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SPACES OF SECTIONS OF EILENBERG-MAC LANE
FIBRATIONS

JESPER MICHAEL M@LLER

We show first that the space of sections of a fibration with an
Eilenberg-Mac Lane space as fibre has the weak homotopy type of a
product of Eilenberg-Mac Lane spaces. Secondly, mapping spaces with
twisted Eilenberg-Mac Lane spaces as targets are shown to be gene-
ralized twisted Eilenberg-Mac Lane spaces.

1. Introduction. Let p: Y — B be a (Serre) fibration, i: 4 = X a
cofibration and u: X — Y a (continuous) map. Using Switzer’s notation
from [14], let

F(X,A4;Y,B)
P

be the space of all maps f: X — Y suchthat fei=wuciand pof=pou.
In other words, F,(X, A;Y,B) is the solution space for the lifting
extension problem

P

’rl // lp

X" - B
pu

with data u|A: A — Y and pu: X - B.

We shall be concerned with decompositions of F (X, A;Y, B) when
p: Y — B has an Filenberg-Mac Lane space as fibre. Suppose for instance
that p: K(G,n) — * is the trivial fibration mapping an Filenberg-Mac
Lane space onto a point. Then

() R(X2:K(Gn), %) = TTK(H(X:6))

by Haefliger’s sharpened version [7] of a theorem of Thom [15] and
independently Federer [4]. The main purpose of this paper is to establish a
twisted version of (*)

2. Preliminaries. We shall work in the category of compactly gen-
erated spaces. For any two compactly generated spaces X and Y, we let
X X Y and F(X;Y) denote the compactly generated spaces associated to
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the Cartesian product of X and Y and the space of maps of X into Y with
the compact-open topology, respectively. These constructions assure the
continuity of the evaluation map e: F(X;Y) X X — Y and the validity of
the Exponential Law ([16], pp. 17-21) and thus eliminate the difficulties
with the topology of function spaces as pointed out by Thom in the first
paragraphs of [15].

Throughout this paper we let (X, A) denote an NDR-pair ([16], p. 22)
with X O-connected and p: Y — B a fibration with 0-connected base
space B. Then F, (X, 4;Y, B) is a closed subset of F(X;Y) and thus
compactly generated in the (usual) subspace topology.

Composition with maps from the right or from the left defines maps
of function spaces. If for instance 4 C X’ C X is a nested sequence of
NDR-pairs and j: X’ = X the inclusion, then the induced map

Jj: F(X,A;Y,B) > F, (X', 4;Y, B)

is a fibration with F (X, X’; Y, B) as fibre. Similarly, if Y - Y’ —> Bisa
sequence of fibrations and ¢q: Y — Y’ the projection, then the induced
map

q: F(X,A;Y,B) - Fqu(X,A; Y’, B)
is a fibration with F,( X, 4;Y, Y’) as fibre ([14], Proposition, p. 528).

Let = be an abelian group. We shall be particularly interested in the
K(,1)-sectioned spaces [10] that arise in the following way. Suppose that
G is a system of local coefficients in the Eilenberg-Mac Lane space
K(m,1) given by a homomorphism ¢: m(K(7,1)) = 7 = Aut(G,) of =
into the automorphism group of a typical group G, of G. For any integer
n > 0, G may be realized, see ([5], Ch. III) or ([10], p. 7), as the system of
local coefficients defined by the n-dimensional homotopy groups of the
fibres of a sectioned fibration

K(Go,n) = K(Gy, 5 9) 2 K(m,1)

over K(m,1). This fibration, which we shall denote by (G, n), classifies
cohomology with local coefficients in the sense that by the Classification
Theorem ([16], Theorem 6.13, p. 302), ([13], Theorem 3.6), ([12], Theorem
1),

7o(F (X, 4; K(Gy,n,9), K(7,1))) = H'( X, 4; u¥G)
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for any map u: X - K(G,, n; ) with u;, = ku. Via pull-back of the
path-space fibration in the category of K (=, 1)-sectioned spaces [10],
K(Gy,n — 1) = PK(Gy, n; 9) = K(Gy, n; 9),

this equality may be interpreted as a bijective correspondence between
fibre homotopy equivalence classes of K(G,, n — 1)-fibrations over X
with 4G as associated system of local coefficients and the cohomology
group H"( X; ui¥G).

