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HARMONIC GAUSS MAPS

GARY R. JENSEN AND MARCO RIGOLI

A construction is given whereby a Riemannian manifold induces a
Riemannian metric on the total space of a large class of fibre bundles
over it. Using this metric on the appropriate bundles, necessary and
sufficient conditions are given for the Gauss map and the spherical
Gauss map to be harmonic. A weak maximum principle is applied
to the Gauss map of an isometric immersion into Euclidean space in
order to prove a sufficient condition for when such an immersion with
parallel mean curvature vector must be minimal.

1. Introduction. For a Riemannian manifold Mm and an isometric
immersion / : Af -> RΛ, Ruh-Vilms [13] proved that the Gauss map
of / is harmonic if and only if / has parallel mean curvature vector.
Here the Gauss map assigns to a point p e M the ra-dimensional
subspace of Rn obtained from the parallel translation of f*TpM to
the origin. It thus takes values in the Grassmannian Gm(n), endowed
with an 0(«)-invariant Riemannian metric.

In this paper we generalize the Ruh-Vilms theorem to isometric
immersions f:M—>N, where Nn is a Riemannian manifold. There
are two natural ways in which a Gauss map can be defined. The first,
which we call simply the Gauss map, yf:M^ Gm(TN), sends a point
p G M to the tangent w-plane f*TpM in the Grassmann bundle of
tangent m-planes of N. The second, which we call the spherical Gauss
map, Vf: TM^ —• TNU maps a unit normal vector of M to itself as a
unit tangent vector of N.

The notion of harmonicity of these Gauss maps requires some Rie-
mannian metric on the, generally non-trivial, fibre bundles Gm(TN),
TM^-9 and TN\. In §2 we present a natural construction of a Riemann-
ian metric on the total space of a large class of fibre bundles over a
Riemannian manifold. As an immediate application of this construc-
tion we analyse the geometry of this metric on the tangent bundle,
where the Sasaki metric is obtained. To illustrate our formalism we
give a global version of Raychauduri's equation on the tangent bundle
level.

Using the metrics constructed by this method, we are then able
to prove a generalized Ruh-Vilms theorem for the Gauss map y/ in
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Theorem 3.2 of §3; and for the spherical Gauss map Vf in Theorem 4.1
of §4. Our results in §3 extend earlier results obtained by M. Obata
in [11], for the case when N has constant curvature, and by C. M.
Wood in [15], where he introduces the notion of vertically harmonic
section. In §4 we also extend some of our previous work and take the
opportunity to correct an error in [12].

In §5 we apply L. Karp's weak maximum principle in [8] to the
geometry of the Gauss map. In Theorem 5.1 we give an estimate on
the size of the image of a harmonic map in terms of its tension field,
while in Theorem 5.2 we extend a result of Y. L. Xin in [16] which
gives a sufficient condition for an isometric immersion / : Λ/ —• RΛ

with parallel mean curvature to be minimal.
Part of the technique used in §4 to analyse the spherical Gauss map

has been used by A. Sanini in [14] in a different context.

2. A metric construction. Let N be a Riemannian manifold of di-
mension n. We describe here a natural construction of a Riemannian
metric on the total space of fibre bundles E —• N associated to a large
class of principal ^-bundles over N.

Let π: P —• N be a principal AΓ-bundle, where AT is a closed subgroup
of a Lie group G such that the dimension of G/K is n. Let ώ be a
Cartan connection on P (cf. Kobayashi [9]). We assume that the Lie
algebra Q of G decomposes as

where t is the Lie algebra of K and V is an Ad(ΛΓ)-invariant comple-
mentary subspace which possesses an Ad(AΓ)-invariant inner product
( , ). Then the g-valued 1-form ώ on P decomposes as

ώ = ω + θ,

where ω is fc-valued and θ is K-valued. If {EA}
n

χ is an orthonormal
basis of F, we can write

Let F be a Riemannian manifold on which K acts as isometries.
Each element A e t induces a vector field on F whose value at x e F
we denote

d
Ax=Tt

Then for any x EF, ωx is a TXF-valued 1-form on P.

-f- (exp tA)x.
dt 0
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Let τ: P XK F -+ N denote the fibre bundle associated to P with
standard fibre F (see Kobayashi-Nomizu [10]). For brevity we write
FN = P xk F, and we let

σ.PxF -+FN

(e, x) —• ex

denote the projection. Thus ex is the equivalence class of (e, x) under
the action of K on P x F given by a(e, x) = (ea~ι, ax), for all a e K.

