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DETERMINATION OF THE INTERTWINING
OPERATORS FOR HOLOMORPHICALLY

INDUCED REPRESENTATIONS OF
HERMITIAN SYMMETRIC PAIRS

BRIAN D. BOE, THOMAS J. ENRIGHT AND BRAD SHELTON

Let X and Y be two holomorphically induced representations for an
irreducible Hermitian symmetric pair (G,K) with integral highest
weights. Then Hom(X, Y) equals either C or zero. In this article we give
formulas for Hom(X, 7 ) when the infinitesimal character of X and Y is
integral and either regular or semi-regular. One formula is given in terms
of the highest weight of X and the other in terms of the highest weight of
7.

1. Introduction. Let X and Y be two holomorphically induced repre-
sentations for an irreducible Hermitian symmetric pair (G, K) with in-
tegral highest weights. Then Hom( X, Y) equals either C or zero ([2], [7]).
In this article we give formulas for Hom(X,Y) when the infinitesimal
character of X and Y is integral and either regular or semi-regular. One
formula is given in terms of the highest weight of X and the other in terms
of the highest weight of Y. These formulas were established for the case of
SU( p, q) by the first two authors [3].

This article complements the results of [7] which include formulas for
the composition factors of the modules X and Y above when G is of
classical type. With this in mind we shall suppose the reader is familiar
with the notation and results of [7], especially sections eight through
thirteen of that article. Since [7] does not include formulas for the
composition factors when G is of exceptional type we will provide
formulas in those cases. These formulas will be consistent with the
formulas of [7] and will be derived with the help of [4].

Recently, H. Jakobsen has given a formula for Hom( X, Y) when one
of these modules is induces from a one dimensional module [9]. Our
formula for Hom(JV , JVX) below follows from Jakobsen's work in the
cases where either x is the identity element or y is the element of maximal
length in iΓm. Otherwise our results are disjoint.

For references to other work on the description of Hom( X, Y) the
reader should consult the introductions and bibliographies in [2] and [7].
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2. Statement of results. In order to state our results we recall some of

the notation of [7]. Let g (resp. m) be the complexified Lie algebra of G

(resp. K), and let p be a maximal parabolic subalgebra of g with Levi

component m and nilradical u. Let ί) be a Cartan subalgebra of g and m

and let b be a Borel subalgebra of g with ί j c b c t ) . The Weyl group of

g (resp. m) is ?T(resp. iTm) and we have >T= iTJTm where Wm is the

set of minimal length left coset representations. The projection of if onto

if™ given by the decomposition if= ifmifm is denoted by ω *-> ω. Let

Δ, Δ(m) and Δ(u) be the sets of ί)-roots of g, m and u respectively. Put
2 P = Σ α e Δ + α .

For λ E ^ * we denote by M(λ) the g-Verma module of highest

weight λ — p. Then L(λ) and N(λ) denote the simple quotient and

maximal m-locally finite quotient of M(λ) respectively (cf. [7]). For

x^ifm we denote by Nx and Lx the modules N(xρ) and L(xp). We

adopt the convention that if all roots are the same length, they are called

short.

DEFINITION 2.1. Set J( = {(γ, v) |γ, v G Δ + and either (γ, v) Φ 0 or

both γ and v are long roots}. Let ^ ( Δ + ) denote the collection of all

subsets Ω of Δ + which satisfy the following conditions:

(a) If γ, v are in Ω, γ Φ v, then (γ, v) £ Jί.

(b) If γ is in Ω and £ is in Δ + with γ Φ £, (γ, £) e J( and £ < γ then

there is a f i n Ω with ζ Φ γ, (f, £) e ^ and f < γ.

We note that 5^(Δ+) is defined for any positive system of any root

system. When there is no chance of confusion we will denote this set

simply as S?.

Fix x in # m . Then <fx will denote the set of all Ω in 9> which

satisfy cΩ c Δ(u) U -Δ(ιt). By Sx we will denote the collection of Ω in

ίfx which satisfy the additional condition:

(c) If γ is in Ω then there is a ξ in Ω with γ < ξ and xξ e Δ( u).

For Ω G ^ , put Ω + = {γ G Ώ\xy G Δ(u)} and Ω"= {γ G Ω|;cγ G

-Δ(u)} . We say that Ω is x-positive (resp. c-negative) if Ω = Ω+ (resp.

Ω = Ω~). Note that the x-positive elements of ίfx are automatically in δx.

