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DEHN-SURGERY ALONG A TORUS T2-KNOT

ZYUN’ITI IWASE

A T?-knot means a 2-torus embedded in a 4-manifold. We define
torus T2-knots in the 4-sphere S* as a generalization of torus knots
in S3. We classify them up to equivalence and study the manifolds
obtained by Dehn-surgery along them.

1. Introduction. Dehn-surgery, which was introduced by Dehn [1],
plays an important role in knot theory and 3-dimensional manifold
theory. The classical Dehn-surgery is the operation of cutting off the
tubular neighborhood N = S! x D? of a knot in S3 and of pasting
it back via an element of ny Diff O N, which is isomorphic to GL,Z.
Gluck-surgery [2] along a 2-knot in S* is a 4-dimensional version of
Dehn-surgery. In this version, N = $2 x D2 and ny DiffoN = (Z/2)3.
(Z/2)? corresponds to the orientation reversing diffeomorphisms of 2
and dD2. Therefore Gluck-surgery yields at most one new manifold
from one 2-knot and it is a homotopy 4-sphere (see [2]). Another
4-dimensional version is Dehn-surgery along a 2-torus embedded in
S4 [7], which we call a T2-knot in this paper. In this version, N =
T? x D? and 7y DiffoN = GL;Z. Countably many manifolds are
obtained from one T2-knot. A manifold obtained by Gluck-surgery is

“also obtained by Dehn-surgery along a 7'>-knot (see Proposition 3.5).
Dehn-surgery along an unknot is studied in [7], [9]. See also [3].

In this paper, we define a torus T2-knot which is analogous to the
torus knots in the classical knot theory, and classify them up to equiva-
lence. Then we study the manifolds obtained by Dehn-surgeries along
them.

Dehn-surgery along a torus knot is studied by Moser [8].

THEOREM 1.1. (Moser [8], Propositions 3.1, 3.2, 4.) Assume that a
Dehn-surgery of type (a, B) is performed along k(p, q), the torus knot
of type (p,q). Put |o| = |pgP — a|. The manifold obtained is denoted
by M.

(i) If |o| # O, then M is a Seifert manifold with fibers of multiplic-
ities p, q, |o|.
(ii) If || = 1, then M is a lens space L(|a|, Bg?).
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(iii) If |o| = O, then M is the connected sum of two lens spaces
L(p.9)#L(q, p).

Our results are the following. Theorem 1.3 is a generalization of
Theorem 1.1.

Let k(p, q) be the torus knot of type (p, ¢) in S3, and B be a 3-ball
contained in S3 — k(p, g). Define S(k(p, q)) and S(k(p, q)) by

(8% S(k(p.9))) = ((S* k(p,q)) — Int B) x §" Ujq S? x D?,
(8%, S(k(p.4)) = (S k(p.q)) — Int B) x S" U §? x D?

where id is the natural identification of B x S! with S$2 x dD? and
7 is the map (u, v) — (uv,v) where we identify S? with the Riemann
sphere and D? with the unit disk in C.

PROPOSITION 1.2. (Lemma 2.6 and Proposition 2.9.) Any torus T?-
knot is equivalent to one and only one of the following:
(1) S(k(p.g)), 1< p<g, ged(p.g) = 1;
(i) S(k(p.q)), 1 <p<gq, ged(p.q) = 1;
(iii) unknotted T?-knot.

THEOREM 1.3. (See Proposition 3.6, Remark 3.7, Proposition 3.9,
Corollary 3.10, Proposition 3.11.) Assume that a Dehn-surgery of type
(o, B, y) (see Definition 3.2) is performed along S(k(p, q)) or S(k(p, q)).
Put 0 = |pqp — a|. The manifold obtained is denoted by M.

(i) If ¢ # 0, then M is the total space of a good torus fibration over
S2 with one twin singular fiber of multiplicity p and two multiple tori
of multiplicity q and o.

(ii) If o = 1, then M is L, or Lfar

(iii) If ¢ = 0, then M is an irrational connected sum along circles
[5] of either Ly, or L', and L(n,r) x S! for some m, n, r.

(iv) Ify = 0, then M = (My—Int B3)x S'U,S? x D2 where M is the
manifold obtained by a Dehn-surgery of type (e, B) along the torus knot
of type (p,q) and h =id (if K = S(k(p.9))), h = (K = S(k(p. 9))).
Especially if (a, B, 7) = (pg, 1,0), M = Ly#L,.