If {φb}\ is a local orthonormal coframe field defined on an open
subset U C F, then for any x e U, φb o (<ux) is a 1-form on P and
depends smoothly on x. We obtain a symmetric bilinear form A on
PxU by

h = (Θ,Θ)+Σ(<pb + <pb ° (ωχ))2-

As A does not depend on the choice of orthonormal coframe {φb}, it
is well-defined on all of P x F.

PROPOSITION 1. There exists a unique Riemannian metric ds]?N on
FN such that σ*ds2

FN = h.

Proof. The assertion of the proposition is equivalent to the following
easily verified properties of h.

(i) h is invariant under the action of K on P x F\
(ii) h is horizontal, meaning that h(u, v) = 0 whenever one of the

vectors u or v is tangent to a fibre of σ;
(iii) h(υ, v) = 0 if and only if v is tangent to a fibre of σ. Π

REMARKS. (1) This construction of dSpN depends on the choice of
ΛΓ-invariant inner product on V. The first term of h can be multiplied
by any positive constant t, but that is the same as replacing ( , ) by

(2) If K possesses a bi-invariant Riemannian metric, then h + \ω\2

is a ^-invariant Riemannian metric on P x F with respect to which
σ is a Riemannian submersion with totally geodesic fibres.

At present we are interested in two special cases:

1. F is a vector space with an inner product and K acts by a linear
representation into the orthogonal group of this space.

2. F is a homogeneous space K/KQ.
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Case 1. Let F = Rs with the standard inner product, and let p: K —•
O(s) be a representation. Then

p*oω = (ω£), 1 < a,b < s

is an <9(s )-valued matrix of 1-forms on P.
If (xa) denotes the standard coordinates on R5, then {dxa} is an

orthonormal coframe on Rs and h is the sum of the squares of

ΘA, dxa + xbωa

b,

where 1 < A < n and 1 < a, b < s. The structure equations for dsj>N

can be obtained by differentiating these forms on P x F. In fact, if
e: U C N -+ Pis any section of π: P ->N,\e\u: τ~ιU c FN -> PxF
be the section of σ: P x F -^ FN defined by

u(ex) = (e(p),e(p)-ιex),

where p = τ(ex) and y = e(p)~ιex e F is defined by e(p)y = ̂ x.
Then dsjrN = u*h and

(2.1) u*θA, u

is a local orthonormal coframe for dSpN.

Case 2. The assumption now is that K acts transitively on F. Fix
a point XQ Ξ ̂  a s origin, and let ΛΓQ denote the isotropy subgroup of
K at xo If

i:P-+PxF

e-^(e,x0)

denotes the injection, then the composition

is surjective. Indeed, it is a principal Λ
As the metric on F is ^-invariant, there is a decomposition

where to is the Lie algebra of Ko and W is an Ad(AΓ0)-invariant com-
plementary subspace possessing an Ad(ΛΓo)-invariant inner product
(, ) which defines the Riemannian metric on F. The i -valued 1-form
ω then decomposes into

ω = ωo + ωi,
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where ωo is to-valued, and ω\ is W-valued. One easily verifies that

i*h = (θ,θ) + (ωι,ωι).

If {Fa} is an orthonormal basis of W so that

coχ = ωaFa,

then i*h is the sum of the squares of {ΘA, ωa}. As in the previous case,
the structure equations for dsj>N can be obtained by differentiating
these forms in P and using the structure equations of ώ. In fact,
if u: U c FN —• P is any local section of σ o i; P —• FN9 then
dsjpN = w*/*λ, from which it follows that

u*θA, u*ωa

is a local orthonormal coframe field for dspN in £/.
To see the effectiveness of the above construction, consider the well

known case [17] of the tangent bundle π: 77V —> N. According to
Case 1, where now s = n, an orthonormal coframe for dSγN is given
by (2.1), where the functions xA, and the entire setting, are described
in more detail in §4. In this case ds^N coincides with the Sasaki metric
of the tangent bundle and basic results of its geometry can be easily
deduced in the above formalism. For instance, a symplectic Hermitian
structure on TN is given by defining, as a local basis for the type (1,0)
forms, the forms σA given by

where ηA and r\nJrA are defined in (4.3) below.
The Levi-Civita connection forms relative to the orthornormal

coframe {ηA, ηn+A} are immediately determined (see (4.5)), and using
them and the structure equations on N we obtain

(2.2)

(2.3) dσA = -ω£ Λ σB

where Ω^ = jRβCD^CA^D are the (pull-backs of the) curvature forms
of N. Thus, from (2.3), the Hermitian metric defined by the unitary
coframe σA is symplectic, while from (2.3) the complex structure is
integrable if and only if N is flat. Local exactness of the Kaehler form
given by (2.2) is in fact immediate once we remark that the Kaehler
form itself is the negative of the differential of

μ = χAηA,
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which uniquely determines the Levi-Civita connection of N. Actually,
μ is the Pfaffian form dual to the geodesic spray F in the sense of [1],

(2.4) F = xAFA,

for {FA, Fn+A} the frame field dual to {ηA, ηn+A}. The relevance of F
is that the geodesies in N are exactly the projection of integral curves
of F in TN.

