PACIFIC JOURNAL OF MATHEMATICS
Vol 130, No. 2, 1987

RESTRICTION TO GL,(@) OF SUPERCUSPIDAL
REPRESENTATIONS OF GL,(F)

KRISTINA HANSEN

Let F be a p-field with ring of integers ¢ whose maximal prime
ideal is £ = w0, and with finite residue field £ = (/4. Let G = GL,(F)
and let K be the subgroup GL,(0) of G. In this paper we obtain the
decomposition of the restriction to K of any irreducible supercuspidal
representation of G. (The corresponding result for unitary representa-
tions, G = PGL,, and £ of characteristic # 2 was found by Silberger.
Here we make no assumption on the characteristic of £.) It is well-known
that any irreducible supercuspidal representation of G is admissible and
hence decomposes as a direct sum of irreducible K-types, each of which
appears with finite multiplicity. Here we show that, in fact, each of these
irreducible components occurs with multiplicity one, and we give an
explicit description of each component.

This work is based upon results of Kutzko, who proved that any
irreducible supercuspidal representation of G is twist-equivalent to
another such representation which, in turn, may be compactly induced
from one of two compact-modulo-center subgroups of G.

Introduction. Let F be a p-field with ring of integers ¢ whose
maximal prime ideal is £ = w0, and with finite residue field # = 0/4. Let
G = GL,(F) and let K be the subgroup GL,(0) of G. In this paper we
obtain the decomposition of the restriction to K of any irreducible
supercuspidal representation of G. (The corresponding result for unitary
representations, G = PGL,, and # of characteristic # 2 was found by
Silberger in [Si2]. Here we make no assumption on the characteristic of
£.) It is well-known that any irreducible supercuspidal representation of G
is admissible and hence decomposes as a direct sum of irreducible
K-types, each of which appears with finite multiplicity. Here we show
that, in fact, each of these irreducible components occurs with multiplicity
one, and we give an explicit description of each component.

This work is based upon results of Kutzko ([K3] and [K4]), who
proved that any irreducible supercuspidal representation of G is twist-
equivalent to another such representation which, in turn, may be com-
pactly induced from one of two compact-modulo-center subgroups of G. I
would like to thank Philip Kutzko, my thesis advisor, for his inspiration
and guidance of this work. I would also like to express my appreciation to
Paul Sally for his preliminary reading of and comments on this paper.
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Some notation and facts. We need some notation in addition to that
established above. We make the convention that for any subsets 4, B, C,
and D, (£ %) denotes the set of elements (¢ 4) with a in 4, b in B, c in
Cand d in D.

Let # be the residue field 0/4 and let |#| = g. The additive group F*
has a filtration - 4! D O=4"D 4 D> D -+ with [4°: 4] = ¢'*
for t > 5. If U= 0 — 4, the group of units in O, then U has a correspond-
ing filtration UD U' D> U?> ---, where U' =1 + 4/, and we have
[U:U''=¢g—-1and[Us:U']|=¢q" Sfort>s> 1.

Let P be the standard parabolic subgroup of G, and let N be its
unipotent radical. (That is, P = ()" %) and N = (} F), where F* de-
notes the group of units of F.) Then N is isomorphic to the additive group
F™ and has a corresponding filtration --- N_; D NyD N, D ---, where
N, = (L #). Let Py=P N Gl,(0)=(§ $); then Ny,= NN P,

Our matrix groups have similar filtrations. If M = M,(0), then we
have a filtration My=M D> M, D M, ---, where M, = 4#'M for each
nonnegative integer i. If we let M’ be the set of matrices in M which are
upper triangular modulo £, then M’ also has a filtration given by

i n
M;=M DM DM, -, where Mi’=(ﬁ. ﬁ)
ﬁll+1 ﬁlz

for iy = [i/2) and i, = [(i + 1) /2],

where the brackets denote the greatest-integer function. The filtration of
M defines a corresponding filtration Ko =KD K, DK, --- of K=
Gl,(0), where K, =1+ M,, for each i > 1. We note that K/K, =
Gl,(#£), so that [K:K,]=(q— 1%*q(q+ 1), and that [K,:K,]=
[M,: M,]=q*" 9 if t > 5 > 1. We also consider the subgroup B of K
consisting of those matrices in K which are upper triangular modulo 4. B
has a filtration By= B D B, D B, --- corresponding to that of M’,
where B, = I + M/, for each i > 1. We note that [B: B,] = [U: U']* =
(¢ — 1)?, and [B,: B)] = [0: 4]* = ¢q* for each t > 5 > 1, so this filtration
of B is roughly twice as fine as that of K. Finally, we define the
subgroups Z and Z’ of G to be the center Z(G) of G and the subgroup
{w'T'|i an integer} of Z(G), respectively, and the subgroup Z, of K to be
the center Z(K) of K.

At times in what follows we refer to conjugate groups of various
groups. If J is a subgroup of G, we define the conjugate group J” for y in
G to be {yjy~!|j in J}. In particular, we frequently refer to conjugate
groups J*; here w is the Weyl element (_? ).
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We also frequently use the notation P\ Q/R. If P and R are
subgroups of the group Q, then P\ Q/R refers to a complete set of
(P, R) double-coset representatives in Q.

Level and twist-equivalence. Given a representation o of K or ZK
(respectively, B or Z’B), because o is locally constant, there is a minimal
number n such that K, (respectively, B,) is contained in the kernel of o.
This integer » is called the K-level (respectively, B-level) of o. For such a
representation o, it is clear that the restriction of ¢ to N, (respectively,
N, ) decomposes as a direct sum of identity representations. ¢ is defined
to be cuspidal if its restriction to N, contains no nontrivial identity
component, so that there is a minimal number m with 0 <m <n
(respectively, 0 < m < n,) such that the restriction of ¢ to N,, contains a
nontrivial identity component. In this case, the nonnegative integer n — m
(respectively, n, — m) 1s called the K-defect (respectively, B-
defect) of o.