As a final subject of this mixed section we shall now discuss Kiinneth
theorems for cohomology with local coefficients. First an algebraic lemma
([1], Theorem 2.8).

LEMMA 2.2. Let P be a free positive and N a negative chain complex
over L. Then there is an isomorphism

®,: H(Hom(P,N)) — H(Hom(P, H(N)))

which is natural in the first variable.

Proof. Choose a free negative complex N’ and chain maps
HN)EN SN

such that a is a quasi-isomorphism and B, = a,: H(N’) - H(N); cf.
([3], p. 169). Since P is free (projective), the induced chain maps
Hom(1, a): Hom(P, N') -» Hom(P,N),
Hom(1, 8): Hom(P, N’) » Hom(P, H(N))
are again quasi-isomorphisms. Thus
@, = Hom(1, B),°Hom(1, &)y ': H(Hom(P, N))~ H(Hom(P, H(N)))

is an isomorphism. ®,, is easily seen to commute with Hom(+, 1), for any

chain map y: P — P’ between free positive chain complexes. O

Note that since the complex H(N) has trivial differentiation,
H,(Hom(P,H(N))) = I H,(Hom(P,H,(N)))
p+qg=n

where H (N) is considered as a complex concentrated in degree 0.
As to cohomology of spaces, Lemma 2.2 has the following reformula-
tion.
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LEMMA 2.3. Let (Z,C) and (X, A) be NDR-pairs, G a system of local
coefficients in X, and pr,: Z X X — X the projection onto the second
factor. Then there is an isomorphism

@0 H'((Z,C) x(X, 4); prsG) > 11 H?(Z,C; HI(X, 4;6))
prq=n
which is natural in the first factor.

Proof. We may assume that Z and X are 0-connected spaces and that
(Z,C) and (X, A) are CW-pairs. Let (Z,C) - (Z,C) and (X, 4) »
(X, A) be the universal covering spaces so that ([16], Theorem 4.9, p. 288)

T*((Z,C) X(X, A); prfG) = Hom,(T'(Z,C) ® (X, Z), G,)
where R = Z(m(Z)) ® Z(m(X)) acts on the typical group G, by
(§®n)g=ng for§ € m(Z), n € m(X) and g € G,. We use (I'*)T to
denote cellular (co-)chain complexes. Since

Hom,(T'(Z,C) ® T(X, 4),G,)

= Hom,, ,(T(Z,C), Hom,, x,(T(X, 4),G,))
= Hom, ,,(T(Z,C),T*(X, 4; G))

= Hom(T'(Z,C), T*(X, 4;G)),
Lemma 2.3 follows from Lemma 2.2. |

The isomorphisms of the last two lemmas are not uniquely defined.

3. Spaces of lifts in K(G,, n)-fibrations. In this section we assume
that p: Y — B is a fibration with an Eilenberg-Mac Lane space K(G,, n),
where G, is an abelian group, as fibre. Let u: X — Y be any map and put
u, = pu: X > B.

First assume that p: Y — B is a principal K(G,, n)-fibration. Then
the pull-back uf( p) is a fibre homotopically trivial fibration ([15], II).
Hence

F(X,A;Y,B)=F,(X,A4;K(Gy,n), *)
for some map u’: X - K(G,, n), for F (X, A;Y, B) may be interpreted
as a space of sections of uf*( p). The (relative version of the) theorem of
Thom ([15], Théoréme 3), ([7], Proposition, p. 609), ([8], Theorem 1) thus
asserts that

F(X,4;Y,B)=T[1K(H" (X, 4;G,),i)
i=0

up to weak homotopy type.



EILENBERG-MAC LANE FIBRATIONS 175

Now consider the general case of a not necessarily principal
K(G,, n)-fibration p: Y — B. Let G denote the system of local coeffi-
cients in B defined by the n-dimensional homotopy groups of the fibres
of p. Following the proof of Thom’s theorem as it appears in [7], we
consider the evaluation map

e: F(X,4;Y,B)xX—->Y
given by e( f, x) = f(x). Note that
ecF, ((F(X,4;Y,B),u) X(X,A4);Y,B).

u°pry
For 0 < i < n, choose maps
e': (F(X,A4,Y,B),u) > (K(H" (X, 4; ufG), i), *)

such that the array of homotopy classes ([e°],[e],...,[e"]) corresponds
to the (vertical and relative) homotopy class [e] of e under the composite
bijection

o( Fypr,(F(X, 4;Y, B),u) X(X, A); Y, B))

= H"((F(X,4;Y,B),u) X(X, A); pr¥u*G)

"BY 1 B(E(X, 4, B),u; H"( X, 4; u3G)).