Consider on TN the quadratic form

(2.5) G=ηA®ηn+A.

A simple check shows that G is globally defined. Using equations (4.5)
and (2.4), we compute the Lie derivative

(2.6) LFG = ηn+A <g> ηn+A + xcxDR^DBη
A ® ηB.

Let now ζ = ζAeA be any (local) vector field on N, where {eA} is
the frame field dual to {ΘA}. Define the quadratic form Aζ by setting

(2.7) At = ζABθ
A®θB,

where ζAB are the coefficients of the covariant differential of ζ. If we
consider ζ as a (local) section of the tangent bundle, then from (4.3),
(2.5) and (2.7) we have

(2.8) ζ*G = Aζ.

Computing the Lie derivative of Aί with respect to ζ we obtain

(2.9) LζA< = {ζcζABc + CCBCCA + ζAcζcB}θA 0 ΘB,

where ζABc are the coefficients of the covariant differential of Aζ.
Suppose now that ζ is a geodesic vector field (i.e., integral curves of ζ
are geodesies), so that ζ*LpG = Lζζ*G, and hence from (2.8)

We are now able to interpret at the level of the manifold Λf the
meaning of the trace of the pull back of equation (2.6). Indeed, from
(2.6), (2.9) and (4.3) for the geodesic vector field ζ we obtain

Thus,

(2.10) ζ(D) = -Ric(CC) - — - trF 2 - trS2,
n
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where ζ(D) = ζcζAAC, D = ζAA, S =

and V = ̂ (C^B - CBA)ΘB ® ̂  that is, Z>, 5, F are respectively the di-
vergence, the shear, and the vorticity of the vector field ζ. Equation
(2.10) can be interpreted as a Riemannian version of Raychauduri's
equation considered in Lorentzian geometry in the study of singulari-
ties of geodesies [2] and, in a sense, equation (2.6) globalizes the local
information contained in (2.10). For a different treatment we refer to
[3].

3. The Gauss map. Let Nn be a Riemannian manifold. Denote its
<9(ft)-bundle of orthonormal frames by

O(N) -> N

on which live the canonical form and Levi-Civita connection, respec-
tively,

Θ = (ΘA), ω = (ωi), ωi = -ωB

A.

Throughout this section we use the index conventions

1 <i,j,k<m\ m+l <a,β,γ<n; 1 <A,B,C,D < n;

where m is a fixed integer, 1 <m<n. The structure equations are

dθA = -ωi A ΘB, dωi = -ω£ Λ ofB + Ωj,

and the curvature forms Ω^ are given by

where the functions RβCD satisfy the usual symmetry relations of the
Riemann curvature tensor. N has constant sectional curvature c if
and only if

Let
π:Gm(TN)-+N

denote the Grassmann bundle over TV of m-dimensional tangent sub-
spaces to N. It is a fibre bundle over N associated to O(N) with
standard fibre the Grassmann manifold

Gm(n) = O(n)/O(m) x O{n - m)

on which O(n) acts on the left by multiplication.
Let 8\,..., εn denote the standard basis of RΛ, and for the origin of

Gm(n) we choose the subspace of Rn spanned by ε\,..., εm, which we
denote

o = [eι,...,em].
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Using the construction of Case (ii) in §2, we now have

K = O(n), KQ = O(m) x O(n - m),

and the decomposition of ω is ω = ω0 + ωx where

ω0 = I QJ ' ™* = ' ^

The 0(fl)-invariant metric on Gm(n) is unique up to constant positive
factor. If we let

μ : O(N) -> Gm(TN)

be defined by μ(p; eι,...,en) = (p;[eι,..., em])9 then the metric ds2

FN

on Gm(TN), which we denote <&,2, is characterized by

(3.1) μ*ds} = Ύ2(ΘA)2 + t2γ^(ω?)2,

where t is any positive constant.
If U c Gm(TN) is an open subset containing o and

(3.2) u: U->O(N)

is any local section, then

(3.3) {φA = u*θA, φai = ίw*ωf}

is an orthonormal coframe from ds} on U. From the structure equa-
tions of O(N) we find that the pull-back by u* of the forms

A_ A t2

2

<P% = δaβω
lj + δij-ω^

gives the Levi-Civita connection forms of ds} with respect to this or-
thonormal coframe field.