Levels are defined similarly for a supercuspidal representation 7 of G;
however, in this case, because 7 is admissible, it can contain no group K,
or B, in its kernel. Here we define the K-level (respectively, B-level) of =
to be the minimal integer n such that the subspace of vectors fixed under
T by K, (respectively, B,) is nontrivial. It is a fact [Bo] that any
supercuspidal representation of G has K-level at least 1 and B-level at
least 2.

Let 7 and 7 be representations of G. We say that # and 7 are
twist-equivalent if there is a quasicharacter x of the multiplicative group
F* of F such that 7 is isomorphic to 7 ® x odet. Twist-equivalence is an
equivalence relation on the set of (equivalence classes) of representations
of G, and if 7 and 7 are twist-equivalent, then they share the same
irreducible subspaces. Moreover, 7 is smooth (respectively, admissible,
supercuspidal) if and only if 7 is.

If « is a supercuspidal representation, we define the minimal level of
7 to be the minimum of the levels of all representations 7 which are
twist-equivalent to 7. We say that « is of minimal level if its level is equal
to its minimal level. In this paper, we obtain an explicit decomposition of
the restriction to K of any supercuspidal representation = which is of
minimal level; the remarks above show that there is no loss of generality
in placing this added assumption on 7.

Supercuspidal representations of GL,(F). The results of this paper
are based on work which appears in two papers of Kutzko ([K3] and [K4]).
In the first, he proves that cuspidal representations of ZK or Z'B
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compactly induce to supercuspidal representations of G, that such repre-
sentations which are both irreducible and of defect 0 compactly induce
irreducible representations, and finally, that each irreducible super-
cuspidal representation of G is induced uniquely in this fashion. In the
second paper, he gives explicit descriptions of the inducing representa-
tions. The work of this paper is based upon these descriptions, and we
begin with a recounting of them.

To commence, we shall, as previously indicated, fix an arbitrary
irreducible supercuspidal representation (, V'), which we without loss of
generality assume to be of minimal level /.

Level 1. Suppose first that /=1, so that the subspace V; of V
consisting of those vectors in V' which are fixed under 7 by K, is
nontrivial. Because K, is normal in K, V; is a K-subspace of V; let m;
denote the restriction to V] of 7| . If o is any irreducible K-subrepresen-
tation of m,, then clearly iy (0,1) # 0. If in addition we had i n(0,1) # 0,
then because B, = K,N,, o would contain a B-subrepresentation of level
1, but this is impossible because the B-level of 7 is at least 2. Thus we
must have i (0,1) # 0, whence o is a cuspidal representation of defect 0.

Let W be a subspace of V; where 7, acts as 6. Then since the group
Z is contained in the center Z(G), W is in fact a ZK-subrepresentation of
. Thus if 7 denotes the restriction to Wof «| 4, 7 is also irreducible and
cuspidal of defect 0, and Kutzko’s first paper shows that the compactly
induced representation 7€ is irreducible. Since, by Frobenius reciprocity
(which may be proved in this case as a corollary to Kutzko’s generalized
Mackey’s theorem, [K1]), 7 is a subrepresentation of 7¢, this irreducibility
implies that these two representations are in fact isomorphic.

Now we consider the case of supeicuspidal representations of minimal
level / > 1. These representations may be divided into two categories,
depending upon whether they are compactly induced from a representa-
tion of ZK or of Z'B; those in the first category are called unramified,
and those in the second, ramified (for reasons which will be seen later).
Kutzko’s descriptions of the inducing representations for these super-
cuspidal representations fall into three categories, depending upon whether
the supercuspidal representation is unramified of even level, unramified of
odd level, or ramified.

Level > 1. Suppose that the representation 7 has level / > 1. As in
the case that / = 1, the subspace V, of vectors in V' which are fixed under
a by K, is a nontrivial finite-dimensional K-subspace of V, and we let
denote the restrictionto V, of #| . Let [, = [I/2]and [, = [(I + 1)/2], as
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above. Then the restriction of m, is a representation of K, which factors
through K, /K. This quotient group is isomorphic to the abelian group
M/M, under the mapping (1 + w?4)/K, > A + M, . 1t follows that all
of the irreducible subrepresentations of the restriction of m, to K, are
one-dimensional. In fact, the existence of this isomorphism implies that
every irreducible K, -subrepresentation of = is of the form ¢, for some 4
in M, where ¢ A(k) Y(w ' Tr(A(k — I))), where ¢ is a fixed character
of F* which is trivial on ¢ but not on ﬁ“l. It is easy to show that
¥, = yp if and only if 4 — B lies in M, and that for any k in K, the
conjugate representation yX is isomorphic to 4y, ,,-1. The latter fact
implies that #, has an irreducible K, -subrepresentation ¢, if and only if
it also contains a subrepresentation y, for any matrix B in M which is
K-similar to 4.

We proceed by considering a matrix A4 such that y, is a subrepresen-
tation of the restriction of =, to K, . If A denotes the i - image of 4 under
the canonical epimorphism of M onto M,(#), and if A is similar to B in
M,(#), then A is K-similar to a matrix B in M with image B, and ¢, is
also a K, -subrepresentation of . This means that we may without loss of
generahty assume that A is in Jordan canonical form. Let x , denote the
characteristic polynomial of A4 in M,(#). The cases that 7 is unramified
or ramified correspond, respectively, to the cases that x , is irreducible or
reducible.

Unramified case. In this case, there are § and A in # with x ,(x) =
x2 — 5x + A, an irreducible polynomial in #[x] (so A # 0). In this case,
A= (%Y + wC, for some preimages s and A in ¢ of § and A, and
some matrix C in M. It is easily shown that A4 is then K-similar to a
matrix B = (_% 1), where s and A’ are also preimages in ¢ of 5 and A,
so we without loss of generality assume that C = 0.

It is then easy to show that the stabilizer in K of ¢, is the subgroup
UgK,, where Uy denotes the group of units in the subalgebra 0 = 0[ 4]
of M generated by 4. (Note that if we let E be the subalgebra F[A] of
M, (F), then because x , is irreducible, E is a p-field which is unramified
of degree 2 over F (see [S]), with ring of integers O; this explains the
terminology “unramified” used for this case.)