Let rΩ = Π γ e Ω + J γ and tQ = Π γ e Ω - J γ .
We can now state our main result.

PROPOSITION 2.2. Let x andy be in ifm. Then:

(a)

τ τ / A r xτ \ C ify= XΪQ for some x-positiυe Ω in 5^ ,
Hom(iV v, Nx) = ( J J ΏJ F x

10 otherwise.
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(b)

( C ifx==yt^for some y-negative Ω in Sfy,HomίiV , N ) = (
10 otherwise.

We will prove only part (a) of (2.2). The proof of (b) is exactly the

same and we omit the details.

In order for the reader to better relate (2.2) to the theory of composi-

tion factors we recall the following proposition from [7].

PROPOSITION 2.3. Assume that g is of classical type and let x and y be

in iΓm. Then

(a) The mappings Ω *-* Ω + and Ω >-» xra are injectiυe when restricted to

(b) The simple module Ly is a composition factor of Nx if and only if

y ~ xrΐι for s o m e Ω in $χ Moreover\ the composition factors of Nx occur

with multiplicity one.

We will verify in section four that (2.3) also holds when g is of

exceptional type (cf. (4.3)).

3. The classical cases. Assume that g is of classical type. Let notation

be as in [7], sections eight through thirteen. There are five classical cases to

consider which we denote by HS.i, 1 < / < 5 [7, Table 8.1]. These

correspond respectively to the cases: SU(p,q), SO(2n — 1,2), Sp(2«,R),

SO(2n - 2,2) and S O * ( 2 Λ ) . In the cases of HS.2 and HS.4 the result can

be obtained directly from [6, §7] and [6, §9] respectively. If (g, p) is of

type HS.I, HS.3 or HS.5 with constant p equal to one [7, (8.1)] then the

result follows from [6, §6]. So we may assume that (g, ft) is of type HS.I,

HS.3 or HS.5 with constant p > 1. We proceed by induction on the

constant p. If a is a simple root we put ifr

0L = {x e ^ m \xa e -Δ(u)} .

Let ωa be the fundamental weight corresponding to a. For x or xsa in

ΊVa, write N£ and L" for N(x(ρ — ωa)) and L(x(p — coα)) respectively.

LEMMA 3.1. Let a be a simple root and let x9 y e iΓa. Then:

(a) Hom( JV", N") = C or zero depending as y = xrQfor some x-positiυe

set Ω in &*x a or not.

(b) Hom(iVv

α, Nx) = C or zero depending as x = ytQ for somey-nega-

tive set Ω in ίfv a or not.
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Proof. Suppose that α is a short root and let Aa: ΰf -> Φa be the

equivalence of categories guaranteed by [7, (10.1) and (11.2)]. The induc-

tive hypotheses assure that (2.2) holds in the category Θ'. Thus (3.1)

follows from the formulas of [7, (10.5) and (11.7)].

If β is the long simple root of HS.3 then let a be the adjacent short

simple root. (3.1) holds for α; and so, by the formulas of [7, (12.15),

(12.16) and (12.17)] and the equivalence of categories in [7, (12.14)], (3.1)

must also hold for β. This completes (3.1).

In [2], an algorithm was given for computing Hom( Ny9Nx) induc-

tively, using [7, Proposition 11.2]. This algorithm is the main ingredient in

the remaining part of our proof. For x and y in # " m set d(y,x) =

dim(Hom(JVv, Nx)). We know from [2] or [7] that d(y,x) < 1. If x has

maximal length in Ψ*m then Nx = Lx, there are no nonempty x-positive

sets in S?x and d(y, x) Φ 0 if and only if x = y. Thus we may assume

that x does not have maximal length.

Fix a nonempty x-positive set Ω in Sx and set y = xrΩ. By [8, proof

of (4.2)], if Ω is a set of simple roots then the standard map from Ny to Nx

is nonzero and d(y, x) = 1. Thus we assume that Ω has some non-simple

roots.

Choose γ to be any root in Ω that is minimal with respect to <

among the non-simple roots of Ω. We claim that there is short simple root

β with

(3.2) <j8,γ v ) = i .

If γ is of the form et — e} then set β = eι - ei+ι. If γ = e, + ey with

i <j < n then set β = ey — eJ+v If γ = et + en, 1 < / < n — 1, then set

β = et — eι + ι. Finally, suppose that γ = en_ι + en. Since γ is not simple,

(g, p) must be of type HS.3. Set λ = 2en. Then (λ ,γ) ^Jί and λ < γ.

