operatorname{Hom}(1, \beta)_{*} \circ \operatorname{Hom}(1, \alpha)_{*}^{-1} \colon H(\operatorname{Hom}(\underline{P}, \underline{N})) \to H(\operatorname{Hom}(\underline{P}, H(\underline{N})))$$

is an isomorphism. Φ_N is easily seen to commute with $\operatorname{Hom}(\gamma, 1)_*$ for any chain map $\gamma: \underline{P} \to \underline{P}'$ between free positive chain complexes.

Note that since the complex $H(\underline{N})$ has trivial differentiation,

$$H_n\big(\mathrm{Hom}(\underline{P},H(\underline{N}))\big) = \coprod_{p+q=n} H_p\big(\mathrm{Hom}(\underline{P},H_q(\underline{N}))\big)$$

where $H_q(\underline{N})$ is considered as a complex concentrated in degree 0.

As to cohomology of spaces, Lemma 2.2 has the following reformulation.

LEMMA 2.3. Let (Z, C) and (X, A) be NDR-pairs, G a system of local coefficients in X, and $\operatorname{pr}_2 \colon Z \times X \to X$ the projection onto the second factor. Then there is an isomorphism

$$\Phi_{(X,A)}: H^n((Z,C)\times(X,A);\operatorname{pr}_2^*G)\to \coprod_{p+q=n}H^p(Z,C;H^q(X,A;G))$$

which is natural in the first factor.

Proof. We may assume that Z and X are 0-connected spaces and that (Z, C) and (X, A) are CW-pairs. Let $(\tilde{Z}, \tilde{C}) \to (Z, C)$ and $(\tilde{X}, \tilde{A}) \to (X, A)$ be the universal covering spaces so that ([16], Theorem 4.9, p. 288)

$$\Gamma^*((Z,C)\times(X,A);\operatorname{pr}_2^*G)\cong\operatorname{Hom}_R(\Gamma(\tilde{Z},\tilde{C})\otimes\Gamma(\tilde{X},\tilde{Z}),G_0)$$

where $R = \mathbf{Z}(\pi_1(Z)) \otimes \mathbf{Z}(\pi_1(X))$ acts on the typical group G_0 by $(\xi \otimes \eta)g = \eta g$ for $\xi \in \pi_1(Z)$, $\eta \in \pi_1(X)$ and $g \in G_0$. We use $(\Gamma^*)\Gamma$ to denote cellular (co-)chain complexes. Since

$$\operatorname{Hom}_{R}(\Gamma(\tilde{Z},\tilde{C}) \otimes \Gamma(\tilde{X},\tilde{A}),G_{0})$$

$$= \operatorname{Hom}_{\pi_{1}(Z)}(\Gamma(\tilde{Z},\tilde{C}),\operatorname{Hom}_{\pi_{1}(X)}(\Gamma(\tilde{X},\tilde{A}),G_{0}))$$

$$= \operatorname{Hom}_{\pi_{1}(Z)}(\Gamma(\tilde{Z},\tilde{C}),\Gamma^{*}(X,A;G))$$

$$= \operatorname{Hom}(\Gamma(Z,C),\Gamma^{*}(X,A;G)),$$

Lemma 2.3 follows from Lemma 2.2.

The isomorphisms of the last two lemmas are not uniquely defined.

3. Spaces of lifts in $K(G_0, n)$ -fibrations. In this section we assume that $p: Y \to B$ is a fibration with an Eilenberg-Mac Lane space $K(G_0, n)$, where G_0 is an abelian group, as fibre. Let $u: X \to Y$ be any map and put $u_1 = pu: X \to B$.

First assume that $p: Y \to B$ is a principal $K(G_0, n)$ -fibration. Then the pull-back $u_1^*(p)$ is a fibre homotopically trivial fibration ([15], II). Hence

$$F_{n}(X, A; Y, B) = F_{n'}(X, A; K(G_{0}, n), *)$$

for some map $u': X \to K(G_0, n)$, for $F_u(X, A; Y, B)$ may be interpreted as a space of sections of $u_1^*(p)$. The (relative version of the) theorem of Thom ([15], Théorème 3), ([7], Proposition, p. 609), ([8], Theorem 1) thus asserts that

$$F_u(X, A; Y, B) = \prod_{i=0}^n K(H^{n-i}(X, A; G_0), i)$$

up to weak homotopy type.