Unramified, even level case. First suppose that 7 has even level, so
that / = 2m (m > 1), and ¢, is a representation of K, factoring through
K,/K,, with stabilizer U K,,. In this case, because Uy N K,, = UY, the
restriction to UZ" of ¢, has an extension {; to Ug, and for each A in
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A = (Uy /U " we get a well-defined representation ¢, , of U.K,, by
defining ¢ 4 \(uk) = N(u) Y7 (u)y (k) for each u in U and k in K.

Let o be an irreducible K-subrepresentation of «, such that the
restriction of o to K, contains the subrepresentation v ,. Then by
Frobenius reciprocity, o is a subrepresentation of the induced representa-
tion ¥X. However, by Clifford’s theorem, y% is isomorphic to the direct
sum representation X, . , ¥, &, each of whose summands is an irreducible
representation of K. Thus o is isomorphic to ¥, £ for some A in A.

Let W be an irreducible subspace of ¥V, where 7, acts as 0. As in the
level one case, W is a ZK-subspace of V, and if we let 7 denote the
restriction to W of 7| 4, 7 is irreducible. The fact that ¢ is isomorphic to
¥, £ implies that 7 is cuspidal, of level / and defect 0, and as before, we
find that 7 is isomorphic to the compactly-induced representation 7X.

Unramified, odd level case. Suppose next that # has odd level, so
that / =2m + 1 and ¢, is a representation of K, ., factoring through
K, ../K,, .1 Asin the case above, ¢, may be extended to U. K, ,, but
in this case U, K, is the stabilizer of ¢, in K. In this case we make use of
the following filtration of subgroups:

UK,
UULK,,
|
UpUgK,, . \N,Y
UeK, 11 _ l
TS UUKK,,

We note first that there exists an extension ¢/, to U U, of the restriction
of ¢, to UsUL N K, ., = U ' Then as above, each representation A’ in
(UgUg /Uy " determines a representation ¥, ,, of U.UAK,, ., which
extends y ,. Each representation v/, has in turn an extension ¥ ; to U,
and for A in Uy which extend X, we get representations i, , which
extend ¢, , to U K,, . On the other hand, K, . ,N,/ = B}’ is a subgroup
of K, for which the formula y,(k)=¢(w 'TrA(k — I)) defines a
representation, and since U U} N B} = U/**!, there are extensions ¥, .,
of Y, to UU;B) corresponding to y in (N,'/N,’. ) ". Each of these
representations induces to a unique irreducible representation {,
of U.U;K, (independently of y), and each induced representation
{4 UeKn is isomorphic to a direct sum of irreducible representations
2\ extending n$4.1, €ach summand of which is completely determined as
the complement in {, YK~ of the induced representation vy, {sX», for
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some extension A of X to U,, where distinct extensions A determine
nonisomorphic representations §,,, and where each £, is actually an
extension of {,, to UgK,. It follows from Clifford’s theorem that the
induced representation Y4s%~ is isomorphic to ¢ copies of the direct
sum Y, Xy cviending v £4.1» and that ¢§ is isomorphic to ¢ copies of
Y\ X)€, K, all of whose summands are irreducible.

Now if o is an irreducible K-subrepresentation of m, such that the
restriction of o to K,, , contains {,, then by Frobenius reciprocity, o
must be isomorphic to one of the representations £, £. If, as before, we let
W denote a subspace of V, where m, acts as o, then W is a ZK-subspace
of V, and if 7 denotes the restriction to W of 7| ., then 7 is irreducible.
Because o is isomorphic to £, &£ and £, , restricts to {, ,, on UUgK,,, 7
is cuspidal, of level / and defect 0, and as before, we find that = is
isomorphic to the compactly-induced representation 7°.

Ramified case. Finally, we consider the ramified case. Here, for any
subrepresentation §, of the restriction to K, of m, we have x ,(x) =
(x — a)(x — b), a reducible polynomial in # [x] Kutzko has shown [K2]
that because 7 is supercuspidal, we cannot have @ # b, so in fact, x ,(x)
= (x — a@)? and we can assume that 4 = (3 %), where 8 is either 0 or 1.
Noting Yar = X, °det, where x, is a character of U, we see that if B =
(5 2) and B is any preimage of B in M, then 4/ p ® x,°det. Thus if
X, 1is an extension of x, to F* and §{=7 ® x, odet, then £ is
twist-equivalent to 7 and Y, is a K-subrepresentation of §. Since, as
previously mentioned, twist-equivalent representations have correspond-
ing irreducible subrepresentations on common subspaces, we without loss
of generality assume in what follows that 7 = £ and 4 = B. Moreover, if
4 = 0, then ¢, i1s trivial on K,_;, contradicting the fact that V,_; # 0, so
we have § = 1.

The form of A implies that 4 is K-similar to a matrix (_$ !) with A
and s in £, so we assume that A4 is equal to this matrix. Then ¢, is trivial
on the subgroup B,,_, of B, and if we let W, be the space of vectors in V'
fixed under = by B;, then W,,_, # 0. (Recall that / must be at least 2.)
Because B, is normal in B, each space W is a B-subspace of V, and we let
77/ denote the restriction to W, of m|p. Then the restriction to B,_; of
m5,_, factors through the group B,_,/B,,_,, which is isomorphic to the
abelian group M, ,/M;,_,, and this implies that the representation
decomposes as a direct sum of one-dimensional representations y , where,
as before, Y, (b) = Y(w ' TrD(b — I)) but now D must lie in M] and
¥p, = ¥p, if and only if D; — D, lies in M/. Because B,_; D K|, there
must be some D in M| such that the restriction ¢, | X, is equal to .
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This implies that D — 4 € M,, so that D is B-similar to D’ = ()
where A’ and s’ liein @ and A" = A and s’ = 5 (modulo ﬁ’l), and we can
without loss of generality assume D = D’. Furthermore, since ¢, = ¢,
on K,, we can assume that 4 = D’ = D. Suppose that A € 4°. Then if
g=(J¢"), gdg ! liesin £M, so that ¢, also a subrepresentation of the
restriction of #,,_,, is trivial on K, ;. But this contradicts the fact that
V, | #0,50A €4 — 4