(Lm and L}, are the manifold defined in [9]. See also [3].)

We use standard notations. N(X) means the tubular neighborhood
of X. All the homology groups are with coefficients in Z unless other-
wise indicated.
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2. Torus T2-knots.

DEFINITION 2.1. Let M" (resp. N"~2) be an n- (resp. (n — 2)-)
dimensional manifold. A submanifold K in M™" is called an N"~2-
knot in M" if K is diffeomorphic to N*~2. Let K, K’ be two N"~2-
knots in M". K and K’ are equivalent if there exists a diffeomorphism
h: (M K) — (M", K").

We will be mainly concerned with 7'2-knots in S4.
Recall that a 7'!'-knot (i.e. a classical knot) K in S3 is called un-
knotted if K bounds a disk D? in S3.

DEFINITION 2.2. A T2-knot K in S* is called unknotted if K bounds
a solid torus S! x D? in S%.
Any two unknotted T'2-knots are equivalent.

REMARK 2.3. There exist three isotopy classes of embeddings 7% —
S such that their images are unknotted (see Theorem 5.3 in [7]). But
we are considering a T'2-knot itself, not its embedding map.

Recall that a T'!-knot K in S3 is called a torus knot if K is essentially
embedded in AN (U), where U is an unknotted 7!-knot in .S3.

DEFINITION 2.4. A T2-knot K in S* is called a torus knot if K is
incompressibly embedded in AN (U), where U is an unknotted 72-
knot in S4.

LEMMA 2.5. Let K, K' be incompressible 2-tori in T3 such that [K] =
[K'] in Hy(T3). Then, there is an ambient isotopy which carries K to
K'.

Proof. We may assume that (73, K) = (S! x S! x 1, 8! x S x {+})
without loss of generality.

By Theorem VI1.34 and VI1.17 in [4], there exists a difffomorphism
f: (T3 K" — (T3, K). Since f,([K]) = [K], there exists a diffeomor-
phism g: (T3, K) — (T3,K) with f, = g,. Since f~! .- g: (T3, K) —
(T3, K') satisfies (f~!- g). = id, it is isotopic to the identity map. O

Let U be an unknotted 72-knot in S*. S4 — N(U) is a twin (see
[7]). We denote the twin by the symbol 7w. A twin consists of two
S2 x D?’s plumbed at two points with opposite signs. Let R, S be the
cores of two S? x D?’s. They generate H,(Tw). Let D(r), D(s) be
2-disks properly embedded in 7w such that R- D(r) = S - D(s) = 1
and R-D(s) = S-D(r) = 0. dD(r) and dD(s) are circles in 9 (Tw). We
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call them r and s respectively. Their homology classes in H; (9 (7w))
are well-defined. Choose a circle / in d(7w) such that (/,7,s) is an
oriented basis of H,(d(7w)). Two [’s are mapped to each other by
some diffeomorphism between Tw’s which fixes r and s (see Remark
2.5 in [3]). Next, we consider the manifold D? x T? = D? x S! x S,
Let /, 7, 5 be the circles dD2 x {*} x {*}, {#} xS x{x}, {*} x {(*}xS!in
8 (D?x T?) respectively. S* = Tw Uy T? x D? where fi[[ F5]=[I r s].
Put Ty = T2 x D2NTw C S* Assume that K is a torus T2-knot
contained in 7. Denote K by K(p,q,¢') if [K]= p(r xs)+q(sxI)+
q'(I xr)in Hy(0 (Tw)) where p, ¢, q' € Z. Note that by Lemma 2.5, p,
g, q¢' determines the knot type of K.

Let h: Ty — Tp be a diffeomorphism with A.[l r s] = [l r s]4",
where 4" € GL;Z. There is a diffeomorphism #: S* — S* such that
h|Ty = h if and only if 4" € H, where

+1 0 O

H = { [ 0 a b] € GL;Z
0 ¢ d

(see Theorem 5.3 in [7] and Lemma 2.6 in [3]). If

a+b+c+d=0 (modZ)}

e 0 0
h*[lr51=[1rS][0 a b],
0 ¢ d

then

ad—-bc O 0
h*[rxssxllxr]=[r><ssxll><r][ 0 ed —ac]

0 —eb ea
7 ad —-bc 0 0 D1
[qJ=[ 0 ed —ecJ [ql},
q 0 —eb  ea q

K(p.q.q') and K(p1, 1. q;) have the same knot type. Since

GLZZ/{[‘CZ Z] a+b+c+d=0 (mod2)}

-{[s 1[0 10 ST

every torus knot is equivalent to K(p, ¢, 0) or K(p, ¢, q) for some non-
negative integers p, g with ged(p, q) = 1.