Now consider the general case of a not necessarily principal $K(G_0, n)$ -fibration $p: Y \to B$. Let G denote the system of local coefficients in B defined by the n-dimensional homotopy groups of the fibres of p. Following the proof of Thom's theorem as it appears in [7], we consider the evaluation map

$$e: F_{u}(X, A; Y, B) \times X \to Y$$

given by e(f, x) = f(x). Note that

$$e \in F_{u \circ \operatorname{pr}_2}((F_u(X, A; Y, B), u) \times (X, A); Y, B).$$

For $0 \le i \le n$, choose maps

$$e^i: (F_u(X, A, Y, B), u) \rightarrow (K(H^{n-i}(X, A; u_1^*G), i), *)$$

such that the array of homotopy classes ($[e^0], [e^1], \ldots, [e^n]$) corresponds to the (vertical and relative) homotopy class [e] of e under the composite bijection

$$\pi_0(F_{u \circ \operatorname{pr}_2}((F_u(X, A; Y, B), u) \times (X, A); Y, B))$$

$$= H^n((F_u(X, A; Y, B), u) \times (X, A); \operatorname{pr}_2^* u_1^* G)$$

$$\xrightarrow{\Phi(X, A)} \coprod_{0 \le i \le n} H^i(F_u(X, A; Y, B), u; H^{n-i}(X, A; u_1^* G)).$$

The main result of this section is the following generalization of Thom's theorem ([15], I) and the Classification Theorem ([12], Theorem II).

THEOREM 3.1. The map

$$(e^0, e^1, \dots, e^n): F_u(X, A; Y, B) \to \prod_{i=0}^n K(H^{n-i}(X, A; u_1^*G), i)$$

is a weak homotopy equivalence.

Proof. For $i \geq 0$, the Exponential Law

$$F_{u}(S^{i}, *; F_{u}(X, A; Y, B), u) = F_{u \circ pr_{2}}((S^{i}, *) \times (X, A); Y, B)$$

$$\alpha \to e \circ (\alpha \times 1)$$

induces a bijection

$$\psi' \colon \pi_i(F_u(X, A; Y, B), u) \to H^n((S^i, *) \times (X, A); \operatorname{pr}_2^* u_1^* G)$$
$$[\alpha] \to (\alpha \times 1)^* [e]$$

between path-components. According to Lemma 2.3 there is a commutative diagram (with $F_u = F_u(X, A; Y, B)$)

$$H^{n}((F_{u},u)\times(X,A);\operatorname{pr}_{2}^{*}u_{1}^{*}G) \xrightarrow{\Phi_{(X,A)}} \coprod_{0\leq j\leq n} H^{j}(F_{u},u;H^{n-j}(X,A;u_{1}^{*}G))$$

$$(\alpha\times1)^{*}\downarrow \qquad \qquad \downarrow \alpha^{*}\circ\operatorname{pr}_{i}$$

$$H^{n}((S^{i},*)\times(X,A);\operatorname{pr}_{2}^{*}u_{1}^{*}G) \xrightarrow{\Phi_{(X,A)}} H^{i}(S^{i},*;H^{n-i}(X,A;u_{1}^{*}G))$$

showing that

$$\Phi_{(X,A)}\psi^{i}([\alpha]) = \Phi_{(X,A)}(\alpha \times 1)^{*}[e]$$

$$= \alpha^{*} \circ \operatorname{pr}_{i} \circ \Phi_{(X,A)}([e]) = \alpha^{*}([e^{i}]).$$

In other words, the bijection

$$\Phi_{(X,A)}\psi^{i}\colon \pi_{i}(F_{u},u)\to H^{i}\big(S^{i},\ast;H^{n-i}\big(X,A;u_{1}^{*}G\big)\big)=H^{n-i}\big(X,A;u_{1}^{*}G\big)$$
 equals the homomorphism

$$(e_i)_*$$
: $\pi_i(F_u, u) \to \pi_i(K(H^{n-i}(X, A; u_1^*G), i), *) = H^{n-i}(X, A; u_1^*G)$ induced by e_i . Hence $(e_i)_*$ is an isomorphism (for $i \ge 1$) of homotopy groups.

REMARK 3.2. Let (Z, C) be an NDR-pair and $\alpha: (Z, C) \rightarrow (F_u(X, A; Y, B), u)$ a map. Then

$$[e \circ (\alpha \times 1)] \in H^n((Z,C) \times (X,A); \operatorname{pr}_2^* u_1^* G)$$
and $e^i \circ \alpha \colon (Z,C) \to (K(H^{n-i}(X,A;u_1^* G),i),*)$ represents
$$\operatorname{pr}_i(\Phi_{(X,A)}([e \circ (\alpha \times 1)])) \in H^i(Z,C;H^{n-i}(X,A;u_1^* G)).$$

An application of Theorem 3.1 to the classifying fibration $\kappa(G, n)$ over $K(\pi, 1)$ yields

COROLLARY 3.3. The space $\Gamma(\kappa(G, n))$ of sections of $\kappa(G, n)$ has the weak homotopy type of the product

$$\prod_{i=0}^{n} K(\operatorname{Ext}_{\pi}^{n-i}(\mathbf{Z}, G_{0}), i)$$

where **Z** is considered as a trivial π -module.

Proof.
$$H^{n-i}(K(\pi,1);G) = \operatorname{Ext}_{\pi}^{n-i}(\mathbf{Z},G_0)$$
 by a theorem of Eilenberg ([16], Theorem 3.5*, p. 281).