This implies that the characteristic polynomial x , of 4 is an Eisen-
stein polynomial and hence is irreducible. This in turn implies that if
E = F|[A], the subalgebra of M,(F) generated by A4, then E is a p-field
[Se], ramified of degree 2 over F, and it is easy to show that 4} = E N M,
and U;! = U, N B,. This case is similar to the unramified even-level case
in that we can show that the stabilizer of ¢, in B is B,_,. Defining an
extension {/, to U, of the restriction of ¥, to U{ ™! as in that case, we get
a representation y, , on U.B,_, extending ¢, for each representation A
in (U,/ U~ . Clifford’s theorem then implies that the induced represen-
tation ¢5 decomposes as a direct sum of nonisomorphic irreducible
representations Y.y, %, and as before, 7| , must contain a subrepresenta-
tion ¢ isomorphic to ¥, & for some A. If W is a subspace of V' where 7| 4
acts by o, then o has an extension 7 to Z’'B, and again we find that = is
isomorphic to the compactly induced representation 7.

Decomposition of the representation. We can now begin to decom-
pose the representation 7|, as desired. In each case above, 7 is com-
pactly induced from an irreducible representation 7 of the subgroup L of
G, where L = ZK in the level 1 and unramified cases, and L = Z’B in
the ramified case. Using this fact we can find an initial decomposition of
T | x, as follows.

THEOREM 1. If 7 is isomorphic to the compactly induced representation
, where 7 is a cuspidal representation of L (equal to either ZK or Z'B),
then the restriction | i is isomorphic to the direct sum of induced represen-

. K
tations Zne K\(;/L(Tnl KN Ln) .

,‘.G

Proof. Because 7 is admissible, we know [Sil] that the restriction 7 | &
decomposes as a direct sum of irreducible K-types, each occurring with
finite multiplicity. This means that 7| . is completely determined by the
intertwining numbers i, (0, 7| x), for irreducible representations § of K,
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and it suffices to show that

iK(S’ﬂIK)=iK(69 Z ("'"IKnL’?)K)
neK\G/L

= Z iK(S’(Tn’KnLn)K)’
n€K\G/L
for each such 8. By using Kutzko’s generalization of Mackey’s theorem
[K1], we can prove a version of Frobenius reciprocity [Ha] which implies
that i (8,7|x) = ix(8,7% k) =X, cx /L iknrN(8,7"). On the other
hand, using Frobenius reciprocity for compact groups, we find that
iK(S’(Tn'Kan)K)= ixnn(8,7"). O

The next lemmas allow us to write the direct sum in Theorem 1 more
explicitly. Their proofs are quite simple and are omitted. For each integer
t>0letn,=(}9%).

LemMmA 1. If L = ZK or Z'B, then K\ G/L may be taken to be the set
{n,1t=0,1,2,...}.

LemMMA 2. If L = ZK, then KN L" = KN K" If L =Z'B, then
KNL"=KnNB™

LEMMA 3. If t =0, then KN K™ =K and KN B"=B. If t > 1,
then KN K™ = KN B"™ = P K,, the set of matrices in K which are upper
triangular modulo 4'.

Recall that the representation 7 of L extends a representation o of a
subgroup J of L, where / = K when L = ZK and J = B when L = Z'B.
This fact and the last three lemmas imply that the initial decomposition of
o | x which is given in Theorem 1 may be rewritten as a countable direct
sum as follows: 7|, = 0% ®¥L,,,(6™| ). The rest of this paper is
devoted to proving that our decomposition of 7| x is now complete; i.e.,
that each summand in the direct sum above is in fact irreducible. We
proceed with a case-by-case analysis.

Level 1. Assume again that /=1 so that, as seen above, 7 is
compactly induced from the representation 7 of ZK extending the repre-
sentation o of K, where o is irreducible and cuspidal of defect 0. Because
o factors through K/K, and this group is isomorphic to GL,(#), ¢
determines an irreducible representation ¢ of the latter group. The fact
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that o is cuspidal implies that & is also: i.e., if N denotes the group of
upper triangular matrices in GL,(#), then i5(5,1) = 0.

The irreducible cuspidal representations of GL,(#) are well-known,
so we have explicit formulas for the action of 6. Specifically, ¢ has
dimension g — 1 and there exists a character p of #* such that the
following formulas hold for the character x (o) of &:

x@%ﬁ %=o,ﬁnmcmtmma¢dm£ﬁ

x(&)((c’ 2)=-—p(a), forall cin #* and a in £*, and

ﬂﬂ“ %=@—HM@,Mﬂmmzﬁ

We use these formulas below to show that each summand (o™| 5, K,)K is
irreducible by proving that its intertwining number with itself is 1.
Applying Mackey’s theorem for compact groups to this representation, we
find that

. K K . a
’K(("n'|P0K,) 7(0"’|P01<,) )= )y lPOK,r\(POK,)“(Om’(Un') )-
a€P,K\K/PyK,
The formulas above with the lemmas below allow us to compute this
number. For each positive integer i, let a; = (%, 9).

LEMMA 4. For each positive integer t, P,K,\ K/P,K, may be taken to
be the set { I, w} U {a;|0 <i <t}, wherew denotes the Weyl element.

Proof. If P denotes the set of upper triangular matrices in G =
GL,(#), then it is well-known that P\G/P may be taken to be {I,w}.
Since K, is normal in K, this implies that for any k in K, there are
elements p, and p, in P, such that p,kp, is equal to either k, or wk;,
where k, lies in K,. Moreover, if k; = (% 5) and y = (-1 9), then
k, € yP,, so that either y or wy lies in the P K, double coset of k in K.
In the first case, if ¢ has valuation i in F (so i > 1), then there exists u in
U such that ca™! = w'u, so that y = (} 9)a,(} %1). Thus if i < ¢, then q,
lies in the P K, double coset of k in K, whereas if i > ¢, then I does. In
the second case, since wy = (wyw ™ !)w and wyw ! lies in P,, we see that
w lies in the double coset of k in K. o

The proof of the following lemma is straightforward and is omitted.
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LEMMA 5. For all positive integers t and i with i < t, P.K, N (P K,)%
is the set

w X
{(“‘"}’ w—wx+ oz iwe U, x,y,z€ @}.

