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THE ORIENTED HOMOTOPY TYPE OF SPUN
3-MANIFOLDS

ALEXANDER I. Suciu

We show that, bar unexpected developments in 3-manifold theory,
the fundamental group and the choice of framing determine the oriented
homotopy type of spun 3-manifolds.

1. The object of this note is to classify spun 3-manifolds up to
oriented homotopy type. The notion of spinning was introduced by Artin
[1] in the context of knots. The asphericity of classical knots implies that
spun knots with isomorphic fundamental groups have homotopy equiva-
lent complements. What we do is extend this to closed manifolds.

Let M 3 be a closed, oriented 3-manifold, and M be M with an open
3-ball removed. Gordon [4] defines the spin of M to be the closed,
oriented, smooth 4-manifold s(M) = d(M X D2). Note that s(M) is
obtained by gluing M X Sι to S2 X D2 via id52x 5i. There is one other
possible choice of gluing map, the "Gluck twist" r: ((0,φ), ψ)->
({θ + ψ,φ), ψ) corresponding to 77^80(3)) = Z 2. The resulting manifold
s\M) = M X Sι U τ S 2 X D2 is called the twisted spin of M [9]. The two
spins of M have the same fundamental group as M. In fact, they have
identical 3-skeleta, but different attaching maps for the 4-cell. If M admits
a circle action with fixed points (e.g. M is a lens space), then s(M) =
s'(M)9 but if M is aspherical s(M) * s\M), as shown by Plotnick [11].

Every closed, oriented M 3 admits a (unique up to order) connected
sum decomposition M$M2$ %Mn, with prime factors Mi either
aspherical, spherical, or S2 X Sι (see e.g. [6]). The spherical factors are of
the form Σ3/7r, with Σ 3 a homotopy 3-sphere and π a finite group acting
freely on Σ 3. Consider only manifolds M3 satisfying the condition

All spherical factors are either homotopy 3-spheres or
(1.1) spherical Clifford-Klein manifolds (i.e. S3/π, π acting

linearly).

Under this assumption (no counterexamples are known!), we will
prove the following

THEOREM 1.2. If irx{M) s ir^M'), then s(M) =* s(M') ands\M) =

j ' (M') .
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Here — stands for orientation-preserving homotopy equivalence. We

use = for orientation-preserving diffeomorphism, and -M for M with

reversed orientation.

2. The starting point of the proof is the following theorem of C. B.

Thomas [12]: Two closed, oriented 3-manifolds have the same oriented

homotopy type iff the prime factors pair off by orientation-preserving

homotopy equivalences. In fact, if M and Mr have isomorphic πv then

π2(M) = 7Γ2(M') as left Z^-modules, and the only obstructions to an

oriented homotopy equivalence are the first /^-invariant of the connected

sum of the aspherical factors, and the second ^-invariants of the spherical

factors.

Now suppose M and M' satisfy condition (1.1) and that ττλ{M) =

πτ(M') but M * ±M\ It follows from Thomas' theorem and known

facts about Clifford-Klein manifolds (see e.g. Orlik [8]) that, up to

connected sum with other factors, M and M' must be a connected sum of

terms of the form:

(2.1) M = M$M2, M' = (-M1)iM2, with Mι * -Mt

or

(2.2) M = L(p9q), M' = L(p,q')9 with qq' ψ ±m2 (mod/?).

It is clear that, in order to prove our Theorem, we have to see what

happens when we spin the manifolds in (2.1) and (2.2). This will be done

in the next two sections.

3. We first study the behavior of spinning with respect to connected

sum and change in orientation. This was done by Gordon [4] for un-

twisted spins. A direct argument can be given to prove a similar result for

twisted spins. Instead, we will prove an equivariant version using

FintusheΓs classification of circle actions on 4-manifolds in terms of their

"weighted orbit spaces" [2].

Given M3, the two spins s(M) = M X Sι U i d S2 X D2 and s\M)

= M X Sι U τ S2 X D2 admit effective circle actions: translation on the

second factor of M X S1 extends to S2 X D2 via t ((0,φ),(r,ψ)) =

((0, φ), (r, ψ + 0), resp. = ((θ - t, φ), (r, ψ + 0) [9]- The weighted orbit

spaces are M (resp. M), with fixed point sets S2 X {0} (resp. S° X {0})

labelled 0 (resp. ±1).

LEMMA 3.1. There are equivariant diffeomorphisms s(Mι$M2) =

s(Mι)P(M2) ands\M$M2) =
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Proof. Taking equivariant connected sum about suitable fixed points,
one finds circle actions on s(Mι)#s(M2) and s'(M1)#s'(M2) with orbit
spaces M^c\M2 (resp. M$M2) and fixed point sets *S2 (resp. 5°), labelled
0 (resp. ±1). These are precisely the weighted orbit spaces of s{M$M2)
and s\M^M2). The lemma follows from [2], Theorem 9.7. D

LEMMA 3.2. There are equivariant diffeomorphisms s(-M) = s{M) and
s\-M) = s\M).