Note that the additive structure of $H^*(X, A; G)$ suffices to determine the weak homotopy type of $F_u(X, A; Y, B)$ when $p: Y \to B$ is a $K(G_0, n)$ -fibration; cf. ([15], I). This is not true in general.

4. Change of base point. Let $p: Y \to B$ be the $K(G_0, n)$ -fibration of the previous section and let $u, v: X \to Y$ be two maps such that $u \mid A = v \mid A$ and pu = pv. Then $F_u(X, A; Y, B) = F_v(X, A; Y, B)$ as free spaces. The purpose of this section is to discuss the relation between the pointed spaces $(F_v(X, A; Y, B), u)$ and $(F_v(X, A; Y, B), v)$.

To clarify the role of the chosen base point, we now write ψ_u^i for the homomorphism ψ^i introduced in the proof of Theorem 3.1. Explicitly,

$$\psi_u^i \colon \pi_i(F_u(X, A; Y, B), u) \to H^n((S^i, *) \times (X, A); \operatorname{pr}_2^* u_1^* G)$$

takes $[\alpha] \in \pi_i(F_u(X, A; Y, B), u)$ to the primary difference

$$\psi_u^i([\alpha]) = \delta^n(u \circ \operatorname{pr}_2, e \circ (\alpha \times 1))$$

of $u \circ pr_2$ and the adjoint $e \circ (\alpha \times 1)$ of α .

In order to compare ψ_u^i and ψ_v^i , we introduce the set $[S^i, F_u(X, A; Y, B)]$ of free homotopy classes of free maps of S^i into $F_u(X, A; Y, B)$. (Note in this connection that $F_u(X, A; Y, B)$ is a simple space by Theorem 3.1.) Also in this case we get a bijection

$$\psi_u^i: \left[S^i, F_u(X, A; Y, B)\right] \to H^n\left(S^i \times (X, A); \operatorname{pr}_2^* u_1^* G\right)$$

by forming primary differences as above.

Let \bar{j} : $\pi_i(F_u(X, A; Y, B), u) \to [S^i, F_u(X, A; Y, B)]$ be the inclusion induced by the inclusion $j: S^i \to (S^i, *)$. Then one easily proves:

LEMMA 4.1. The deviation from commutativity of the diagram

$$\pi_{i}(F_{u}(X, A; Y, B), u) \xrightarrow{\psi_{u}} H^{n}((S^{i}, *) \times (X, A); \operatorname{pr}_{2}^{*}u_{1}^{*}G) \\
\downarrow^{j} \downarrow \qquad \qquad \downarrow^{(j \times 1)^{*}} \\
\left[S^{i}, F_{u}(X, A; Y, B)\right] \xrightarrow{\psi_{v}^{i}} H^{n}(S^{i} \times (X, A); \operatorname{pr}_{2}^{*}u_{1}^{*}G)$$

is given by

$$(j \times 1)^* \circ \psi_u^i - \psi_n^i \circ \bar{j} = \operatorname{pr}_2^* \delta^n(u, v)$$

where $\delta^n(u, v) \in H^n(X, A; u_1^*G)$ is the primary difference of u and v.

Now assume that $p_1: Y_1 \to B_1$ is another fibration with an Eilenberg-Mac Lane space $K(G'_0, q)$, G'_0 abelian, $q \ge 1$, as fibre and that

$$\begin{array}{ccc}
Y & \stackrel{k}{\rightarrow} & Y_1 \\
p \downarrow & & \downarrow p_1 \\
B & \stackrel{k_1}{\rightarrow} & B_1
\end{array}$$

is a fibre map of p into p_1 . Let G_1 denote the local coefficient system in B_1 determined by p_1 .

For any pair (Z, C; f) over Y and any integer $i \ge 0$, let $\sigma^i[k]_f$ denote the primary twisted cohomology operation that makes the diagram

$$\pi_{i}(F_{f}(Z,C;Y,B),f) \xrightarrow{\underline{k}_{*}} \pi_{i}(F_{kf}(Z,C;Y_{1},B_{1}),kf)$$

$$\Phi_{(Z,C)}\psi_{f}^{i}\downarrow \cong \cong \downarrow \Phi_{(Z,C)}\psi_{kf}^{i}$$

$$H^{n-i}(Z,C;f_{1}^{*}G) \xrightarrow{\sigma^{i}[k]_{f}} H^{q-i}(Z,C;f_{1}^{*}k_{1}^{*}G_{1})$$

commute. The operation $[k]_f := \sigma^0[k]_f$ is given by $[k]_f \delta^n(f, g) = \delta^q(kf, kg)$ for any $g \in F_f(Z, C; Y, B)$.