Thus, by (2.1), there is an α e Ω with a Φ y and a < γ. This forces a to

be en_λ — en. This contradicts the assumption that Ω is in Sx since xa

and xy cannot both b e i n Δ ( u ) U - Δ ( u ) . Thus the final case does not

occur. This proves the claim.

Let β be as in (3.2). Then β < γ; and so by (2.1), there is an a in Ω

with a < γ, a Φ y and (α, β) ^Jί. Minimality of γ forces a to be

simple. Thus, since β is a short root, a and β are adjacent simple roots.

LEMMA 3.3. Let Ω, α, β and y be as above. Then a and y are the only

roots in Ω not orthogonal to β.

Proof. Since xa e Δ(u) and (xay,xβ) = -1 , xβ £ Δ(u). Similarly,
since xγ e Δ(u) and (xyv,xβ) = 1, xβ £ -Δ(u). Thus xβ e Δ(m).
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Let μ be the unique simple root in Δ(u). Let ζ be any third root in Ω.
Then, xζ e Δ(u). However, xsas$ = xβ 4- xa - (β, £ v )xf cannot have
μ-coefficient larger than 1; and so, (β,ζv) > 0. Similarly, xsys^β = xβ
— xy — {βΛ w)xζ cannot have μ-coefficient less than - 1 ; and so,
(β,ζy) ^ 0. Thus (β,ξ) = 0. This proves the lemma.

From the lemma we see that yβ = xrJ3 = mxsasγβ = m(xsaβ — xy)
where m e iΓm. Also, xsaβ = x(a + β). Since xa, xy e Δ(U), we have
exactly two possibilities,

jcίttj8eA(rπ) and yβ e -Δ(u)

or

i5αi8GA(u) and j/j8 6A(m).

In each of these cases, by [2, (2.3)], d(j>, xsΛ) = 0. The short exact
sequence

gives rise to the long exact sequence

0 -* Hom(7Vv, Nx) -» Hom(JV,,,φβtf«) ^ Hom(Λ^, Λ^,J - > . - . .

We have seen that the last term here is zero. Combining this with (3.1) and
the adjoint property of φa and ψα we see d(y, x) = din^Homίψ^Λ^, N"))
= dim(Hom(iV;, N?)) = 1.

Conversely, suppose now that d(y, x) = 1. Then by (2.3) there is an
Ω in Sx with y = xrΩ. We must show that Ω is x-positive. Let a be a
simple root in Ω. Then ya e -Δ(u), so there is a surjection φaN" -> Ny

-> 0. This gives an injection 0 -> Hom(Λ^, Nx) -> Hom(Λ^, JNζf). Thus by
(3.1), Ω\{α} is an x-positive set in S^xa. It remains only to show:
a e Ω+. Suppose α e Ω~, i.e. xα G - Δ ( U ) . If μ is any other simple root
in Ω then, as above, Ω\{μ} is x-positive and thus xa G Δ(u). This
contradiction assures that a is the unique simple root in Ω. Set z = xsa.
Then Ω is a z-positive element of Sz and y = zΠγ€=Ωsγ. But then, by the
preceding paragraph, d(y, z) = 1 and d(y, zsa) = 0. However, d{y, zsa)
= d(y, x) = 1. This contradiction shows that a must lie in Ω+ and
completes the proof of (2.2) in the classical cases.

4. The exceptional cases. Here we verify (2.2) when g is of excep-
tional type E6 or E7. To make sense of (2.2) in the exceptional cases we
must first prove a generalization of (2.3) for these cases.

For i j e r 0 1 write (Nx,Ly) for the multiplicity of Ly as a
composition factor of Nx. We write Fx for the set of all y e # " m with
(Ny9 Lx) = 1. The labeled posets iΓm for the two exceptional cases are
given in Figures 4.1 and 4.2. These are consistent with the notation of [4]
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and the labelings of the posets are consistent with the following labelings

of the Dynkin diagrams:

a b c d e

(4.1) E6: O

(4.2)
a

E 7 : O.

d

•g

f

In the labeled posets, the notation wt -> w} means that a is a simple root,

wi = wJsa and wj G #^. We will use the Bourbaki convention for denoting

roots. Simple roots will be denoted by the letter which labels them in the

Dynkin diagram (4.1) or (4.2). In E 6,

η \=raa + hb + rcc + rdd + ree + rff.