Consider now an isometric immersion

f:M-*N

of an m-dimensional Riemannian manifold M, ds2. If e: 0 c M -»
O(Λ )̂ is a local Darboux frame field along /, then e*θa = 0 and

(3.5) e*ω? = Ag-e*^'

where hfj = A^ are the components of the second fundamental tensor
II of /. Its mean curvature is H = Haea where

Ha = Ag/w,
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and we set

UH = {II, H) = ^

The Gauss map of / is defined to be

yf:M-+Gm{TN)

p-*f.TpM.

Observe that π o γj- = / and that μ o e = jf for any Darboux frame
field e along / . These compositions are illustrated by the following
commuting diagram

O(N)
e/ iμ

M y-U Gm{TN)

f\ in

N

Using (3.1) and a local Darboux frame e along / , we find

which, when combined with (3.5) and the Gauss equations gives

(3.6) γ}ds2 = ds2 + t\m\\H - RicM + Ric(/)),

where RICΛ/ is the Ricci tensor of ds2 and we have defined a symmetric
(0,2) tensor on M, given with respect to any Darboux frame field e,
by

From (3.6) one immediately deduces the following result of C. M.
Wood [15].

THEOREM 3.1. Any three of the following properties imply the fourth:
(1) γf is conformal;
(2) / is Einsteinian (i.e., Ric(/) is a scalar multiple ofds2);
(3) / is pseudo-umbilical (i.e., 11// is a multiple ofds2);
(4) M, ds2 is Einstein (i.e., RICM is a multiple ofds2).

REMARK. If N has constant sectional curvature c, then Ric(/) =
c(m - l)ds2, i.e., any isometric immersion into N is Einsteinian.

We define a l-form on M with values in the normal bundle
by
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We define a section T of TML <g> TML* ®f~ιTN by

where

= hfjRι

βjA.

Contracting T we obtain a vector field along / ,

REMARK. If N has constant sectional curvature c, then

RiσL(/) = 0f

(3.8) T = mcH®θa®ea,

ΎvT = mcH.

The tensor fields Ric±(/) and T give the obstruction to a general-
ization of the Ruh-Vilms Theorem.

THEOREM 3.2. Let f:M-+Nbean isometric immersion with
Gauss map γf\ M -+ Gm(TN). Then jf is harmonic if and only if

t2ΎvT = mH and Ric x (/) = mVH.

Proof. Let u be a local section (3.2). Then e — u o yf is a local
Darboux frame field along / . If {EA,Eai} denotes the local frame
field dual to the orthonormal coframe field (3.3), then

(3.9)

and the tension field of jf is

τ(γf) = t2RJikhfiEk + (mH? + t2RJiβh$Eβ + thfjjEai,

where hf.k are the components of the covariant derivative of II. Effec-
tively, all these calculations can be made on O(N) using (3.4).

From the Codazzi equations of / we have

(3-10) hfa = hfa - RfJk.

Thus, letting Hf = hjjjm denote the components of the covariant
derivative of H, we find that

(3.11) τ(γf) = t2RJiAh*EA + mHaEa + tmH?Eai - tR%Eai.
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We see then that for τ(yy), the:

coefficient of EA is the coefficient of eA in - t2 Tr T\

coefficient of Ea is the coefficient of ea in mH\

coefficient of Eai is the coefficient of ea ® e*θι in

The theorem now follows immediately. D

COROLLARY. Suppose that N is a space of constant sectional curva-
ture c. If\-t2cφ 0, then γf is harmonic if and only iff is minimal.
Ifc>0 and ift= l/\/c, then γf is harmonic if and only if f has
parallel mean curvature vector.

Proof. In this case the tension field of γf is

τ(γf) = (i _ t2c)mHaEa + tmH?Eaif

from which the corollary follows immediately. •

REMARKS. (1) If N is Euclidean space, then Gm(TN) = N x Gm(n),
and ds2 is the product metric (gN>t2gG)> where gg is a fixed O{n)-
invariant metric on Gm{n). Then jy = (f,γ)9 where γ: M ^ Gm(n)
is the Gauss map of Ruh-Vilms. As in this case τ(yy ) = (τ(/), τ(y)),
our theorem generalizes that of Ruh and Vilms. The factor τ(/) in
τ(γf) explains the apparent discrepancy between our result and that
of Ruh-Vilms. From (3.11) it follows that in this case τ(γ) = 0 if and
only if / has parallel mean curvature vector.

(2) In C. M. Wood's [15] concept of vertical variation of γf, we
have for the vertical component of dγf the second term of (3.9), and
for the vertical tension, τv{γf), the last two terms of (3.11).