0<i<n

The main result of this section is the following generalization of Thom’s
theorem ([15], I) and the Classification Theorem ([12], Theorem II).

THEOREM 3.1. The map

(e%e,...,e"): F(X,4;Y,B) > [1K(H" (X, 4; u}G), i)
i=0

is a weak homotopy equivalence.

Proof. For i > 0, the Exponential Law

F(S' *;F(X,4;Y,B),u) =F,, . ((S%, *) X(X, 4); Y, B)

a—>eo(ax1)
induces a bijection

y': m(F,(X,4;Y,B),u) > H'((S', *) X(X, 4); prfu}G)

[a] = (ax1)"[e]
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between path-components. According to Lemma 2.3 there is a commuta-
tive diagram (with F, = F, (X, 4;Y, B))

(I)(X.A)

H"((E,,u) X(X,A); prfutG) - 11 H/(F, u; H" (X, 4; u}G))
O<j<n
(a X 1)* l ‘l, a* °pr;
[
H((S, %) X(X, A); prurG) = H(S',x; H""/(X, 4; ufG))

showing that
q)(X,A)‘V([a]) = (I)(X,A)(“ X 1)*[e]
=a* °pri°®(X,A)([e]) = a*([ei])-

In other words, the bijection
Dy ¥ m(F,,u) > H(S", »; H"( X, 4;u}G)) = H" (X, A; u}G)
equals the homomorphism
(e,)s: m(F,,u) > m(K(H" (X, 4; u}#G),i), *) = H" (X, 4; u}G)
induced by e;,. Hence (e;), is an isomorphism (for i > 1) of homotopy
groups. O

REMARK 3.2. Let (Z,C) be an NDR-pair and a: (Z,C) —
(F (X, A;Y, B),u) amap. Then

[ee(ax 1)] € H*((Z,C) X (X, 4); pr3ufG)
and e‘ca: (Z,C) » (K(H" (X, 4; u¥G), i), *) represents
pr,(® x4 (lee(a x 1)])) € H(Z,C; H" (X, 4; ufG)).

An application of Theorem 3.1 to the classifying fibration (G, n)
over K(=,1) yields

COROLLARY 3.3. The space T'(k(G, n)) of sections of (G, n) has the
weak homotopy type of the product

I1 K(E’“:‘i(z, Go), i)
i=0
where Z is considered as a trivial m-module.

Proof. H" '(K(w,1); G) = Ext”"/(Z,G,) by a theorem of Eilenberg
([16], Theorem 3.5*, p. 281). a
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Note that the additive structure of H*( X, 4; G) suffices to determine
the weak homotopy type of F,(X,A;Y,B) when p: Y- B is a
K(G,, n)-fibration; cf. ({15}, I). This is not true in general.

4. Change of base point. Let p: Y — B be the K(G,, n)-fibration
of the previous section and let »,v: X = Y be two maps such that
u|A =v|A and pu = pv. Then F (X, A;Y,B)= F/(X, A;Y, B) as free
spaces. The purpose of this section is to discuss the relation between the
pointed spaces (F, (X, A; Y, B),u) and (F (X, 4; Y, B),v).

To clarify the role of the chosen base point, we now write §/, for the
homomorphism ¢/ introduced in the proof of Theorem 3.1. Explicitly,

yi: m(F,(X,A;Y,B),u) > H'((S', *) X(X, 4); pr¥urG)
takes [a] € m,( F,(X, 4; Y, B), u) to the primary difference
Villal) = 8"(uepry, e o(a x 1))

of u opr, and the adjoint e o(a X 1) of a.