Proof. Certainly s(-M) = -s{M) and s\-M) = -s\M). It remains
to show that s(M) and s\M) admit orientation-reversing diffeomor-
phisms. For that, start with the map (x, ψ) -» (x, -ψ) on M X S1 and
extend it to S2 X D2 by mapping ((0,φ), (r,ψ)) to ((0,φ), (r,-ψ)),
respectively to ((0 + 2ψ, φ), (r, -ψ)). D

Before proceeding with the proof, we pause for a few remarks. Recall
that in general the two spins of M are not even homotopy equivalent. The
next proposition shows that they are stably diffeomorphic.

PROPOSITION 3.3. There is an equivariant diffeomorphism s(M)#CP2

Proof. Define an ^ - a c t i o n on C P 2 by / (zo:zι:z2) = (tzo:z1:z2).
The orbit space is D3 and the fixed point set consists of a sphere labelled
1, and a point labelled - 1 . Form the equivariant connected sums:
s(M)#CP2 along the fixed S2's and ^(AOtfCP2 along fixed points with
opposite labels. The resulting S^-manifolds have the same orbit data:
orbit space M and fixed point set a sphere labelled 1, and a point labelled
- 1 . Hence they are equivariantly diffeomorphic. D

REMARK 3.4. A straightforward Mayer-Vietoris sequence shows
H2(s(M)) s H2(s'(M)) s Hλ(M) Θ H2(M). Thus, if M is a homology
3-sphere, the spins of M are homology 4-spheres [9]. Lemma 3.1 says that
s and s' are homomorphisms from the monoid of oriented homology
3-spheres to the monoid of oriented homology 4-spheres. These homomor-
phisms are not injective. Indeed, if Σ = Σ(p,q, r) is a Brieskorn homol-
ogy sphere, then Σ * -Σ by [7], but s(Σ) = s(-Σ) and s'(Σ) = s'(-Σ) by
3.2. Even if we ignore orientations s and s' fail to be injective: (-Σ)#Σ *
± ( Σ P ) by Thomas' theorem, but s((-Σ)#Σ) = s(±(Σ#Σ)) and
s'((-Σ)#Σ) = s'(±(Σ#Σ)) by 3.1 and 3.2.
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4. We now study the effect of spinning on spherical 3-manifolds. As
we are mainly interested in lens spaces, for which the framing is irrelevant,
we will consider only untwisted spins.

Let M3 = Σ3/π be a spherical manifold. The punctured manifold M
has πλ(M) = π and π2(M) = Zπ/N, where N = Σg ( Ξ 7 7g is the norm
element. The spin of M has πι(s(M)) = π and π2(s(M)) = Iπ Θ π2(M),
where / = Iπ is the augmentation ideal of Zπ. If we let /* = Hom z(/, Z),
with left 77-action given by gx*(y) = x*(g~ιy), then Zπ/N = /*. There-
fore, as Z7r-modules,

ττ2(s(M)) ~ I® /*.

The equivariant intersection form on π2(s(M)) corresponds to the canoni-
cal hyperbolic form on / Θ /* (see [11] for details). As for the ^-invariant
of s(M)9 note that the inclusion map M -> s(M) induces id: π^M) ->
πι(s(M)) and the inclusion ir2(M) ^ Iπ Θ π2(M). The induced map
H\πx(M)\ π2{M)) -> ^ ( ^ ( ^ A f ) ) ; π2{s{M))) sends fc(M) to A:(j(M)).
Hence k(s(M)) = (0, A:(M)) G i/3(ττ; /) Θ 7/3(ττ; / * ) .

LEMMA 4.1. Le/ M and M' be spherical ̂ -manifolds with M — M\
Thens(M) =

Proof. Let /: M -> Mf be the given homotopy equivalence. It in-
duces an isomorphism a: π -> π and an α-isomorphism ^8*: / * - > / * .
Let β: / -> / be the α-isomorphism dual to β*. Define an α-isomorphism
β: π2(s(M))-*π2(s(M'))by

0
: I Θ /* -> / Θ /5

Clearly β is an isometry of the hyperbolic form on I Θ 7*. Moreover,

β^k(s(M))) = (0,Λ(*(M))) = (0,α*(*(M'))) = a*(k(s(M'))),

showing that β preserves ^-invariants. The lemma now follows from the
following result of Hambleton and Kreck:

THEOREM [5]. The homotopy type of a closed, oriented 4-manifold with
πλ a finite group having periodic cohomology of period dividing 4 is de-
termined by (πvπ2,k) and the equivariant intersection form on π2. D

Now let L = L(p,q) and Lf = L(p,q') be two lens spaces with
isomorphic fundamental group. Clearly, s(L) and s{L') are equivariantly
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diffeomorphic if and only if L is homeomorphic to ZΛ Whether s(L) is
diffeomorphic to s(L') seems an interesting question.1 A partial answer is
provided by the following corollary to Lemma 4.1.