(3) M. Obata's [11] Gauss map, which is defined for the case when N
has constant sectional curvature c Φ 0, is our Gauss map γf composed
with a natural projection O(N) —• Gm+\{n + 1) which exists in the
constant curvature case.

4. The spherical Gauss map. To the notation and index conventions
of §3 we add the conventions 1 < cr, τ < 2n. Let Dar(/) -+ M denote
the O(m) x O(q)-bundle of Darboux frames along / , where q = n-m.

Taking the standard left action of O{m) x 0{q) on R* = {0} x R ^
Rm x R ,̂ we obtain the normal bundle of / as an associated vector
bundle

Dar(/) x R ^ TM1 = Dar(/)
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The unit normal bundle of / is the hypersurface

TMt = {(p,υ) e TM±: \υ\ = 1} = Dar(/) xO{q) S^1

of TM1.
For the tangent bundle TN of N we define projections

O(N) xRn^TN = O(N) x0(n) Rw ^ N,

and the unit tangent bundle of N is the hypersurface in TN

TNX = {(/>,*) e TN: \v\ = 1} = 0(ΛT) x ^ S " 1 " 1 .

The spherical Gauss map of / is

vf: TMt^TNx

defined by Vf(p,v) = (f(p),υ). It is the restriction to TM^ c TML

of the normal map
v\ TM±->TN

defined by v{p,v) = (f(p),υ). It is easier to work with v and then
restrict the results to TMf , rather than work directly with uf.

Let e: C/ c Λf —• 0(iV) be a local orthonormal frame field for which
e o / : {/ —• Dar(/) is a local Darboux frame field along / on some
neighborhood U C f~ι U. We define local sections

til: πf1 ϋ -+ Dar(/) x R̂  and w2: π j 1 i7 -> O(ΛΓ) x Rw

of σ\ and σ2, respectively, by

uι(p,v) = (e(f(p)),e(f(p))-ιv),

u2{p,v) = (e(p),e(p)-ιv),

where we interpret a basis e of an r-dimensional vector space V as an
isomorphism e: W —• F. It is easily checked that

(/X ^)oW! =U2oi>,

where f x iq: Dar(/) x R ^ O(JV) x RΛ is the inclusion map. The
following diagram commutes.

(4.1)

Dar(/)xR«

TMX

*. I

yA'' O(JV) x R"
α2 | ΐ «2
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From (3.5) we have on Dar(/)

f*θa = 0, / * < = hfjf*θJ,

where here hfj = hjt are functions on Dar(/). In what follows we will

not write /* as the context will indicate when ΘA and Wβ have been
restricted to Dar(/).

From the construction of Case 1 in §2, we obtain a Riemannian
metric dSγM± on TML characterized by

where

(4.2) φι = θ\ φa = dxa + xβωa

β.

Similarly the metric ds^N on TN is characterized by

where

(4.3) ηA = θA, ηn+A = dxA + xBωi.

Thus

{u\φA} and {u\rf}

are local orthonormal coframes for ds\M±. and dSγN, respectively.
On Dar(/) x R̂  the following 1-forms φ^ satisfy φ£ = —φ% and

dφA = -φj} Λ φB:

φ) = ω) - \χ

( 4 ' 4 ) 9? = \xβ ±Ra

βijφβijφ
j

where

is the curvature of the normal bundle TM1. It follows that u\(pg are
the Levi-Civita connection forms of dsj-M± with respect to the coframe
(4.2).
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In the same way u\γfτ, are the Levi-Civita connection forms of ds\N

with respect to the coframe (4.3), where

IX + X U>E)>

(4.5) y.nΛ-A __ \ΎC pA ΩD __ _γβ
"B "" 2 ^CBDσ "~ Ίn+A*

If we apply (/ x /̂ )* to ?/σ and */£ we obtain on Dar(/) x

(4.6)

Thus, from the commutativity of (4.1) we obtain

and if we write
v*u\rf =

then

( 4'7 ) ^ = o ^ = o * 2 + / = o B

To compute the tension field of ι/ we need to compute (/ x iq)*η%.
These are (omitting (/ x iq)*):

η) = ^j + jXa(Ra

βij - ±Ra

βij)φβ + \xax^hβ

kλR
k

aijφ\

+ R

Using the formula for the covariant derivative of dv

(4.9) VBσ

A = dB°A - B%φ*A + B\rfτ = B%φB,
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we obtain the functions Bσ

AB. If we let {Fσ} denote the orthonormal
frame field in TN dual to {ησ}, then the tension field of v is

τ(ιz) = Bσ

AAFσ.