In order to compare ¢, and ¢!, we introduce the set
[SY, F(X, A;Y, B)] of free homotopy classes of free maps of S’ into
F (X, A;Y, B). (Note in this connection that F,(X, 4;Y, B) is a simple
space by Theorem 3.1.) Also in this case we get a bijection

Vi: [S, F,(X,4;Y,B)] » H'(S' X(X, A); pr{u}G)

by forming primary differences as above.
Let j: m(F,(X,A4;Y,B),u) - [S', F(X, A;Y, B)] be the inclusion
induced by the inclusion j: S' — (S’, *). Then one easily proves:

LEMMA 4.1. The deviation from commutativity of the diagram

Y )
7(F,(X,4;Y,B),u) — H"((S',*) X(X, A); pr{uyG)
il LGxp*
v

[S\,F,(X,4;Y,B)] =  H"(S"X(X,A4); pr{urG)
is given by
(jX1)* ey, — ¢, j=pry8"(u,v)

where 8"(u,v) € H"( X, A; u}G) is the primary difference of u and v.
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Now assume that p;: Y; — B, is another fibration with an Filenberg-
Mac Lane space K(G§, q), G abelian, ¢ > 1, as fibre and that

k
Yy - Y,
rl A
ky
B - B

is a fibre map of p into p,. Let G, denote the local coefficient system in
B, determined by p;,.

For any pair (Z, C; f) over Y and any integer i > 0, let ¢'[k], denote
the primary twisted cohomology operation that makes the diagram

k«

Wi(F}(Z,C; Y,B),f) - ”i(ka(Z,C; YI’BI)’kf)

‘I’(Z.C)‘P}l = = ‘L (I)(Z,C)‘I’;cf
) oi[k]f )
H"(Z,C;/#G) > H(Z,C; frk¥Gy)

commute. The operation [k],:= 6°[k], is given by [k]6"(f,g) =
89(kf, kg) for any g € F(Z,C; Y, B).
In particular, u: X — Y determines operations
o'[k],: H (X, 4;u¥G) > HT (X, 4; u}k}G,), i>=0,

and the maps uopr,: X X S Y, i > 0, determine operations [k]
such that

u e prp

ke

[s, F(X,4;Y, B)] - [S, F..(X, 4;Y, B)]
vl Y
HY(S' X (X, A); priutG) =" H(S'X(X, 4); priutkiG,)
commutes. If s' X — denotes the homomorphism that renders

UxH*
—_

H"((S8, *) X (X, A); pr}u}G) H"(S" X (X, A); pr}u}G)

‘I’(x,A)l
H" (X, 4; u}G)
commutative, then the equation
[kluopr, (s’ X x) = 5" x o'[klu(x),  x € H"/(X, 4; ufG)

shows the relation between [k], and [k]

u e pry”
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The object of the next theorem is to compare the operations o’[k],
and o'[k], induced by two different maps u and v.
THEOREM 4.2. For any x € H" (X, 4; u}G), i > 0, the equality
(k] uepr,(s7 X x + prao”(u,v)) = s X o'[k] ,(x) + pr([£] 8" (u,v))
holds in
HY(S' X(X,A); priufk}G,)
= H (X, 4; utk¥G,) ® HY( X, 4; urkyG,).

Proof. Some of the introduced maps are related by the following
commutative diagram

[t
*

WI(EI’U) > 77',(};;(”,/(0)
) ke J
[s',F] - (5" Al
Vi vul L u Viu

o pr.

H"(S" X (X, 4)) e HI(S' X(X, 4))

Al)* G X\l)”\

H"((S', %) X(X,A4)) — HI((S', *) X(X, 4))

in which some self explanatory abbreviations occur. In particular

(1) [k] uoprz(‘l’l;j[a]) = (] X 1)*4’2:;]_(*[0‘]
for any homotopy class [a] € m,(F(X, 4; Y, B),v). If ¢/ jla]= x, then
by Lemma 4.1,

wilal = (G x 1)*y,[a] + pryd"(u,v) = s" X x + pr3 8"(u,v),
so the left hand side of (1) becomes

[k uope, (Wi l@l) = [K]uepr,(s" X X + pr3 87 (u,v)).
The right hand side of (1) can be rewritten, using Lemma 4.1 for the first
equality, as follows

(J X D)"Y kel a] = ¥, jkela] + pry 89(ku, kv)
= [kl vepe((j x )*¥i[a]) + prilk] .87 (u,v)
= [kloepn(s’ X x) + prz[k] .8"(u,0)
=s' x o'[k],(x) + pr3[k].8"(u,v). O
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Consequently, [k], = [k], if [k],.,, happens to be an additive
operation. On the other hand, examples do occur, see e.g. [11], where
(k] # [k],-

5. Spaces of maps into twisted Eilenberg-Mac Lane spaces. Sup-
pose that both 7 and G, are abelian groups, ¢: 7 — Aut(G,) an action of
« on G,, and

K(Gy,n) > K(Gy, n; 9) @ K(,1)

the associated classifying fibration k(G, n). The purpose of this section is
to describe mapping spaces with the total space K(G,, n; @) as target.