COROLLARY 4.2. s(L(p, q)) - s(L(p, q')). D

As noted in [5], standard surgery techniques now yield

COROLLARY 4.3. If p is odd, s(L(p,q)) is homeomorphic to
s(L(p,q')). D

The homotopy equivalence in Corollary 4.2 can actually be defined
"by hand", without using [5]. Here is a sketch of the construction. Start
with the usual cell decomposition e0 U eλ U e2 for L = L(p, q), with lifts
eι in the universal cover L. Then fπ1 = Zp, generated by g = [e j and
7Γ2 = ZZp/N, generated by the boundary sphere (gs — 1)£2, where qs = 1
(mod/?). Let /: L -> 1/ be the homotopy equivalence gotten by deform
retracting the punctured lens spaces to their 2-skeleta. The lift /: L -> ΊJ
takes (gs — l)e2 to x{gs' — l)e2, for some x in ZZp. (Under the isomor-
phism ZZp/N = (IZp)*9 the map -x corresponds to yβ*.) Similarly, f~ι

takes (gs' - l)e2 to y(gs - l)e29 for some y = Lfjjntg' e ZZ^. Let
y = Σf~o n^'1 be the conjugate of y. (The map jp: /Z^ -> /Z^ is β~ι.)
Define an extension /: L X Sι -* L' X S1 by sending S1 to yS1. In
general / is not a homotopy equivalence. But notice that

f((gs - l)e2 X S1) = y(gs - l)e2 X S1 = g ^ y - l)e2 X S\

i.e. / maps the lifts of 3(1 X Sι) to lifts of 9(1/ X Sι). Hence, up to
homotopy, / preserves boundaries and thus can be extended via id:
S2 X D2 -+ S2 X D2 to a map /: s(L) -* s(L').

The same construction, using f'1: Lf -* L and sending S1 to x^1,
yields a map Z"1: 5(Lr) -> s(L). It is easy to check that f^1 is a chain
homotopy inverse of /# on the chain complexes of the universal covers. By
Whitehead's theorem, / is a homotopy equivalence.

5. Proof of Theorem 1.2. Let M and M' be 3-manifolds with
isomorphic fundamental groups and satisfying condition (1.1). Take prime

1 (Added in proof) The answer is yes, they are diffeomorphic. This follows from P. S. Pao,
The topological structure of A-manifolds with effective torus actions (I), Trans. Amer. Math.
Soc, 227 (1977), 279-317.
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decompositions M = M$ %Mn and M' = M{$ %M'n. After re-
ordering the factors if necessary, the Kurosh subgroup theorem provides
isomorphism ^(M,) = π^M ), 1 < i < n. The factors Mi and M[ are
both S2 X S\ aspherical or spherical. If Mi = S2 X S1, then clearly
s(Mi) = s(M-). If M, is aspherical, then M,. = ±Af/, and so, by Lemma
3.2, ^(M,) = s(M ). Finally, if Mi is spherical, the discussion in §2 and
Corollary 4.2 show j(Mf.) = s(M/).

Now piece together the orientation-preserving homotopy equivalences
s{M^^s{M[) (see [12], Lemma 2.9) to get s{Mλ)t #s(MΛ) «
5(M/)# # S ( M ; ) . By Lemma 3.1, s(M) = s(M'). This proves the The-
orem in the untwisted case. The proof for twisted spins is identical. D

The above proof raises the question: if ir^M) = πx(Mf)9 is s{M) s
s{Mf)Ί If the aspherical pieces Mi and M[ are Haken, then indeed
Mi = ±M( and so J(M,.) = s(M{). If the spherical pieces are geometric,
one still has to answer the question in §4, namely is s(L(p,q)) =
s(L(p,q'))Ί

6. We conclude with an application to knot theory. We will need the
following theorem of Goldsmith and Kauffman ("Fox's conjecture") [3].
Let K = (S'\Sn~2), n > 3, be a smooth knot. Let (a,b) e Z X Z -
{(0,0)} and k = g.c.d.(α, b). Then the Wold cyclic branched cover
Mh(Sn+\ Ka) of the α-twist spin Ka = (Sn+\ S"'1) is diffeomorphic to
one of the two spins of the k4old cyclic branched cover Mk(Sn, K) of K.
In particular, s(Mk(S\ K)) = Mk(Sn+\ K°), where K° is the spin of K.

Every lens space L(p,q) is the 2-fold branched cover of a unique
2-bridge link Bp q. If p is odd, Bp q is a knot and we can form the 2-twist
spin B2

q, with exterior Xpq fibered over 51, with fiber L(p,q). Clearly

p,q pV f θ Γ e V e Γ y ί ^ ' B U I ' a S S h θ W Π i Π [W\> Xp,q ~ ^ , ^ ( Γ d 9 ) ί f

and only if L{p,q) - L{p,q'). On the other hand, M2k(S4,B2

q) =
s(L(p,q)) and M2k+ι(SΛ, B2

q) = S 4 by the above result of Goldsmith
and Kauffman. These facts together with Corollary 4.3 imply

COROLLARY 6.1. There are {arbitrarily many) knots in S4 whose
exteriors are homotopy equivalent but not homotopy equivalent (rel3), yet
all of whose finite cyclic branched covers are homeomorphic. D

I would like to thank Steve Plotnick for his comments which have
improved the exposition of this paper.
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