Combining these calculations, together with the Codazzi equations
(3.10), we finally obtain: at Λ: = xaea € TMf,

τ(v) — xaxfjhμ Rk F + (mHa 4- xμ

(4.10) *7 «u i v a, — "
- x«{mHf - Λ^)FΛ+/ - Λ £ / ^ . i w

Consider now the hypersurfaces ίx: ΓΛ/̂  -> ΓΛ/X and i2: ΓTVi ~̂
77V. Let ^ : ΓM 1 -* R5 ft(υ) = |v|2, and let gx: Dar(/) x R ^ R ,
gx(e,x) = \x\2. Then gx o σx = gx and TM^ = {ft = 1}. Now
dgx = 2xadxa = 2xaφa and σx oux = identity together imply that
ί/ft = u]σxdgx = Wjrfft = 2xau*xφ

a. If we define a unit vector field V
in terms of the gradient of gx by

where 1 ^ } is the local orthonormal frame field dual to {u\φA} in
TM1, then V o ix is the unit normal vector of ^

In the same way, if

W = {xAou2)Fn+A,

then W o /2 is the unit normal vector of TNX.
In general, for a composition of maps between Riemannian mani-

folds,

the tension satisfies (cf. [4])

τ(φ oψ) = dφ(τ(ψ)) + Ύrg Vdφ(dψ, dψ).

Thus, as v o ix = i2 o Vf, we have

τ(u o ix) = (n - \)dv(H) + τ(i/) o ix -Vdv(V, V),

where H is the mean curvature vector of the hypersurface TMχ c
TM1, and thus is a multiple of V o /lβ From (4.6), one finds that
dv{Voix)\sdL multiple ofWov, and consequently, dv(H) is a multiple
of W o v, which means that dv{H) is normal to TNX in 77V.

In the same way,

τ(i2 o vf) = I2*T(I//) + T r ^ ± Vdi2{dvf, dvf),
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the first term of which is tangent to TN\ and the second term of which
is normal to TNX.

As B^β = 0 for all α, β and σ, a direct calculation shows that
V dv(V, V) = 0. Combining these observations we obtain

h*τ{vf) = tangential component of τ{i2 o Vf)

= tangential component of τ{y o i{)

= tangential component of τ(u) o ix

= τ(u) o iγ — ( t ( ι / ) o ix,Wo i2 o Vf)W o i2o Vf.

Hence, at x e TM( , (and leaving the i2* tacit)

(4.11) τ(uf) = τ(ιs) + x<*χPh?jhfjX?Fn+γ,

where τ(i/) is given in (4.10).

DEFINITION. For any x e TML, a symmetric bilinear form 11* is
defined on TPM by

where p = πi(x). Notice that if x, y e TPM^, then IIaχ+by =
bΐly, for any α,6eR.

LEMMA. The following are equivalent.

(4.12a)

/̂br every Λ: = x α e α G

(4.12b)

ybr every x, y e TPM^-, for every p e M, where λ > 0 is a function
on M, p = πi( c), and (Hx,Ily) denotes the inner product on S2T*M
given by

where atj = xahfj and by = yahfj.

Proof (4.12a) implies (4.12b): In the notation of (4.12b), (4.12a)
says

(4.13) (Hχ,τiχ)χγ = <n

where hy = (hjj). Multiplying both sides by yγ and summing on γ gives
(4.12b) in the case when (JC, y) = 0. As it suffices to verify (4.12b) for
the cases x = y and x J_ y9 it remains to show that (II*, IIX) = λ(p)2
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for any x e TPM^. For this it suffices to show that whenever x,y e
TPM(- and (JC, y) = 0, then

(4.14) (Πx,ΠJC) = (ΠJ,,Πy>.

Let a, b e R be such that a2 + b2 = 1. Then

x = ax + by, y = -bx + ay

are orthonormal in TPML and, as (4.12b) holds for x, y and for x, y9

we have

o = <π*f π,) = -ab((nx,πx) - (ny,πy)).
Hence (4.14) must hold.

(4.12b) implies (4.12a): by (4.12b), for any x e TMf, the left side
of (4.13) becomes

(llx,llx)χy=λ(p)2χv,

while the right side of (4.13) becomes

(Ik, Ue7) = Xa(He(tJleγ) = Xγλ(p)2.

This completes the proof of the lemma. D

DEFINITION. An isometric immersion / : M —• N for which (4.12a)
or (4.12b) holds is said to have conformal second fundamental tensor.

Observe that any hypersurface has conformal second fundamental
tensor.

Recall that T defined in (3.7) is a section of

Hom(ΓM\ TM1 ® f~ιTN).

If JC = xaea e TM^, then (Tx,x) = xax^T^AeA = (Tx, x)M+(Tx, x)±

with respect to the orthogonal direct sum f~ιTN = TM Θ TM±.