The classifying fibration k(G, n) can be constructed more explicitly as
follows. The Filenberg-Mac Lane space K(G,, n) can be made into a left
m-space in such a way that each § € 7 acts as a base-point preserving
homeomorphism with the induced map

é*: Wn(K(GO’n)5 *) - Wn(K(GO’n)’ *)

equal to &: G, — G, under some fixed isomorphism 7,( K(G,, n), *) = G,,.
The fibre bundle

k
K(Gy,n) » Em X, K(Gy,n) > Bw

associated to the universal principal #-bundle w: Ew — Bx is then a
k(G, n).

Let u: X —» K(G,y,n; 9) = Em X, K(Gy,n) be any map into the
total space of k(G,n). Put u, = ku. Consider the fibration of function
spaces

k
F,(X; K(Gy,n; ¢), Bn) > F(X; K(Gy,n;9), *) > F,(X; Br, *)

induced by the projection k. The base space F,(X; Bm, *) = H(X; 7) X
K(m,1) is disconnected (in general), so we let F,fl’( X; B, *) = K(m,1)
denote the path-component of F,(X; Bw, *) containing u, and con-
centrate our attention on the pre-image F (X; K(G,,n; o), *)|u; =
k=Y (F2(X; B, *)). By restriction of k we then get the fibration

TTK(H"(X;u¥G),i) > F,(X; K(Gy, n; ), *) |u; > K(7,1)
i=0

where Theorem 3.1 has been used to identify the fibre.

Since = is abelian, & G, — G,, £ € 7, is an operator automorphism,
i.e. an automorphism of the local coefficient system G in K(w,1), and
hence ¢ induces a coefficient group automorphism £, of H" '( X; ufG),
O0<i<n.
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After these preliminaries we can now state

THEOREM 5.1. There is a weak ( fibre) homotopy equivalence
E(X; K(Gy,n;9), %) |lwy > Ex X, | [IK(H"(X;uG), 1)),
i=0

where m acts on H" (X, u¥G), 0 < i < n, through coefficient group auto-
morphisms.

Proof. The cohomology operation &, can be realized geometrically as
in §4. For the based automorphism § of K(G,, n) is a #-map, and hence it
extends to a homeomorphism §: K — K over and under Bw. (Here, and
in the following, K = K(G,, n; ) = Em X, K(G,, n).) As is easily seen,
the i-fold suspension o[£], of the corresponding cohomology operation
[£], is the coefficient group automorphism £,: H"7'(X; ufG) =
H" (X, ufG),0 <i<n.

Since 7 is abelian, there exist H-space structures i: E7r X Ewm — Em,
p: Bmr X Bmw — Br with strict units e, € Ew, b, = w(e,) € Bw such that
poe(w X w) =weopn. The unique path lifting property implies that
pleé e;) = (e, e))é = (e, e $) forall ey, e, € Emr, § € 7.

The space Fi( X; K, Bw) of lifts of u, is a left 7-space under composi-
tion with the fibre maps §: K — K, § € 7. Let

V: Ex X_F,(X;K,B7w) > F,(X; K, *)
be the map given by
¥((e,0)7m)(x) = (B(e, m(x)), 8(x))7

where e € Em, v € F(X; K,Bw), x € X, u(x) € Em is any lift of
u;(x) € B, and v(x) € K and 0(x) € K(G,y, n) are related by the
formula v(x) = (#;,(x), 0(x)) 7.

Note that ¢ is a fibre map which restricts to the identity on the fibre.
The induced map ¢: Bw — F,(X; Bm, *) between the base spaces satis-
fies (b, x) = p(b,u)(x)), b € Bmr, x € X. This means that ¢ is a
homotopy equivalence berween B« and Fu?( X; Bm, *). Hence 4 is a fibre
homotopy equuivalence from Ex X _ F(X; K, Bw) to F(X; K, *)|u; by
Dold [2].