Also, PyK, N\ (PyK,)" is the set Z,K,.

LEMMA 6. In the case that m has level 1, for each positive integer t,
(6™ px) " is irreducible and has degree q'** — q'~*.

Proof. As previously stated, we prove the irreducibility of (6™ 5, K’)K
by computing its intertwining number with itself. Applying Lemmas 4 and
5 and the equation which precedes them, we have

. K Ky . .
IK((""'IPOK,) ) ("""POK,) ) = ’POK,(UW"""') + IZOK,(""',(UU’)W)

+ Z iPOK,n(P(,K,)'*r(""’a (0"')a')-

O<i<t

We can compute the value of each summand using the character formula
for & given above. Specifically, if p is a Haar measure on ¢ normalized so
that [,dp = 1 and inducing Haar measure p* on Gl,(0), then we have:

ini (07, 0") = (BK) ™ [ Ix(o")(B)[ du*(B)

OKr

=¢”M“1Y1L&LLJAM%? @r
xdp(a)du(b)du(c)du(d)
=q%q—1fﬁﬁwé[;ﬂ X“mm;; ZH

xdp(a) du(b) du(c) dp(d)

du(a)du(c)dp(d)

dp(a)dp(c)du(d)

(continues)
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(continued)
~ =17 [, ] la = 0e(@)an(e) )
S [ 1@ dnle)dnt)
=a(g =1 7[(a = 1¢" +(g = Vg7 | [ |o(@)] dn(a)

=alg= 1" [ lo(@)[ du(d) = p ()" [ |o(d)] du(a)

=iy {peomod 4, pomod 4) = 1.
Similar arguments show that:

iy x (0™, (0™)") =0 and

iPoK,ﬁ(PoK,)“'("n"("n’)a') =0, foreachi withO <i <1t.

Thus i, ((6™ | 5 x )*. (67| p i )) = 1, 50 that (6™ 5 ) * is irreducible, as
claimed.
Finally,

deg(o™| POK,)K = [K: PyK,] dego

[KIK,][POK,IK,]~1(Q— 1)
(¢ = 1)¢* (g + D][(¢ - 1)’¢* 2] '[g—1]

=(g-1q" qg+1). o

These lemmas show that we have found the desired decomposition of
7| - (Note that ¥ = o in this case.) We have proved:

THEOREM 2. If 7 has level 1, then the sum o ® L,.,(0"| )" is a
complete decomposition of | g into irreducible K-types. The summands are
of degree ¢ — 1 and (¢ — 1)q" Mg+ 1) =q¢""' —q" L t=12,..., re-
spectively.
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We now continue with the ramified and unramified cases.

Level > 1. We return to the case that # has level / > 1. As seen
from Theorem 1 and the remarks following Lemma 3, we have
Tlx=0X®L, (6" k)" When 7 is unramified, as in the level 1 case,
o is a representation of K, so that 6% = ¢ and is irreducible. We claim
that oX is also irreducible in the ramified case. The following lemma
enables us to prove this fact.

LEMMA 7. Let 7w be ramified, and define E as above. Then B =
(B N B")U,.

Proof. Let a and d lie in U and b and c lie in O, so that al + bA lies
in Up. Let N be the norm Ng r(al + bA), so that N lies in Up. Then
since

( @ b) = ! 0 (al + bA)
we d [we(a + sb) + Abd] N~ (ad — wbc)N !
and BN B" = Z,K,, B= (B N B")U,, as claimed. O

LEMMA 8. If 7 is ramified, then o* is irreducible.

Proof. Since o is a representation of B, we apply Mackey’s
induction-restriction theorem for compact groups to find that i (o *, 6 %)
=Y, cnx/8ipnp(0,07). Noting that B = P K, we see that by Lemma
4, we may take B\ K/B to be the set { I,w}. It follows that i, (o*, o)
=ip(0,0) +ipgp(0,06") =1+ igz,p(0,06"), so it suffices to show that
the latter summand is equal to 0. To prove this, we use the fact that o is
induced from the representation vy, , of UB,_,. Again applying Mackey’s

theorem and using the result in Lemma 7, we find that:
. . B
’BmB"‘(°~°W)=leB*(‘PA,fv(‘PAK) )
i BNB* BABY
=anBW([¢A,A]T,,ImBW] ,[¢‘A,Xv'm]mB] )

= Z iBn(T,_,l)"‘m[BWmT,_l]v(‘Va ASR
YEBN(T;-1)"\BNB"/T)_,NB"
where 7, , denotes the set UgB,_;, and ¢ = ¢, ,. Furthermore, K, C
UgB,_; N B and K, is normal in K, so K, € BN (UgB,_;)" and
K, C[UpB,_, N B*]" for each y in the index set. This and the fact that
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4/,4,)\|K/2 = ¢, imply that
ipnp(0,0%) < )y ik,z(‘l’z’\m)-
YEBA(T,_ )"\BNB"/T, ,\B"

Note that the factorization of elements of B given in Lemma 7 implies
that we can take each of the indices y to be of the form (. 9) for some ¢
and d in O. This implies that yAy~' — wAw™' does not lie in M,, so

¥ # Y and iKlz(xp},z,bj) =0 for each y. Thus iy, p(0,06")=0, as
claimed. ]

It remains to investigate the summands (o™ | POK,)K for 1> 1. To
continue, we use the fact that o is a representation of J (equal to K or B)
which is induced from a representation p of the subgroup H of J (equal
to UK, or UpB,_,, respectively, where E varies in the two cases). Since
o = p’, Mackey’s induction-restriction theorem allows us to argue that for
eacht > 1,

I

(C

K
Z (PW’ | p,x, HY"r) .
vE R KNI/ H

n K
(o !lPOKI)

n

This seems to yield a contradiction of our previous claim that each of the
representations (o™ | , K{)K is irreducible. The apparent contradiction is
resolved by the following lemma.

LEMMA 9. Let J and H be defined as above. Then for each integer t > 1,
J" = (P,K,)H".