In particular, $u: X \to Y$ determines operations

$$\sigma^{i}[k]_{u}: H^{n-i}(X, A; u_{1}^{*}G) \to H^{q-i}(X, A; u_{1}^{*}k_{1}^{*}G_{1}), \quad i \geq 0,$$

and the maps $u \circ \operatorname{pr}_2$: $X \times S^i \hookrightarrow Y$, $i \geq 0$, determine operations $[k]_{u \circ \operatorname{pr}_2}$ such that

$$\begin{bmatrix} S^{i}, F_{u}(X, A; Y, B) \end{bmatrix} \xrightarrow{\underline{k}_{*}} \begin{bmatrix} S^{i}, F_{ku}(X, A; Y, B) \end{bmatrix}$$

$$\downarrow^{i}_{u} \downarrow \qquad \qquad \downarrow^{i}_{ku}$$

$$H^{n}(S^{i} \times (X, A); \operatorname{pr}_{2}^{*}u_{1}^{*}G) \xrightarrow{[k]_{u \circ \operatorname{pr}_{2}}} H^{q}(S^{i} \times (X, A); \operatorname{pr}_{2}^{*}u_{1}^{*}k_{1}^{*}G_{1})$$

commutes. If $s^i \times -$ denotes the homomorphism that renders

commutative, then the equation

$$[k]_{u \circ \operatorname{pr}_2}(s^i \times \chi) = s^i \times \sigma^i [k]_u(\chi), \qquad \chi \in H^{n-i}(X, A; u_1^*G)$$

shows the relation between $[k]_u$ and $[k]_{u \circ \operatorname{pr}_1}$.

The object of the next theorem is to compare the operations $\sigma^{i}[k]_{u}$ and $\sigma^{i}[k]_{v}$ induced by two different maps u and v.

THEOREM 4.2. For any $\chi \in H^{n-i}(X, A; u_1^*G)$, i > 0, the equality $[k]_{u \circ \operatorname{pr}_2}(s^i \times \chi + \operatorname{pr}_2^*\delta^n(u, v)) = s^i \times \sigma^i[k]_v(\chi) + \operatorname{pr}_2^*([k]_u\delta^n(u, v))$ holds in

$$H^{q}(S^{i} \times (X, A); \operatorname{pr}_{2}^{*}u_{1}^{*}k_{1}^{*}G_{1})$$

$$\cong H^{q-i}(X, A; u_{1}^{*}k_{1}^{*}G_{1}) \oplus H^{q}(X, A; u_{1}^{*}k_{1}^{*}G_{1}).$$

Proof. Some of the introduced maps are related by the following commutative diagram

in which some self explanatory abbreviations occur. In particular

(1)
$$[k]_{u \circ \operatorname{pr}_2} (\psi_u^i \bar{j}[\alpha]) = (j \times 1)^* \psi_{ku}^i \underline{k}_* [\alpha]$$

for any homotopy class $[\alpha] \in \pi_i(F_u(X, A; Y, B), v)$. If $\psi_v^i \bar{j}[\alpha] = \chi$, then by Lemma 4.1,

$$\psi_u^i \bar{j}[\alpha] = (j \times 1)^* \psi_v^i[\alpha] + \operatorname{pr}_2^* \delta^n(u, v) = s^i \times \chi + \operatorname{pr}_2^* \delta^n(u, v),$$

so the left hand side of (1) becomes

$$[k]_{u \circ \operatorname{pr}_2} (\psi_u^i \overline{j}[\alpha]) = [k]_{u \circ \operatorname{pr}_2} (s^i \times \chi + \operatorname{pr}_2^* \delta^n(u, v)).$$

The right hand side of (1) can be rewritten, using Lemma 4.1 for the first equality, as follows

$$(j \times 1)^{*} \psi_{ku}^{i} \underline{k}_{*} [\alpha] = \psi_{kv}^{i} \underline{j} \underline{k}_{*} [\alpha] + \operatorname{pr}_{2}^{*} \delta^{q} (ku, kv)$$

$$= [k]_{v \circ \operatorname{pr}_{2}} ((j \times 1)^{*} \psi_{v}^{i} [\alpha]) + \operatorname{pr}_{2}^{*} [k]_{u} \delta^{n} (u, v)$$

$$= [k]_{v \circ \operatorname{pr}_{2}} (s^{i} \times \chi) + \operatorname{pr}_{2}^{*} [k]_{u} \delta^{n} (u, v)$$

$$= s^{i} \times \sigma^{i} [k]_{v} (\chi) + \operatorname{pr}_{2}^{*} [k]_{u} \delta^{n} (u, v). \quad \Box$$

Consequently, $[k]_u = [k]_v$ if $[k]_{u \circ pr_2}$ happens to be an additive operation. On the other hand, examples do occur, see e.g. [11], where $[k]_u \neq [k]_v$.

5. Spaces of maps into twisted Eilenberg-Mac Lane spaces. Suppose that both π and G_0 are abelian groups, $\varphi \colon \pi \to \operatorname{Aut}(G_0)$ an action of π on G_0 , and

$$K(G_0, n) \to K(G_0, n; \varphi) \stackrel{\hat{k}}{\rightleftharpoons} K(\pi, 1)$$

the associated classifying fibration $\kappa(G, n)$. The purpose of this section is to describe mapping spaces with the total space $K(G_0, n; \varphi)$ as target.