Therefore if
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It is easy to check the following:
LEMMA 2.6. K(p,¢,0) = S(k(p,q)) and K(p,q,q9) = 5(k(p, q)).

Therefore, every torus 72-knot is equivalent to S(k(p,q)) or
S(k(p. q)) for some p, g. Since k(p, q) = k(g, p), we have K(p, ¢,0) =
K(q,p,0)and K(p,q,q) = K(g, p, p). Itis clear that z;(S3—k(p, q)) =
. (S* - K(p,¢0) = n,(S* — K(p,g,q)). The following theorem is
known. For example, see [10], p. 54.

THEOREM 2.7. (O. Schreier.) If 1 < p< qand 1 < p' < ¢q', then
n1(S3 - k(p.q)) =ny(S>—k(p'.q") ifand only if p=p', q=¢'. O

The exteriors of K(p,g,0) and K(p, g, g) have the same homotopy
type. But,

LEMMA 2.8. If p > 1 and q > 1, then the exteriors of K(p, q,0) and
K(p, g q) have different diffeomorphism types.

Proof. Put K = K(p,q,0) or K(p,q,9), k = k(p,q). Recall that
S4—IntN(K) = (B3-IntN(k)) x S1US? x D2, Let i be the inclusion
map ON(K) — S4—Int N(K) and * be a point in AN (k). Then, [{*} x
S!]1 € n;(ON(K)) generates Ker(i,: 7;(ON(K)) — n1(S* —Int N(K))).

Fact. Let X be a spin 4-manifold with X = T3. Let C;, C, be two
loops in X with a diffeomorphism X — S! x S! x S! which maps
Ci, Cy to {*} x {#} x S! and {#¥'} x {*} x S! (x # #/). Assume that
[C1]1=1[C31=01n H{(X;Z/2). Let D; be a 2-chain in X such that (a)
oD; (mod 2) = C; (i = 1,2), (b) [Dy] = [D,] in Hy(X,0X;Z/2), (c)
D, and D, meet transversely. Then, D; - D, (mod 2) is determined
by [C1] in H,(0X;Z/2) (see the proof of Lemma 2.10 in [3]).

Put Y([C|]) =D, -D, €Z/2.

For K(p,q,0) (resp. K(p,q.9)), Y([{*} x S']) = O (resp. 1). This
completes the proof. O

We have proved :

PROPOSITION 2.9. Any torus T?-knot is equivalent to one and only
one of the following:
(i) K(p.¢0), 1 < p<geged(pg)=1;
(i) K(p.g.9), 1 <p<gged(pq)=1;
(iii) unknotted T?-knot. W

For the definition of good torus fibrations (GTF), see [6] or [3], §3.
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LEMMA 2.10. The exteriors of K(p,q,0) and K(p, q,q) have struc-
tures of good torus fibrations with one twin singular fiber of multiplicity
p and one multiple torus of multiplicity q.

Proof. Recall that S* = Tw U, T? x D? where fi[l 7 5] = [/ r 5]
and that Ty = TwNT2x D> c 8% Letpr: T3 =T! x T2 - T! be
the projection map to the first coordinate and let A: Ty — T3 be a
diffeomorphism such that (pr-4). maps /, r, s to gy, py, O (resp. g7,
Dy, py) where y is a generator of Hy(T!). Since —p/ + gr — 0 and
s +— 0 (resp. —pl+qr — 0and s—r — 0), pr-h has fiber (—pl+gr)xs =
q(rxs)+p(sxl) (resp. (—pl+gr)x(s—r) = q(rxs)+p(sxl)+p(Ixr)).
By Proposition 3.12 and Definition 3.16 in [3], pr-4 extends to a GTF
f: 8% — 5% with one twin singular fiber of multiplicity p and one
multiple torus of multiplicity g. Since a general fiber in Ty is K(p, ¢, 0)
(resp. K(p,q,q)), the lemma is proved. a

3. Dehn-surgery along a torus 72-knot. In this section, K denotes
K(p,q,0) or K(p,q,q) and k denotes k(p, q) (the classical torus knot
of type (p,q) in §3). We assume that K is embedded in S* as is in
the proof of Lemma 2.10.