I n E 7 ,

'a 'b r« r* r<^r,.a -f rdd rff+rχg-

Recall from [7, (8.3)] the definition of the orthogonal sets of noncom-

pact positive roots Σx and Σ ^ for each x e # ^ m . For any orthogonal set

Ω contained in Δ(u) set ̂ Ω = Π γ e Ω ^ γ . Recall that if a is any simple root

and x G # ; then Σ x α = 2 X \ {- cα} and Σ + α - Σ + J β \ {-xα}. Recall

also the definition of the sets S?xa from [7, (9.4)].

PROPOSITION 4.3. Let (Q,P) be of exceptional type E 6 or E 7

and y be in ΊTm. Then
let x

(b) (iVv, Lx) = 1 if and only if y = s^x for some Ω c Σ x .

(c) (Ny9 Lx) = 1 if and only if x = xr^ for some Ω G Sy.

(d) ([1]) 7%^ composition factors of Nx occur with multiplicity one.

Proof. We begin by proving parts (a) and (b). Choose x G #^ (cf.

(4.1) and (4.2)). In Tables 4.1 and 4.2 we have listed -x~ιΣx and all those

Nv in which Lx appears as a composition factor, i.e. Fx. The computation

of -x~ιΣx has been done directly and the composition factors are taken

from [4]. We claim that for each x G iΓf, -χ~ιΣx is in yχ. It suffices only
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TABLE 4.1

E 6 data for wy e iTf. The sets - w / 1 ^ and Fj = {z |(JVW|, Lw) = 1}.

i

21
19
18

7

5
3

f
f,d
f, e

/θ 1 2 1 θ\

\ X /
/, a
/, 6

23,21
23,22,21,19
22,20,19,18

20,18,9,7

9,7,6,5
6,5,4,3

TABLE 4.2

Case E 7 data for wy e # } . The sets -w/ x2 and Fy = {i\(NWι, LWj) = 1).

3

47
45
43
41
38
36

16

13

11

9

7

6

/, a,

f, b,

/, c,

/, fl',

/
f,9
f,d
f,c
/, ^
f,a

0 0 1

/0 0 1

A l l

A 2 2

A 2 3

A 2 3

2
1

2
1
2
1

2
1

3
1

4
2

2

2

2

2

2

2

•)

•)

•)
ι )

•)

Fj

49,47
49,48,47,45
48,46,45,43
46,44,43,41
44,42,41,38
42,39,38,36

42,38,19,16

42,39,38,36,19,17,16,13

44,42,41,38,17,14,13,11

46,44,43,41,14,12,11,9

48,46,45,43,12,10,9,7

49,48,47,45,10,8,7,6

to show that -x~λΣx satisfies (2.1b). Choose | G Δ + and γ G - J C " X 2 X

with ξ < γ, ξ Φ γ and ( ξ , γ ) ^ 0. Then γ cannot be simple; and so, by

Tables 4.1 and 4.2, either g is E 6 and x = w7 or g is E 7 and x = w7 with

y G ( 6 , 7 , 9 , 1 1 , 1 3 , 1 6 ) . A case by case check in these seven cases shows

that (2.1b) holds. For each x G # ^ we see from Tables 4.1 and 4.2 that

c a r d ( F J - 2 c a r d ( ^ } . Thus, to_prove (4.3b) for x e # } it suffices to

observe that for each Ω c Σχ9 sQx G i^. This computation can be verified

from the tables.

N o w fix any x G iΓm. If JC = e then Σ x = 0 and Fx = {x}. So

assume that x Φ e. Then there is a simple root α with x G # ^ . If α = /
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then we have already seen that (4.3a) and (4.3b) hold for x. So assume
that a Φ /. By a theorem of Vogan, [10], or more specifically [7, (10.1)],

there is an equivalence of categories π: Θa-

τr(Lx) = Lw. Then by (4.3a) and (4.3b) for

Θf. Define w

W
-i>

WJ

by

and

FwniΓf= {sQw\Ώ c Σwf). It follows from [7, (10.4) and (10.5)] that

-χ-ιΣxa^^a and FxΠiΓa = {SΩX\QQΣXJ. Thus, by [7^(9.5)],

-x~λΣx e Sfx. We also see, exactly as in [7, (12.4)], that Fx = {sQx\Q c

Σx}. This completes the proof of (4.3a) and (4.3b).

Part (c) follows from parts (a) and (b) and [7, (9.6)]. Part (d) comes

from [1]. Finally, (e) follows from (a) and [5, (5.1)]. This proves (4.3).