THEOREM 4.1. Let f:M^Nbean isometric immersion. Then
the spherical Gauss map Vf is harmonic if and only if

(a) (Tx, x)M = Ofor every x e TMf, and
(b) mH = (Tx, x)± for every x e TM^, and

(c) Ric x(/) = mVH, and
(d) II is conformal.

In particular, iff is minimal, then Vf is harmonic if and only ifT = 0,

Ric x(/) = 0, and II is conformal.
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Proof. At x G ΓMj1, the expansion of τ(vf) with respect to the or-
thonormal frame {F^, FQ, Fn+if Fn+a} has as coefficients, respectively:

of Fk the coefficient of e^ in - (TX,X)M\

of Fa the coefficient of ea in mH - (Tx, x)±;

of Fn+i the coefficient of (e o f)*θι in

(x, Ric x (/) - mVH); and

of Fn+a the number (IIX, II*)** - (II*, ha).

The proof of the theorem follows immediately. D

COROLLARY. Let f:M->Nbean isometric immersion, and sup-
pose that N has constant sectional curvature c. Ifc = l, then Vf is
harmonic if and only if f has parallel mean curvature vector and con-
formal second fundamental tensor. Ifc Φ 1, then Vf is harmonic if and
only if f is minimal and has conformal second fundamental tensor.

Proof. As we remarked in §3, when N has constant curvature c,
then RicJ-(/) = 0, and T = mcH ® θa ® ea. Thus, for any x e TM^
(Tx,x) = mcH. Hence, for any x e TMf~,

(i) (Tx,x)M = 0,

(ii) mH - (Tx, x)± = m(l - c)H,

(iii) Ric x (/) - mVH = -mVH.

The corollary now follows easily from Theorem 4.1. D

REMARKS. 1. There is nothing special about the value of c = 1
(as long as it is positive). The metric on TML can be scaled as we
did with dsf on Gm(TN) in (3.1). Namely, in (4.2), replace φa by
φa = t(dxa + xβωan), for some constant t > 0, in order to obtain a
metric ds^M±(t). The Corollary will then hold when iV has constant
positive curvature c > 0, provided that we use the metric ds^M±(t)
with t2 = l/c.

2. We take the opportunity here to correct an error in [12]. The
Theorem there should be changed to: Let / : Mm —• Rn be an iso-
metric immersion. Then its spherical Gauss map v\ TM^ -> Sn~ι is
harmonic if and only if / has parallel mean curvature and conformal
second fundamental tensor. The error comes from equation (21) of
that paper where one term is missing. From the proof of the above
Corollary for the case c = 0, and from the fact that ΓR* = Rn x S"" 1
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(Riemannian direct product), our Theorem 4.1 generalizes the theo-
rem in [12].

5. A maximum principle applied to the tension field. We conclude
with an application of Karp's weak maximum principle [8] to the
geometry of the Gauss map. A complete Riemannian manifold M is
said to have subquadratic exponential volume growth if there exists a
point xoeM such that if r{y) = dist(y, Xo), for y eM, and if Br(x0)
is the geodesic ball of radius r centered at x0, then

γ2 = lim -^log(γo\Br(x0)) < +oo.
r—>>oo TΔ

This property is independent of the point XQ.
The following result is due to L. Karp [8]:
Let M be a complete Riemannian manifold with subquadratic ex-

ponential volume growth. If u is a real function on M such that
sup M u < +oo then inϊM Au < 0, where Δ is the Laplace-Beltrami
operator on M.

We apply Karp's theorem as follows.

THEOREM 5.1. Let M be a complete Riemannian manifold with sub-
quadratic volume growth and let N be a complete Riemannian man-
ifold with sectional curvatures bounded above by a constant K. Let
fiM-^Nbea smooth map such that f{M) c BR(y0)f a geodesic
ball of radius R, 0 < R < +oo, inside the cut locus of a point yo £ N.
Let τ(/) denote the tension field off and suppose that

τ0 = sup|τ(/)| < +oo.
M

Let e(f) denote the energy density off. Then:
(1) IfK >0andR< π/2y/K, then

R

(2) IfK = 0, then R > (2/τ0) infe{f).
(3) IfK < 0, then

R L

REMARKS, (i) In Cases (2) and (3), with N simply connected, the
Cartan-Hadamard theorem implies that BR(y0) is automatically inside
the cut locus of yo £ N.



280 GARY R. JENSEN AND MARCO RIGOLI

(ii) The theorem generalizes a result of Karp's [8] proved under the
assumption that / is an isometry and that K < 0. It also generalizes
the main result proved in Jorge-Xavier [7], for, when / is an isom-
etry, it follows from the assumptions of their theorem that M has
subquadratic exponential volume growth.