We choose a basis (m, [}, [;) of H(0N(K)) as follows. Let m denote
the meridian curve of k, which can be regarded as the meridian curve
of K. Let [y be the preferred longitude of k. Put /; = [p x {*} C
(B3 —IntN(k)) x S1US2x D? = S*—Int N(K). We orient m and /;
so that pgm + [y = —pl + gqr in Ty. Put [, = s for K(p,¢,0) and [, =
s —r for K(p, g, q). Note that /, generates the kernel of 7;(ON(K)) —
n1(S* — Int N(K)).

REMARK 3.1. Note that for K = K(p,¢,0) or K(p,q,q) a general
fiber contained in ON (K) represents (pgm + ;) x l, in Hy(ON(K)).

DEFINITION 3.2. Let K be a torus T2-knot in S%. N(K) is diffeo-
morphic to 72 x D2. Let i: AN(K) — 9 (S*—Int N(K)) be the natural
identification and 4: ON(K) — ON(K) be a diffeomorphism such that
i-h(m)=am+ Bly +yl,b. M =S4—-N(K)U,;, N(K) is called the
manifold obtained by Dehn-surgery of type (o, B,y) along K.

Montesinos showed that any homotopy 4-sphere obtained by Dehn-
surgery along an unknotted 72-knot in S* is diffeomorphic to S* (see
[7], p. 187). Pao studied the 4-manifolds with effective T2-action in
[9]. All the 4-manifolds obtained by Dehn-surgeries along an unknot-
ted T2-knot are contained in his list. See also [3].
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Note that the diffeomorphism type of M is determined by K and
i-h(m) (see Remark 2.7. in [3]).

Dehn-surgery along any 72-knot can be defined in the same way, but
the description of the type of the surgery might be a little complicated.

PrOPOSITION 3.3. Assume that a Dehn-surgery of type (a, B,7) is
performed along K(p, q,0) (resp. K(p,q,q)). Denote the manifold by
M.

(1) If ged(a, B) = 1, then my (M) is isomorphic to the fundamental
group of the manifold obtained by a Dehn-surgery of type (a, B) along
a torus T'-knot of type (p, q).

(i) H{(M) = Z/o.

(iii) M is spin if and only if By =0 (resp. (1 — B)y =0) (mod 2)
ora=1 (mod 2).

Proof . The proofs of (i) and (ii) are almost clear. For (iii), we need
a lemma.

LEMMA 3.4. Put X = S* —Int N where N is a tubular neighborhood
of a T?*-knot (not necessarily a torus T?-knot) K. Let Y be the function
defined in the proof of Lemma 2.8. Assume that Ker(i.: H|(0X;Z/2) —
H\(X;Z/2)) = {0,e;, ey, e3} where i: 0X — X is the inclusion map.
Then, one of Y (e;)’s is 1, the others are 0.

Proof . Note that if {i, j k} = {1, 2, 3}, then ¢, = ¢; + ¢; holds.

Let V be a 2-sided 3-dimensional submanifold of $* such that
AV = K and that (N, NnV) is diffeomorphic to (D?x T?, r x T?) where
r is a radius of D2. Put V5 = AN N V. Note that e, e;, e3 are repre-
sented by curves in V. Assume that i.: H (Vy;Z/2) — H((V;Z/2) is
injective (i is the inclusion map). Then, the Mayer-Vietoris exact se-
quence shows that H,(V;Z/2) — H,(¥VVy;Z/2) is surjective. Since
Hy(WVy;Z/2) — H,(Vy;Z/2) is bijective, therefore Hy(V;Z/2) —
H)(VVy; Z/2) is injective. By Poincaré duality, H, (¥ Vp;Z/2) is iso-
morphic to H!(V; Z/2), which is isomorphic to H,(V'; Z/2). Therefore
x(V)=1.Put V =V Uy S! x D2. Then,

x(V)=x(V)+x(S' x D*) — x(8V) = 1.
Since V is a closed 3-manifold, this is a contradiction. Therefore
Ker(i.: H{(Vy;Z/2) — Hy(V;Z/2)) contains e;, one element of {ey, e,,

e3}. Since V has trivial normal bundle, we can move V slightly into
V' so that V' N V' = &. Therefore Y (e;) = 0.
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Let m be the meridian curve of K and we consider the manifold
Q = X U, Tw with the attaching map a: d(7w) — 90X satisfying
a.[l r s] = [m é; é] where (71, é;, &) is a basis of H,(0X;Z) whose
mod 2 reduction is (m, e, e;). The Mayer-Vietoris sequence with co-
efficients in Z/2