The classifying fibration $\kappa(G, n)$ can be constructed more explicitly as follows. The Eilenberg-Mac Lane space $K(G_0, n)$ can be made into a left π -space in such a way that each $\xi \in \pi$ acts as a base-point preserving homeomorphism with the induced map

$$\xi_*: \pi_n(K(G_0, n), *) \to \pi_n(K(G_0, n), *)$$

equal to ξ : $G_0 \to G_0$ under some fixed isomorphism $\pi_n(K(G_0, n), *) \cong G_0$. The fibre bundle

$$K(G_0, n) \to E\pi \times_{\pi} K(G_0, n) \stackrel{\hat{k}}{\to} B\pi$$

associated to the universal principal π -bundle ω : $E\pi \to B\pi$ is then a $\kappa(G, n)$.

Let $u: X \to K(G_0, n; \varphi) = E\pi \times_{\pi} K(G_0, n)$ be any map into the total space of $\kappa(G, n)$. Put $u_1 = \hat{k}u$. Consider the fibration of function spaces

$$F_{\nu}(X; K(G_0, n; \varphi), B\pi) \rightarrow F_{\nu}(X; K(G_0, n; \varphi), *) \xrightarrow{\underline{k}} F_{\nu}(X; B\pi, *)$$

induced by the projection \hat{k} . The base space $F_u(X; B\pi, *) = H^1(X; \pi) \times K(\pi, 1)$ is disconnected (in general), so we let $F_{u_1}^0(X; B\pi, *) = K(\pi, 1)$ denote the path-component of $F_u(X; B\pi, *)$ containing u_1 and concentrate our attention on the pre-image $F_u(X; K(G_0, n; \varphi), *) | u_1 = \frac{\hat{k}}{2} (F_{u_1}^0(X; B\pi, *))$. By restriction of \hat{k} we then get the fibration

$$\prod_{i=0}^n K\big(H^{n-i}\big(X;u_1^*G\big),i\big) \to F_u\big(X;K(G_0,n;\varphi),*\big)\,|\,u_1 \to K(\pi,1)$$

where Theorem 3.1 has been used to identify the fibre.

Since π is abelian, $\xi: G_0 \to G_0$, $\xi \in \pi$, is an operator automorphism, i.e. an automorphism of the local coefficient system G in $K(\pi, 1)$, and hence ξ induces a coefficient group automorphism ξ_* of $H^{n-i}(X; u_1^*G)$, $0 \le i \le n$.

After these preliminaries we can now state

THEOREM 5.1. There is a weak (fibre) homotopy equivalence

$$F_u(X; K(G_0, n; \varphi), *) | u_1 \to E\pi \times_{\pi} \left(\prod_{i=0}^n K(H^{n-i}(X; u_1^*G), i) \right),$$

where π acts on $H^{n-i}(X; u_1^*G)$, $0 \le i \le n$, through coefficient group automorphisms.

Proof. The cohomology operation ξ_* can be realized geometrically as in §4. For the based automorphism ξ of $K(G_0,n)$ is a π -map, and hence it extends to a homeomorphism $\xi\colon K\to K$ over and under $B\pi$. (Here, and in the following, $K=K(G_0,n;\varphi)=E\pi\times_\pi K(G_0,n)$.) As is easily seen, the *i*-fold suspension $\sigma^i[\xi]_u$ of the corresponding cohomology operation $[\xi]_u$ is the coefficient group automorphism $\xi_*\colon H^{n-i}(X;u_1^*G)\to H^{n-i}(X;u_1^*G), 0\le i\le n$.

Since π is abelian, there exist H-space structures $\bar{\mu} \colon E\pi \times E\pi \to E\pi$, $\mu \colon B\pi \times B\pi \to B\pi$ with strict units $e_0 \in E\pi$, $b_0 = \omega(e_0) \in B\pi$ such that $\mu \circ (\omega \times \omega) = \omega \circ \bar{\mu}$. The unique path lifting property implies that $\bar{\mu}(e_1\xi,e_2) = \bar{\mu}(e_1,e_2)\xi = \bar{\mu}(e_1,e_2\xi)$ for all $e_1,e_2 \in E\pi$, $\xi \in \pi$.

The space $F^i(X; K, B\pi)$ of lifts of u_1 is a left π -space under composition with the fibre maps $\xi: K \to K, \xi \in \pi$. Let

$$\overline{\psi} \colon E\pi \times_{\pi} F_{\nu}(X; K, B\pi) \to F_{\nu}(X; K, *)$$

be the map given by

$$\bar{\psi}((e,v)\pi)(x) = (\bar{\mu}(e,\bar{u}_1(x)),\hat{v}(x))\pi$$

where $e \in E\pi$, $v \in F_u(X; K, B\pi)$, $x \in X$, $\bar{u}_1(x) \in E\pi$ is any lift of $u_1(x) \in B\pi$, and $v(x) \in K$ and $\hat{v}(x) \in K(G_0, n)$ are related by the formula $v(x) = (\bar{u}_1(x), \hat{v}(x))\pi$.