The proof of (2.2) in the exceptional cases proceeds as in the classical

cases. We need only establish (3.1) and (3.2) for the exceptional cases.

These will be (4.5) and (4.6) (respectively) below. For any x e # ^ m , put

Hχ= [y (ΞiTm \Hom(Ny, Nx) = C}. Recall from [1] that we know

d(y, x) < 1 for all X J G iΓm. Moreover, from [2], the sets Hx are

known explicitly. We wish only to show:

(4.4) = {xrQ IΩ an x-positive set in Sfχ}.

LEMMA 4.5. Let a be a simple root and let x j e iVa. Then

Hom(7Vv

α, NX) = C or zero depending as y = xrQ for some x-positive set Ω

in or not.

Proof. In Tables 4.3 and 4.4 we have listed the jc-positive sets in S^xf

and the sets Hxf = {y <ΞiΓf |Hom(iV/, iV/) Φ 0}. The jc-positive sets are

found by direct computation while Hxf is gleaned from [2]. From the

tables it follows by direct computation that (4.5) holds for a = /. By [7,

(10.1) and (10.5)], the lemma holds for all simple a.

E 6 data for

TABLE 4.3

ΊVf. The πy-positive sets in <Ŝ  j and Hw j = {i \ wt

j

21
19

18

7
5

3

Wj -positive sets in Sw .

0, {d}
0, {e}

,/0 1 2 1 0\,

\ " • /

0, {a}
0, {b}

0

21, 19
19, 18

18, 7

7,5

5,3

3
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T A B L E 4.4

E 7 da ta for vvy e # ^ . The v^-positive sets in <5^ j and Hw j= {i\wt

H ( 7 V / ^ ) # 0}.

j

47

45

43

41

38

36

16
13
11
9
7
6

Wj -positive sets

0 la) {9 (l 2

0,{c},{c )(
1 2

0, {*},{*, (* 1

0, {α},{τ}, {α,7} where 7

0 l Γ ° ° λ

3

3

2

1

=

2
1

0, {α}
0, {6}
0, {c}
0, {d}

β, {9}
0

in «.

4

2

3
1

2

1

2

1

(°
2

2

2

2

2

0

' ) >

•))

')>
1 2 2 l \

47, 45, 6

45, 43, 7

43, 41, 9

41,38,11

38, 36, 16, 13

36, 13

16, 13
13, 11
11, 9
9, 7
7, 6

6

Let γ be any non-simple positive root. We now claim:

(4.6) There is a simple root β with ( β, γ v ) = 1.

Let 5 be the set of simple roots and identify S with the Dynkin diagram

of fl. Write γ = Σμ&srμμ. Let Sy = {μ <= S\rμ Φ 0 ) . Then S γ forms a

connected D y n k i n subdiagram of £. Suppose that γ satisfies the following

condition.

(4.7)
There exist two adjacent simple roots β and ξ with

Yβ = r^ = 1 and β an extreme root of the diagram S .

Then ( β , γ v ) = 1 and yS < γ, as required. Thus we are reduced to

considering only those roots γ which do not satisfy (4.7). These roots,

together with appropriate /?, are listed in Tables 4.5 and 4.6. In Table 4.6,

which gives the necessary roots for E 7, we have only included those roots

for which ra Φ 0. The E 7 roots for which ra = 0 can be thought of as roots

for E 6 and are then included in Table 4.5. The tables complete the proof

of (4.6).
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TABLE 4.5

E 6 roots γ which do not satisfy (4.7) and corresponding β with (/?, γ v )
= 1.

(°
c
(°
(
ι

(
ι

e

1

2

1

2

2

2

7

2
1

2
1

2
1

2
1

3
1

C
O

 
C

M

1 Oλ

1 Oλ

2 lλ

2 lλ

2 lλ

2 lλ

c

b

d

b

c

f

TABLE 4.6

E 7 roots γ with ra > 1 and which do not satisfy (4.7) and corresponding
β,γ v > = 1 .

Ic
c

c

2

2

2

2

2

2

2

2

2

2

2

2

3

2

3

3

3

3

7

2

1

2
1

3
1

3
1

C
O

 
C

M
C

O
 

C
M

4

2

4
2

4
2

1 Oλ

)

2 lλ

2
' )/

2 lλ

2 lλ

2 lλ

2 lλ

3 lλ

3 2λ

β

b

b

C

b

c

d

e

f
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