Hy(X) @ Hy(Tw) £ Hy(Q) — Hi(9X) = Hi(X) @ Hy (Tw)
shows that
H,(Q;Z/2) = 1Im(j.) & ([D(ej) + D(r)]. [D(ex) + D(s)]).
where D(c) isa mod 2 2-chain satisfying dD(c) = ¢ and D(e;), D(ex)
C X, D(r),D(s) ¢ Tw. The self-intersection number on Im(j,) is
zero since X and Tw are subsets of S4. Since [D(e;) + D(r)P* =
Y(ej)+Y(r)=Y(e;) and [D(ex) +D(s)]> = Y(ex) + Y (s) = Y(ex), we
have
[D(e;) + D(r +5)F = [D(e;) + D(ex) + D(r) + D(s)I
= [D(e)) + D(r)I* +[D(ex) + D(s)P
= Y(ej) + Y(ek).

On the other hand, [D(e;)+D(r+s) =Y(e;))+Y(r+s)=0+1=1.
Therefore Y(e;) =0, Y(ex) =1 or Y(e;) =1, Y(ex) = 0. O

We now continue with the proof of Proposition 3.3.
If o is odd, Hy(M;Z/2) is zero. Therefore M is spin. Assume that
a is even. The Mayer-Vietoris sequence with coefficients in Z/2

Hy(D? x T?) @ Hy(X) L Hy(M) — H, (3 (D? x T?))
L H (D? x T?) @ H;(X)

shows that Hy(M;Z/2) = Im(j.) ® ([Das + D(am + Bl + yl,)]) where
X is the knot exterior and D, is the meridian disk of D2 x T? and
D(am+ Bl +yl,) is a mod 2 2-chain in X with dD(am+ Bl; +yl,) =
am+ Bl + yl,. For K = K(p,q,0) (resp. K(p,q,q)), Y(l,) =0 (resp.
1) and Y(/;) =0. By Lemma 3.4, Y(/; + ;) = 1 (resp. 0). Therefore
[Dayr + D(am + Bl + y1,)]> = By mod 2 (resp. (1 — B)y mod 2).
Since the self-intersection number on Im(j.) is zero, this completes
the proof. O

ProPoOSITION 3.5. If a closed 4-manifold M is obtained by Gluck-
surgery along an S*-knot in S*, then M is also obtained by Dehn-
surgery along a T?*-knot in S*.
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Proof. Here K denotes the S2-knot. Identify N(K) = S% x D2
with € x D where € is the Riemann sphere and D is the unit disk
in C. Recall that M = (S* — Int N(K)) U; N(K) is the manifold
obtained by Gluck-surgery along K where t(u, v) = (uv,v). Observe
that t({|u| = ¢} x D) = {|u| = ¢} x dD for any ¢ € RU {o0}. Embed
(D3 x D',D3 x 8D!) in (§* — Int N(K),ON(K)) with D3 x {1} C
Dy x dD? and D3 x {1} C Dy, x dD? where Dy = {|z| < 1/9} c € and
Dy = {|z| > 9} c C. Let H denote its image. One can consider H as
a 1-handle attached to N(K). Verify that there exists an annulus 4,
(resp. Ax) properly embedded in Dy x D? (resp. Do x D?) such that
K' = (C—IntDy—IntDy) x {0} UAgU U x D! U Ay is an embedded
torus where U is an unknot in D3. Especially, if K is unknotted, then
so is K'.

K' has a tubular neighborhood N (K’) such that

N(K")|(€ - Int(Dy U Do) = N(K)|(C — Int(Dg U D))

and N(K') ¢ N(K)U H and N(K")|(U x {*}) = Np(U) x {x} where
Ny(U) is a tubular neighborhood of U in D3,
Let f: ON(K') — ON(K') be a diffeomorphism such that

fI(C — Int(Dy U D)) x 8D = 7|(C — Int(Dy U Do) x 8D
and
fON(K')ND3 x {*}) = ON(K')n D3 x {*}.

Put M' = (S* - Int N(K')) Uy N(K').

Construct a diffeomorphism F: M' — M as follows. Put

F|(S* — (DyU D) x D — H) =id.