Note that $\overline{\psi}$ is a fibre map which restricts to the identity on the fibre. The induced map $\psi \colon B\pi \to F_{u_1}(X; B\pi, *)$ between the base spaces satisfies $\psi(b, x) = \mu(b, u_1(x)), \ b \in B\pi, \ x \in X$. This means that ψ is a homotopy equivalence between $B\pi$ and $F_{u_1}^0(X; B\pi, *)$. Hence $\overline{\psi}$ is a fibre homotopy equivalence from $E\pi \times_{\pi} F_u(X; K, B\pi)$ to $F_u(X; K, *) \mid u_1$ by Dold [2].

The proof is now completed by noting that the weak homotopy equivalence of $F_u(X; K, B\pi)$ into $\prod_{i=0}^n K(H^{n-i}(X; u_1^*G), i)$ from Theorem 3.1 is a π -map enabling us to construct a weak homotopy equivalence

$$E\pi \times_{\pi} F_{u}(X; K, B\pi) \to E\pi \times_{\pi} \prod_{i=0}^{n} K(H^{n-i}(X; u_{1}^{*}G), i)$$

as claimed.

REMARK 5.2. During the proof of Theorem 5.1 we actually established the identity

$$F_{u}(X; E\pi \times_{\pi} F, *) | u_{1} = E\pi \times_{\pi} F_{u}(X; E\pi \times_{\pi} F, B\pi)$$

for any left π -space F and any map $u: X \to E\pi \times_{\pi} F$.

EXAMPLE 5.3. The classifying space BO(2) for the orthogonal group O(2) is the twisted Eilenberg-Mac Lane space $K(\mathbf{Z}, 2; \varphi)$ where $\varphi: \mathbf{Z}/2 \to \operatorname{Aut}(\mathbf{Z})$ is the non-trivial action.

Let $u: BO(1) \to BO(2)$ be any map. Then up to homotopy, $u_1 = 0$ or $u_1 = w_1$, the first Stiefel-Whitney class. An application of Theorem 5.1 yields

$$F_u(BO(1); BO(2), *) | 0 = BO(2) + BO(2),$$

 $F_u(BO(1); BO(2), *) | w_1 = BO(1) \times BO(1)$

where + denotes disjoint union.

6. Spaces of lifts in K(G,1)-fibrations. In this section we let $p: Y \to B$ denote a fibration with an aspherical space F = K(G,1) as fibre. G can be any, not necessarily abelian, group. We shall investigate the space $F_{\mu}(X,A;Y,B)$.

The pull-back $F \xrightarrow{i'} Y' \xrightarrow{p'} X$ of $F \xrightarrow{i} Y \xrightarrow{p} B$ along $u_1 = pu$ has a canonical section $u' \colon X \to Y'$ induced from u. Hence $i'_* \colon \pi_1(F) \to \pi_1(Y')$ is a monomorphism and a homomorphism $\varphi_u \colon \pi = \pi_1(X) \to \operatorname{Aut}(G)$ is uniquely defined $i'_*(xg) = u'_*(x)i'_*(g)u'_*(x)^{-1}, x \in \pi, g \in G$. We write xg for $\varphi_u(x)g$. Let

$$G^{\pi} = \{g \in G | \pi g = g\}$$

denote the fixpoint set of this action and let

$$Q(\pi,G) = \{ f \colon \pi \to G | \forall x, y \in \pi \colon f(xy) = f(x)xf(y) \}$$

denote the set of crossed homomorphisms of π into G. There is an action

$$Q(\pi,G)\times G\to Q(\pi,G)$$

of G on the set of crossed homomorphisms given by $(fg)(x) = g^{-1}f(x)xg$, $f \in Q(\pi, G)$, $g \in G$, $x \in \pi$. $Q(\pi, G)/G$ denotes the set of orbits for this action.

Let $x_0 \in X$ be the base point. To any based lift $v \in F_u(X, x_0; Y, B)$ of u_1 , we can associate a crossed homomorphism $f_v \in Q(\pi, Q)$ given by $i'_*f_v(x) = v'_*(x)u'_*(x)^{-1}$, where $v': X \to Y'$ is the section of p' induced from v. By some obvious modifications of the classification of based

homotopy classes of based maps into an aspherical space ([16], Theorem 4.3, p. 225) we get

LEMMA 6.1. For any connected CW-complex X, the map $v \to f_v$ induces a bijective correspondence between $\pi_0 F_u(X, x_0; Y, B)$ and $Q(\pi, G)$.

Also the free vertical homotopy classes of free lifts of u_1 can be classified; cf. ([16], Corollary 4.4, p. 226).