Proof. Since PyK,= (PyK,)™, it is equivalent to show that J =
(PyK,)H. In both the ramified and unramified cases, H D U, and we
prove the stronger result that J = (Py'K,)U,.

Let g = (%) lie in J. In the unramified case, J = K, and since
det g & £, not both a and b can lie in /4. Since £, = /0, in this case,
this means that al + bA lies in U,.. In the unramified case, J = B, so that
a must lie in U, and again al + bA lies in U,. Now define x and y in O
by xI + y4 = (cI + dA)(al + bA)~". Then g = (} 9)(al + bA), so g €
Py'U,., as claimed. a

Applying Lemma 9 to the result which precedes it and noting that
KNH"=KNK"NH"=PK,NH" we find that (¢"|,,)* =
(0" | pk o i) = ("] ko) ¥, for each = 1. Thus it remains to in-
vestigate the K-representations (p"| ). In view of the previous
work, it is natural to first find the level of each such representation.
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LemMA 10. With H defined as above, for each t > 1, the representation
(O™ | k n gne) & has level t + 1.

Proof. Note that in both the ramified and unramified cases, if
r=t+1, then (K,)" C K, € H. Thus for any y in K, we have
K,=KYC(KNnKM"c(KnH")" It follows that when we apply
Mackey’s induction-restriction theorem, we find that

Z ((Pn')ylx,n(KmH"r)Y)Kr

yeK\K/KNH™

> (Pn'|1<,)y'

yeK/KNH™

n

K
(Pn’!kmmr) | &

r

I

If p is ramified or if # is unramified and / is even, then p restricts to ¢,
on K, . If « is unramified and / is odd, then p = £, , on H = UgK, and
restricts to Can = (Y)Y on UpU} :K,, and since UpK, is the
stabilizer of y ,, by Mackey’s induction-restriction theorem, we have:

el K, = > Yantl K,

a €K \UrUgK,,/ Ur U BY

Z (‘I/A,A',1|K,2)a =qy,.

«€ UpUp K,/ UpUg BY

n

Thus p restricts to ny, on K, , where n = 1 or g, and hence p" restricts
to ny}y on K5 K,. Thus (pmll(mH"t)KlK, =Yy exskam M(Wik)
so that (p"| g )X restricts to the identity on a subgroup K , of K,
(g = r) if and only if Y% |, = 1. Finally, because the level of ¢, is /, a
simple computation shows that Yi|lg =1ifandonlyif g=>t+17>r.
The result follows. ’ ]

Now we fix ¢ and further consider the representation (o™ | g gn) .
Because it restricts to copies of the identity representation on K,,,, its
restriction to K, ., C K, decomposes as a direct sum X ¢, where for C
in M, Y is defined on K., by ¢-(k) = ¢(w "' TrC(k — I)). (Note
that Y, = ¢, ifand only if C; — C, liesin M, .) We shall find a C in
M such that ¢/ is a subrepresentation of (0" | x - ;)% | Koy Mackey’s
induction-restriction theorem implies that

K
Z( pY™ | ) e
K, N (H™Y
'yer

Z n, Kvmy |Y
p I K(”'/)Zn H™ s

yel

in

K
(Pl krrm) | Kian,

I
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where I' = K, ,, \ K/K N H™, so it suffices to find a C for which . is
a subrepresentation of (p™ | Koo, 0 ) Ke+02. By Frobenius reciprocity, this
is the case if and only if Y| Kiosy O H™ is a subrepresentation of
P" | k...~ 1m-We need the following lemma:

t+1);

LEMMA 11. In the case that « is ramified, so H = UyB,_,,
Kiip, "H™ =K., VBl If m is unramified, so H = UgK,, then
Kiin, 0 H" = K.\, N K furthermore, K. , N K[

= Kup, N (K, N")™ in this case.

Proof. We prove the second result; the first is proved similarly. Let
k€K, NH" so that k = (uk’)™, where u=wl + x4 € U, and
k' € K,. Writing this equation with matrices makes it clear that this
implies that w € U" and x € 4", so that u € K, and hence k €
K+, N K", as claimed. Moreover, if k = (' 1+t,) then a, b and d
must lie in /;"*”’ C 4" and c lies in 4#'*h, so that k™ lies in K, N, as
claimed. a

Now for each ¢ > 1, let

0 1
A= ( —Aw? swf) - wtn’AnF‘

Then ¢/, is the representation we seek:

LEMMA 12. y/, is a subrepresentation of (p™| K(,+,,20H"1)K‘””2, in both
the ramified and unramified cases.

Proof. By the remarks preceding Lemma 11, we see that it is enough
to show that ¢/, | Kigaryy 0 H is a subrepresentation of the restriction
P | ko1, 00 100 The lemma above allows us to consider the latter represen-
tation more closely. In the case that « is ramified, p = ¢, , on H =
UpB,_,, and p restricts to y, on B,_,. If = is unramified, then H = UK,
and if / is even, p = ¢, , on H and restricts to , on K, = K, N". If =
is unramified and / is odd, then p = £,, on H and restricts to { RY
(Y42 1) YR on ULU} #K,, so the restriction of p to UpU:B}" contains
Yy @S a subrepresentatlon Thus the restriction of p to B = K, N
again contains y,. Applying Lemma 11, we find that | Koy
is a subrepresentation of p| Kipany, O H™ in all cases. Moreover, if k €
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K 1y, " H™ then:
(k) = (e ' Trd,(k - 1))

= y(o ! Trom,dn (k= 1)) = y(w ™' Trdn, (k- I)7,)
= ¥ Trd(n; kn, - 1)) = ¥ (k).

Thus ¢ |« . vy (VH is a subrepresentation of the restriction p™ | Kesny N H™S
as claimed.