The proof is now completed by noting that the weak homotopy
equivalence of F,(X; K, Bw) into I1_, K(H" (X, u¥G),i) from Theo-
rem 3.1 is a 7-map enabling us to construct a weak homotopy equivalence

Ew X, F,(X;K,Bn)— En x, [1K(H"7/(X; urG),i)
i=0

as claimed. O
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REMARK 5.2. During the proof of Theorem 5.1 we actually established
the identity

F(X;En X_F,*)|u, = En X, F(X; Ex X_F, Br)

for any left #-space F and any map u: X —» Ex X F.

ExaMpLE 5.3. The classifying space BO(2) for the orthogonal group
O(2) is the twisted Eilenberg-Mac Lane space K(Z, 2; ¢) where ¢: Z/2 —
Aut(Z) is the non-trivial action.

Let u: BO(1) » BO(2) be any map. Then up to homotopy, u; = 0 or
u; = wy, the first Stiefel-Whitney class. An application of Theorem 5.1
yields

F,(BO(1); BO(2), *) |0 = BO(2) + BO(2),
F,(BO(1); BO(2), *) |w, = BO(1) X BO(1)

where + denotes disjoint union.

6. Spaces of lifts in K(G,1)-fibrations. In this section we let p:
Y — B denote a fibration with an aspherical space F = K(G,1) as fibre.
G can be any, not necessarily abelian, group. We shall investigate the
space F (X, A4;Y, B). ) ’ _

The pull-back F> Y’ % X of F> Y5 B along u, = pu has a
canonical section #’: X — Y’ induced from u. Hence i’y: 7,(F) = m(Y")
is a monomorphism and a homomorphism ¢,: 7 = 7m,(X) = Aut(G) is
uniquely defined i’,(xg) = wy(x)i’%(g)w'x(x)"!, x € 7, g € G. We write
xg for ¢, (x)g. Let

G"={g€G|mg =g}
denote the fixpoint set of this action and let
Q(7,G) = {f: 7> G|Vx,y € m: f(xp) = f(x)xf(»)}
denote the set of crossed homomorphisms of 7 into G. There is an action
O(7,G) X G- Q(=,G)

of G on the set of crossed homomorphisms given by ( fg)(x) = g~ 'f(x)xg,
f€e Q(n,G), g€ G, x €m. Q(7,G)/G denotes the set of orbits for this
action.

Let x, € X be the base point. To any based lift v € F (X, x,; Y, B)
of u,, we can associate a crossed homomorphism f, € Q(, Q) given by
i f,(x) = Vy(x)u's(x) "%, where v': X = Y’ is the section of p’ induced
from v. By some obvious modifications of the classification of based
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homotopy classes of based maps into an aspherical space ([16], Theorem
4.3, p. 225) we get

LEMMA 6.1. For any connected CW-complex X, the map v — f, induces
a bijective correspondence between myF, (X, xy; Y, B) and Q(«,G).

Also the free vertical homotopy classes of free lifts of u; can be
classified; cf. ([16], Corollary 4.4, p. 226).

LEMMA 6.2. For any connected CW-complex X, there is a bijective
correspondence between w,F (X;Y, B) and Q(7,G)/G.

Proof. The sets F,(X,x,;Y,B) and F,(X;Y, B) of based and free
lifts of u, are related by the evaluation fibration

F(X,x,;Y,B) - F,(X;Y,B) - F,(x,,Y,B) =F.

This evaluation fibration determines an action Q(#,G) X G — Q(=,G)
of the fundamental group G = m(F) of its base space on the set
moF (X, xo; Y, B) = Q(7,G) of path-components of its fibre. We must
show that this action coincides with the one introduced above.

Since X is connected, we may assume that the 1-skeleton X, is a
wedge of circles. The inclusion map i;: X; — X induces an injection i,.:
Q(7,G) = Q(m(X,),G) which is compatible with the G-action. There-
fore, we may assume that X = X; is 1-dimensional. Furthermore, since a
crossed homomorphism of ;(X;) into G is uniquely determined by its
value on a set of free generators, we can assume that X = S! consists of a
single circle.