LEMMA 6.2. For any connected CW-complex X, there is a bijective correspondence between $\pi_0 F_u(X; Y, B)$ and $Q(\pi, G)/G$.

Proof. The sets $F_u(X, x_0; Y, B)$ and $F_u(X; Y, B)$ of based and free lifts of u_1 are related by the evaluation fibration

$$F_u(X, x_0; Y, B) \to F_u(X; Y, B) \to F_u(x_0; Y, B) = F.$$

This evaluation fibration determines an action $Q(\pi, G) \times G \to Q(\pi, G)$ of the fundamental group $G = \pi_1(F)$ of its base space on the set $\pi_0 F_u(X, x_0; Y, B) = Q(\pi, G)$ of path-components of its fibre. We must show that this action coincides with the one introduced above.

Since X is connected, we may assume that the 1-skeleton X_1 is a wedge of circles. The inclusion map i_1 : $X_1 \to X$ induces an injection \bar{i}_{1*} : $Q(\pi,G) \to Q(\pi_1(X_1),G)$ which is compatible with the G-action. Therefore, we may assume that $X=X_1$ is 1-dimensional. Furthermore, since a crossed homomorphism of $\pi_1(X_1)$ into G is uniquely determined by its value on a set of free generators, we can assume that $X=S^1$ consists of a single circle.

Let $h: (I, I) \to (S^1, x_0)$ be the usual proclusion representing the generator $\iota \in \pi_1(S^1, x_0)$. Choose a map $H: I \times F \to Y'$ such that the diagram

$$I \times F \stackrel{H}{\rightarrow} Y'$$

$$pr_1 \downarrow \qquad \qquad \downarrow p'$$

$$I \stackrel{h}{\rightarrow} S^1$$

commutes and such that $H(t, y_0) = u'(t)$, $y_0 = u(x_0)$, $t \in I$, and $H_0 = i'$: $F \to Y'$. Then ([9], Theorem 1), $(H_1)_* = \iota^{-1} \in \operatorname{Aut} G$.

Consider the following diagram of maps between fibrations induced by h and H

The maps between the fibers are homeomorphisms ([14], p. 530) and the maps between the base spaces can be identified to

$$F \xrightarrow{\Delta} F \times F \xleftarrow{1 \times H_1} F \times F$$

where Δ is the diagonal map.

The fibre $F_{y_0}(I, \dot{I}; F)$ of the fibration to the right is the loop space ΩF of F and the associated action of $\pi_1(F(\dot{I}; F), y_0) = G \times G$ on $\pi_0 F_{y_0}(I, \dot{I}; F) = \pi_0(\Omega F) = G$ is given by $g_1 \cdot (h_0, h_1) = h_0^{-1} g_1 h_1$ for all $g_1, h_0, h_1 \in G$. Hence the corresponding action of $\pi_1(F_u(x_0; Y, B), y_0) = G$ on $\pi_0 F_u(S^1, x_0; Y, B) = Q(\pi_1(S^1), G) = G$ is given by $g_1 \cdot g = g^{-1} g_1 \iota g$, $g \in G$. Taking into account the identifications made, this means that

$$(fg)(z) = g^{-1}f(z)zg$$
 for all $f \in Q(\pi_1(S^1), G), g \in G, z \in \pi_1(S^1).$

Finally, we compute the higher homotopy groups of $F_u(X, x_0; Y, B)$ and $F_u(X; Y, B)$. More generally, let (X, A) be a finite relative CW-complex where both X and A are 0-connected. Assume that (X, A) has a CW-decomposition with 0-skeleton $X_0 = A$ if $A \neq \emptyset$ and $X_0 = \{x_0\}$ if $A = \emptyset$.

THEOREM 6.3. (1) If $A \neq \emptyset$, each component of $F_u(X, A; Y, B)$ is weakly contractible.

(2) If $A = \emptyset$, each component of $F_u(X; Y, B)$ is an aspherical space. The fundamental group $\pi_1(F_u(X; Y, B), u)$ of the component containing u is isomorphic to the fixpoint set G^{π} .

Proof. We proceed as in ([8], Theorem 2). Let X_q be the q-skeleton of a CW-decomposition of (X, A) such that $X_0 = A$ if $A \neq \emptyset$ and $X_0 = \{x_0\}$ if $A = \emptyset$. The inclusion maps $i_q: X_{q-1} \to X_q$ induce a tower of

fibrations

$$F_{u}(X, A; Y, B) \to F_{u}(X_{q}, A; Y, B) \xrightarrow{\hat{i}_{q}} F_{u}(X_{q-1}, A; Y, B)$$

$$\to \cdots \to F_{u}(X_{2}, A; Y, B) \xrightarrow{\hat{i}_{2}} F_{u}(X_{1}, A; Y, B) \xrightarrow{\hat{i}_{1}} F_{u}(X_{0}, A; Y, B).$$

The fibre $F_u(X_q, X_{q-1}; Y, B)$ of \overline{i}_q can be identified to a product of a number of copies of the q-fold loop space $\Omega^q F$. The number of factors equals the number of q-cells in (X, A). Since F = K(G, 1) is aspherical, it follows that $F_u(X, A; Y, B)$ and $F_u(X_1, A; Y, B)$ are weakly homotopy equivalent. Moreover, if $A \neq \emptyset$,

$$F_{\nu}(X_1, A; Y, B) \simeq \Omega F \times \cdots \times \Omega F \simeq G \times \cdots \times G$$

is just a discrete set of points.