Because ¢/, is a subrepresentation of (p™ | Koy 0 ) Xe+02 which is in
turn a subrepresentatlon of (p"| xn ,,,,,) | Kosiy , by Frobenius reciprocity
it follows that x,b:, and (p"| g ) ® must intertwine. We continue by
finding the decomposmon into irreducible components of the representa-
tion z,b;,'f

Y/, is a representation of K, factoring through K, , /K, and
as above, its stabilizer in K is the subgroup U(4,)K,,,,, where U(4,)
denotes the group of units in the subalgebra ¢( 4,) of M,(0) generated by
A,. Note that U(A4,) = (UzUZ)™ if the field E is ramified over F, and
U(A,) = (UU2" Y™ if E is unramified over F, so that U(4,) C (UU})™
C U in either case. Thus if ¢; denotes, as before, an extension of the
restriction 4 |K,20UE to Ug, then if (Y ) ™= (Y1) ™| y(a,), (¥4,) ~ extends
W, to U(A,).

Thus in the case that ¢ + [ is even, as before, for each representation
Ain A =[U(4,)/[U(A4,) N K.,,]1", we get a corresponding extension
¥ of ¥, to its stabilizer in K, and C11fford’s theorem implies that xp
is 1somorphxc to the direct sum of nonisomorphic irreducible representa—
tions X c 2 ¥4 X -

In the case that ¢ + / is odd, the form of A4, implies that the formula
¥, (k) = Y(w ""!TrA,(k — I)) defines a representation on the group
B, ,_, which factors through B,,,_,/B,,.,,_,. The stabilizer in B of this
representation is U(A4,)B,,,_,, so this time, for each A in A =
[U(A4,)/IU(A,) "B, ,_{]]", we get an extension ¢ , of ) to its
stabilizer in B, and we find that /2 4, 1s isomorphic to the direct sum of
nonisomorphic irreducible representatlons Yhe Axp %, 8- This implies that

:,K is isomorphic to the direct sum X, o ¢} §; we show that these
summands are also irreducible and nonisomorphic. The argument is
similar to the one given earlier to show that ¢* is irreducible in the
ramified case. As in that case, we find that for any A, and A, in A, we
have:

w
(kv k) = (08 ¥ k) +isea (0,8 (0,8))
BW
= le.xz + lBr\B“‘(‘P;I,,i (‘[/A xz) )’
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so it suffices to show that the latter number is always equal to 0. We use
the following lemma, which generalizes Lemma 7, and which is proved in
the same way.

LEMMA 13. For any integers | > 1 and t > 1 (and t = 0, in the case
that E is ramified over F), B = (B N B")U(A,).

This lemma and Mackey’s induction-restriction theorem imply that

b

, , BN BY”
‘[/A,,f lBnp = (¢A,,A|BWHU(A,)B,+,_1)

and since the lemma also implies that B” = (B N B")(U(A4,))”, we also
have (1],14‘,”’%)3 | prpr = (’Vw IBH[U(A,)B,J,,VI]W)BHB . Thus

e (408972 7)
N BnBY BNB*
=1 (IPA”)\ I BWnU(AI)BI+I—I) > (4/’41?}\ l Bm[U(Al)BI+I-1]w)

Z /w
fep| Wi

yel
where
I'=BN[U(A,)B,,_1]"\BNB*/[B"N U(4,)B,.,_,]
and
C(y) = [Bn[U(4)B,,4]"] N [B" N U(4,)B,,,.]",

for each y € T. Since for each y, C(y) 2 K, ), and since {/; , | Koy =
Y/, , we see that the equations above show that

’BnBW(‘PA A ( ) ) Z K<,+n2( ’W)

But as in the proof of Lemma 8, we can take each index y to be of the

form (%, 9), for some ¢ and d in @, and it is then clear that y4,y ! —

wAw~!does not liein M, , so that
1

. o ogmw) _ ’ ’ —
lK(1+I)2( A Ax) lK(Hl)z(lpyAr'Ydl’4/WA/W_1) O’

foreachy € I.
We have now proved the following lemma:

Lemma 14. z,b;,K is isomorphic to the direct sum X5 c \ ¥/, X, where

A= [U /[U ﬂK(,+,)]] if t + lis even,
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and
A ={U(4,)/[U(4,) "B, ,_\]]" ift+lisodd.

In either case, the summands are irreducible and nonisomorphic.

By the remarks following Lemma 12, xp;{f and (™| g~ gn) X inter-
twine. The lemma above gives a decomposition of z,b;f into irreducible
subrepresentations, and it follows that one of these summands must be a
subrepresentation of (p"| - ) X. Here we recall that the representation
p of H is in both the unramified and ramified cases determined by a
representation A of U, which factors through U,/ U% in the first case and
through U,/U/[™" in the latter. Because U(4,) C U}, if we define A, by
A, =A"| 4, then A, defines a representation which factors through
U(A4,)/IU(A4,) N B,,,_] and so also through U(4,)/[U(4,) N K., ], so
that xlzj,”’fl is an irreducible component of xlzf in both the unramified and
ramified cases. We claim that \p;,p'f‘ is also a subrepresentation of
(0™ x A ) . The following lemma, which corresponds to Lemma 11 and

is proved similarly, is needed to prove this fact.

LEMMA 15. In the case that « is ramified, so H = U.B,_;,

w1 NVH™ =B, N Bl If w is unramified, so H = UgK,, then

B, «NH"=B_ ,NK furthermore, B, , NK! =B, , N
(K, N/")™ in this case.

B

t

The lemma above allows us to prove:
LEMMA 16. In all cases, Y, X is a subrepresentation of (p"| g ) K.

Proof. Because ¢, § is irreducible, it suffices to show that
ie(Y X (0" ki) k) > 0. By Frobenius reciprocity, we know that

. K
IK(\!’;,,I{, (0™ ko prv) )

= )y Lhy o POK,( ‘Mty,,x,, pm),
yEH\K/KNH™
where H, = U(A)K ., if t+1 is even, and H,= U(4,)B,;,_, if
t + [ is odd. Thus

. K
’K(’Mt,,g\i (0" K pm) )

. , o) _ , .
= ’H,n(KmHm)(HbA,,)\,aP ’) =lgn HW:(‘PA,,A,vP ’),

where as before H = UgK, if E is unramified over F and H = UgB,_, if
E is ramified over F. In the cases that E is ramified or E is unramified
and / is even, we have seen that p = ¢, , on H. The proof of the result is
similar in these cases; we prove it in the case that H, = U(4,)K,., and
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E is ramified so that H = U.B,_,. In this case, because U(4,) C Uy and
by the lemma above,

Hr NH"= U(At)[K(t«H)2 N HT"] = U(At)[l{(wl)2 N Blnil]'

Because we have defined ¢/, = (Y1) | y(4,y> Ar = A"| y(4,)> and because
¥, =y% on K., N B, (as seen in the proof of Lemma 12), we see

that i o (Y 2, 0") = iy (W0, ¥4) = 1in these cases.