M = (D3 —1Int No(U)) x {x} Uy No(U) x {} is the manifold obtained
by Dehn-surgery of type (1,1) or (1,—1) along U in D3. Therefore
there exists a diffeomorphism F,: M! — D3 x {+} with F,|d =id. Put
F|M] = F,. Finally, extend F|0 (Dy x D) and F|3 (Ds % D) to Dy x D
and Dy, x D.

This completes the proof. o

PROPOSITION 3.6. If a Dehn-surgery of type (o, B,y) is performed
along K(p,q,0) or K(p,q,q) and 0 = |pqf — a| # 0, then the manifold
obtained is the total space of a good torus fibration over S? with one
twin singular fiber of multiplicity p and two multiple tori of multiplicity
q and o.

Proof. Put K = K(p,q0) or K(p,q,q). By Lemma 2.10, the
exterior of K has the structure of GTF. The intersection number of
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i-h(m) = am + Bl + yl, and the fiber (pgm + ;) x I in AN (K) is
+(a — pgB). Therefore, after surgery, a fiber is homologous to
+(a— pgB)C in N(K), where C is the core of N(K). Now the propo-
sition is proved. (See Definition 3.16 in [3].) O

REMARK 3.7. If ¢ = 1, then the manifold has only one twin singular
fiber and one multiple torus. Therefore it is diffeomorphic to L, or
LIG} by the Main Theorem of [3] and Proposition 3.3.(ii). If a = 0

(mod 2), then it is L, if and only if either K = K(p,¢,0) and y =0
(mod 2) or K = K(p, q,q). See Proposition 3.3.(iii).

COROLLARY 3.8. The manifold obtained by the Gluck-surgery along
an untwisted spun (S2-) knot of any torus (S'-) knot is the 4-sphere.

Proof . By the proof of Proposition 3.5, the manifold is diffeomor-
phic to the one obtained by a Dehn-surgery of type (1,0, +1) along a
torus 7T2-knot. Since L; = S*, Corollary is proved. O

The following Proposition is almost clear.

ProrosITION 3.9. If a Dehn-surgery of type (a, B,0) is performed
along K(p,q,0) (resp. K(p,q,q)), then the manifold obtained is
(My —Int B3) x S1 U, S% x D? where M is the manifold obtained by a
Dehn-surgery of type (a, B) along k(p, q) and h = id (resp. 7).

COROLLARY 3.10. If a Dehn-surgery of type (pg, 1,0) is performed
along K(p, q,0) or K(p, g, q), then the manifold obtained is Ly#L,.

Proof . The manifold obtained is (L — Int B3) x S1US? x D? where
L=L(p,q)#L(q, p). Corollary 4.10 in [3] completes the proof. O

ProPosITION 3.11. If a Dehn-surgery of type (o, B,y) is performed
along K(p,q,0) or K(p,q,q) and 0 = |pgf — | = 0, then the manifold
obtained is an irrational connected sum along circles of either L,, or
L), and L(n,r) x S! for some m, n, r.

Proof . In this case, the meridian of 4-dimensional solid torus s7*
is attached in a fiber of a GTF of the knot exterior. Recall that the
knot exterior X is made of 7w and D? x T2 pasted together along A,
where A is diffeomorphic to D! x T2.

Put (D?*x T?)—IntA = B and 9 (Tw) —Int4 = C. B and C are
diffeomorphic to T2 x D!. Let h: 8(sT*) — B U C be the attaching
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map. Since B N C is a disjoint union of two fibers, we may assume
that A=1(B) = 0D? x S! x [*,*+x] c dD? x S! x S! = 8 (D? x T?),
h=1(C) = dD* x S x [#*,%] C 0D? x S! x S! = 9(D? x T?). Put
V =D?xS! x[+*«]and V' = D2 x S x [#x,%]. VU V' =sT*. The
manifold obtained by the Dehn-surgery is
M =D?>xT?>UTwu sT*
=D*xT>*uTwu(VUV')=D*xT>*uV)u(Twu V).

Note that 3 (D?x T?UV) = 0 (TwuV') = §2xS!. If we attach D3 x S!
to D2 x T2UV (resp. TwU V") in the natural way, ¥ UD3 x S! (resp.
V'uD3 x S') is diffeomorphic to D2 x T?2.

It is easy to show that D2 x T>2UD? x T? is L(n,r) x S! for some
n, r. The proof of Theorem 4.1 in [3] says that Tw U D2 x T? is L,,
or L),. This completes the proof. m]
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