If $A = \emptyset$, we consider the evaluation fibration

$$F_{\mu}(X, x_0; Y, B) \to F_{\mu}(X; Y, B) \to F_{\mu}(x_0; Y, B) = F$$

with the discrete fibre $F_u(X, x_0; Y, B) = F_u(X_1, x_0; Y, B)$. In the associated homotopy sequence

$$1 \to \pi_1(F_u(X;Y,B),u) \to G \xrightarrow{\partial} Q(\pi,G) \to \pi_0F_u(X;Y,B) \to *$$

one has $\partial g = 1g$ for all $g \in G$. Hence

$$\pi_1(F_u(X;Y,B),u) \cong \ker \partial = \{g \in G | 1g = g\} = G^{\pi}.$$

If $p = \operatorname{pr}_1$: $B \times K(G,1) \to B$ is the trivial K(G,1)-fibration over B and $u = (b_0, u)$: $X \to \{b_0\} \times K(G,1) \subset B \times K(G,1)$ a continuous map, the action of π on G is given by $xg = u_*(x)gu_*(x)^{-1}$. Thus the fixpoint set G^{π} is the centralizer of $u_*(\pi_1(X))$ in G. In this way we recover the theorem of Gottlieb [6].

If G is abelian, the fibration $p: Y \to B$ determines a system of local coefficients, also denote by G, in B. The pull-back u_1^*G in X is given by $\varphi_u: \pi \to \operatorname{Aut}(G)$. Since $Q(\pi, G) \cong H^1(X, x_0; u_1^*G)$, $Q(\pi, G)/G \cong H^1(X; u_1^*G)$, and $G^{\pi} = H^0(X; u_1^*G)$, 6.1-6.3 reduce to Theorem 3.1 for n = 1 in this case.

Although suppressed in the used notation, the group G^{π} in general depends on the choice of u. Thus the components of $F_u(X; Y, B)$ may represent more than just one (weak) homotopy type.

REFERENCES

- [1] R. Brown, Cohomology with chains as coefficients, Proc. London Math. Soc., (3) 14 (1964), 545-565.
- [2] A. Dold, Partitions of unity in the theory of fibrations, Ann. of Math., 78 (1963), 223-255.
- [3] ______, Lectures on Algebraic Topology, Second Edition. Grundlehren der Mathematischen Wissenschaften 200. Springer-Verlag, Berlin-Heidelberg-New York 1980.
- [4] H. Federer, A study of function spaces by spectral sequences, Trans. Amer. Math. Soc., 82 (1956), 340-361.
- [5] S. Gitler, Cohomology operations with local coefficients, Amer. J. Math., 85 (1963), 156-188.
- [6] D. H. Gottlieb, Covering transformations and universal fibrations, Illinois J. Math., 13 (1969), 432-437.
- [7] A. Haefliger, Rational homotopy of the space of sections of a nilpotent bundle, Trans. Amer. Math. Soc., 273 (1982), 609-620.
- [8] V. L. Hansen, Spaces of maps into Eilenberg-MacLane spaces, Canad. J. Math., XXXIII (1981), 782-785.
- [9] R. O. Hill Jr., On characteristic classes of groups and bundles of $K(\pi, 1)$'s. Proc. Amer. Math. Soc., 40 (1973), 597-603.
- [10] J. F. McClendon, Obstruction theory in fiber spaces, Math. Z., 120 (1971), 1-17.
- [11] J. M. Møller, On the homology of spaces of sections of complex projective bundles, Pacific J. Math., 116 (1985), 143-154.
- [12] P. Olum, On mappings into spaces in which certain homotopy groups vanish, Ann. of Math., 57 (1983), 561-574.
- [13] J. Siegel, Cohomology and homology theories for categories of principal G-bundles, Trans. Amer. Math. Soc., 120 (1965), 428-437.
- [14] R. M. Switzer, Counting elements in homotopy sets, Math. Z., 178 (1981), 527-554.
- [15] R. Thom, L'homologie des espaces fonctionelles, Colloque de topologie algébrique, Louvain 1956. Thone, Liege; Masson, Paris, 1957, 29–39.
- [16] G. W. Whitehead, *Elements of Homotopy Theory*, Graduate Texts in Mathematics 61, Springer-Verlag, Berlin-Heidelberg-New York 1978.

Received July 12, 1986.

Universitetsparken 5 DK-2100 København Ø Denmark