In the case that E is unramified over F and /isodd, p = §,, on H
and restricts to {,, on U UgK,, where {,, = (Y4 x1)YrU2Kn. There are
two cases, depending on the definition of H,; their proofs are similar and
we assume that H, = U(A4,)B,,,_; in what follows. Thus

Iy A m:( *Pia,.)\,’ P"')
. UpUEK, | ™
= lHlnH'lr(\b;”}\l’[(‘p/‘.)\l,l) e II] )
. 0, 1(Up UK, )™
= IH’nHﬂl(Hb;"A{? [(\PA,}\',I) I] e )

= iH,mH"’l(lP;i,J\,’ (‘PA.}«J)"')a where H' = UFUlell-
U(A,) € (UU})™, so applying the lemma above we find that
H (N H™=U(A)[B.1oy N K]

= U(4,)[B,., -, (K, NY)| = U4)[B,,,, 0 B}].

As above, we see that we have constructed ¢/, , in such a way that it is
equal to (Y 4,,;)™ on H, N H'™, 50 again iy g ¥} ,0p") = 1. m]

Finally, we shall prove that ¢/, ¥ = (p™| )% by showing that
their degrees are equal. The following lemmas imply this fact.

LEMMA 17. {/; \K has degree (¢ — 1)q""'"*(q + 1).

Proof. If t + [ is even, then ¢/, , is a representation of U(4,)K .,
and (¢ + /), > 1. Hence since y/, , has degree one, ¢/, £ has degree:

[K:U(4,)K ., ]

= [K: K(t+/)2] [U(AI)K(I‘H)z: K(H'/)z]

= [K: K(H'I)z] [U(Az) : U(Az) N K(:+/)2] -

-1

= [K:K(,+/)2][U2U(HI)Z]—I[/Z;ﬁ(H’/)z]_I

= [(g = 1)%q%+ 273 (g + D][(g — 1) g+ P71 T qu+De]
~=(g-1Dg"" (g + ).
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If £+ [ is odd, then ¢/, , is a representation of U(4,)B,,,_;, and
again ¢/, , has degree one. Thus in this case, /, § has degree:

[K:B][B:U(A,)B,,,_]
= [K:B)[B:B,,,_,]{[U(4)B,._1: B,y yh]) ™}
= [K:B][B:B,,,_,][U(4,):U(4,) N B, ]
= [K: B][B: B, 1] [U: U+ 702] 7Y 4 plexi=0n] 7
= g+ 11[(g = 17¢2*"2][(g — 1)gU+/=1=71] g ] ™!
=(g-1Dg"""*(g+1). o

To compute the degree of (p™ | x  zm) X, We use the following lemma,
whose proof is similar to that of Lemma 11:

LemMa 18.
Kn(UgK,)" = U(4)[K n Kp].
KN (UgB, )" = U(A,)[K N ani1]~
LEMMA 19. In both the ramified and unramified cases, and for any

12 0,(0"| g pn) has degree (g — 1)g""'"*(q + 1).

Proof. In the case that E is unramified over F, we have H = UgK,,
and applying the lemma above, we find that K N H™ = U(4,)[K N K}"].

Note that
Ull M
KN KIT = (ﬁt-H, f]h) > Kt+11’

where M = M(¢,1) = max(0,/;, — ¢), and it follows that U(4,) N K» =
U“I + #MA. Thus in this case, (p" | g zm) < has degree:

[K: K N H™] deg(p)
= [K: K. |[KnH" K,,,] " deg(p)
= [K: K, )[KnHKn K} ' [KnKpeK,,, ] deg(p)
— [K: K] [UA)(K A Kp) K Kp] ™

X [K N K Kz+11] ‘ldeg(P)

(continues)
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(continued)
= [K:K,,,)[U4,):U(4,) nKp] ' [KnKpe K, ] deg(p)
= (g =170 (q + D][(g ~ D)gt ]
x [q* 4] ™" deg(p)
=(g—1)g"" (g + 1) deg(p).

Recall that when [/ is odd, p = §,, and has degree g, while when / is
even, p =y, , and has degree 1. Thus deg(p) = ¢">~" in either case.
Since [ = [, + [,, we see that (p™| g ;)% has degree

(g=1)g""*(q + 1),
as claimed.
In the case that E is ramified over F, we have H = U.B,_,, and

applying the lemma above, we find that K N H"™ = U(A,)[K N B,].

Note that
I N
KN B, = v # oK, ,,
-1 ﬁz+12 Uh 1+l

where N = N(t,/) = max(0,(/ — 1); — t), so it follows that U(A4,) N B,
= U] + 4"A. Thus in this case, (p" | x ~ ;) has degree:

[K:K N H™] deg(p)

= [K:K. J|[KnH" K, ]| " deglp)

= [K: K. |[KnH" KB ] [Kn By K,., | deg(p)
= [K:K, ,JlU4)KNB}): KnBpy] ™!
x[K N By :K,,,| "deg(p)

= [K: K, J[U(4):U(4) n B, 'K By K, | deg(p)
= [(g = 1’q* 3 (q + D][(g - g *¥] !
x [qrurt 2N 7]

=(g-1)g¢ " qg+1). O

We have thus found our desired decomposition of 7 into irreducible
K-types. We recall that (o p ¢ Y = (p| g npm)® and can state our final
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theorem:

THEOREM 3. If 7 has level | > 1, then the sum o* & ¥, (o™ p )"

is a complete decomposition of 7 | y into irreducible K-types. The summands
are of degree (¢ — 1)q'*'"2(q + 1), t = 0,1,2,..., respectively.

(B]
(H]
(K1]
[K2]
(K3]
(K4]

[Se]
[Sil]

[Si2]
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