Let h: (I,I) - (S, x,) be the usual proclusion representing the
generator ¢ € m(S?, x,). Choose a map H: I X F — Y’ such that the
diagram

H
IXF - Y’
P’ll Lp
h
I - N

commutes and such that H(t, y,) = u'(t), y, = u(x,), t € I,and H, = i
F — Y’. Then ([9], Theorem 1), (H,), = ¢t € AutG.
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Consider the following diagram of maps between fibrations induced
by h and H

F(S4xy;Y,B) > F,(II,Y,B) « E(IIF)

) )
F(SLY,B) - F,(I,Y,B) <« F(I;F)
1) )

F(x,;Y,B) - F,(I,Y,B) <«  F(I;F)

The maps between the fibers are homeomorphisms ([14], p. 530) and the
maps between the base spaces can be identified to

A 1XH,
F->FXF « FXF

where A is the diagonal map.

The fibre F, (I, I; F) of the fibration to the right is the loop space QF
of F and the associated action of m(F(I; F),y,) = G X G on
7o F, (I, I, F) = my(QF) = G is given by g, - (ho, h;) = hy'g,h, for all
81> hos by € G. Hence the corresponding action of m,( F,(x,; Y, B), y,) =
G on mF (S, xo; Y, B) = Q(m(S"),G) = G is given by g, - g = g7 'gug,
g € G. Taking into account the identifications made, this means that

(fg)(z) = g7'f(2)z8
for all f € Q(m(S"),G), g € G, z € m(S?). O

Finally, we compute the higher homotopy groups of F, (X, x,; Y, B)
and F,(X;Y, B). More generally, let (X, 4) be a finite relative CW-com-
plex where both X and A are 0-connected. Assume that (X, A) has a
CW-decomposition with 0-skeleton X, = A4 if 4 # & and X, = {x,} if
A=0.

THEOREM 6.3. (1) If A # &, each component of F (X, A;Y, B) is
weakly contractible.

(2) If A = @, each component of F,X;Y, B) is an aspherical space.
The fundamental group m(F,(X;Y, B), u) of the component containing u is
isomorphic to the fixpoint set G”.

Proof. We proceed as in ([8], Theorem 2). Let X, be the g-skeleton of
a CW-decomposition of (X, A) such that X, =A4 if 4 # & and X, =

{xo} if A = &. The inclusion maps i;; X, ; = X, induce a tower of
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fibrations

A;Y,B)

q-1

F(X,A;Y,B) > F(X,,A4;Y,B) lFu(X

— -- > F(X,,A;Y,B) > F,(X,,A;Y,B) > F,(X,, 4,7, B).

The fibre F(X,, X,_1; Y, B) of i , can be identified to a product of a
number of copies of the g-fold loop space 29F. The number of factors
equals the number of g-cells in (X, 4). Since F = K(G,1) is aspherical, it
follows that F, (X, A;Y,B) and F,(X,, 4;Y, B) are weakly homotopy
equivalent. Moreover, if 4 # 9,

F(X,4;Y,B)=QF X --- XQF =G X --- XG

is just a discrete set of points.
If A = &, we consider the evaluation fibration

F,(X,x,,Y,B) = F,(X;Y,B) = F(x,;Y,B) = F

with the discrete fibre F (X, x,; Y, B) = F,(X,, x,; Y, B). In the associ-
ated homotopy sequence

8
1->7(F(X;Y,B),u) > G- Q(n,G) > nyF(X;Y,B) > *

one has dg = 1g for all g € G. Hence

7 (F,(X;Y,B),u) =kend = {g€ G|lg=g} =G O

If p = pr;: B X K(G,1) = B is the trivial K(G, 1)-fibration over B
and u = (by,u): X - {by} X K(G,1) C B X K(G,1) a continuous map,
the action of 7 on G is given by xg = uy(x)guy(x)*. Thus the fixpoint
set G™ is the centralizer of u,(7 (X)) in G. In this way we recover the
theorem of Gottlieb [6].

If G is abelian, the fibration p: Y — B determines a system of local
coefficients, also denote by G, in B. The pull-back #*G in X is given by
@,. 7 — Aut(G). Since Q(w,G) = HY(X, x,; u¥G), Q(w,G)/G =
HY(X; u¥G), and G" = H°(X; u}G), 6.1-6.3 reduce to Theorem 3.1 for
n = 1 in this case.

Although suppressed in the used notation, the group G” in general
depends on the choice of u. Thus the components of F,(X;Y, B) may
represent more than just one (weak) homotopy type.
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