Proof. (1) Let p(x) be the distance function from yo^N restricted
to the ball BR(y0). Being inside the cut locus of yo> P is smooth. On
BR(yo) consider the function φ = 1 -cos(\/Kp), where we remark that
0 < p < R < π/2\/K. By applying the Hessian comparison theorem
of Greene-Wu [6], we obtain

Hess φ > Kco%{\ίKp)ds^t

where dsj^ is the metric on N. Furthermore, from the gradient we
obtain

Vφ = VKsin(\/Kp)Vp.

Recall that if {e/} is an orthonormal frame field in M, then

A(φ o f) = Hessφ{df{ei)9df[e{)) + ds2

N(τ(f), Vφ).

Therefore

A(φ o /) > U:COS(V^/?)|V/|2 - \τ(f)\VKάa(y/Kp)

> 2Kcos(\ίKR)e(f) -

> 2Kcos(y/KR)infe(f) - τo\/Ksm(VKR).

Now apply Karp's theorem to deduce

0

that is,

0 > inf A(φ o /) > 2VKcos(VKR) infe(f) - τ0 sin(y/KR),
M

D ^ 1 (2y/Kmfe(f)
R>-?= arctan ^\ τ0 ]

The proofs of (2) and (3) are similar. D

We apply Theorem 5.1 to the case when Λf is the Euclidean space
Rn. As the Grassmann bundle of R" with any of the metrics (3.1) is
a Riemannian product Rn x Gm(n), the Gauss map of / decomposes
into γf = (/, γf), where ff:M-+ Gm(ή) is the Gauss map considered
by Ruh-Vilms [13]. Thus ff is harmonic if and only if the isomet-
ric immersion / has parallel mean curvature vector. Furthermore,
equation (3.6) reduces to Obata's equation [11]

(5.1) γ}dΣ2 = -RicM+mlIH,
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where dΣ2 is the standard O(n)-invariant metric on Gm{n). Thus, we
calculate the energy density

(5.2)

THEOREM 5.2. Let M be a complete Riemannίan manifold with sub-
quadratic exponential volume growth, andlet f: M —• R" bean isomet-
ric immersion with parallel mean curvature vector. Let γfiM—> Gm(n)
be its Gauss map. Ifγf(M) c BR(y0) for some y0 e Gm{n), and if
R < πj2\fK, {where K=lifn-m=l and K = 2 otherwise), then f
is minimal

The proof will be given at the end of this section.

REMARKS. (1) This theorem extends a result of Xin [16] which was
proved under the additional assumption that Ric^ > 0.

(2) By the hypotheses of the theorem the geodesic ball BR(yo) does
not contain any of the cut points of yo It is, however, not trivial to
describe such geodesic balls in algebraic terms. The following result
is due to Fisher-Colbrie [5].

LEMMA. Let βR(y0) = {q e Gm(n): {q,yo) > cosm(R/^/m)}, where
{ , ) is the inner product on unit length decomposable m-vectors ofRn.
Then βR(y0) c BR(y0).

From this lemma and Theorem 5.2 we obtain:

COROLLARY. Let M be a complete Riemannian manifold with sub-
quadratic exponential volume growth, and let f: M -+ Rn be an iso-
metric immersion with parallel mean curvature. Suppose there exists
a decomposable m-vector y0 such that {γ/{p), yo) > cosm(R/y/m), for
R < π/2y/K, where K is as in the theorem. Then f is minimal.

Proof of Theorem 5.2. As ff is harmonic, from Theorem 5.1 we
deduce that, for all τ 0 > 0,

that is, infΛ/ e{yf) = 0. By (5.2) this means that infM | II | 2 = 0. On the
other hand, \H\2 < |Π| 2 , and therefore inf \H\2 = 0. But H is parallel,
hence \H\ is constant, and we thus have H identically zero on M. α



282 GARY R. JENSEN AND MARCO RIGOLI

REFERENCES

[I] W. Ambrose, R. S. Palais, and I. M. Singer, Sprays, Anais da Academia
Brasileira de Ciencias, 32 (1960), 163-176.

[2] J. K. Beem, and P. E. Ehrlich, Global Lorentzian Geometry, Marcel Dekker,
New York, 1981.

[3] M. Crampin, and G. E. Prince, The geodesic spray, the vertical projection, and
Raychauduri's equation, Gen. Rel. Gravitation, 16 (1984), 675-689.

[4] J. Eells, and L. Lemaire, Selected Topics in Harmonic Maps, CBMS Reg. Conf.
Series, No. 50 (1983), Amer. Math. Soc, Providence.

[5] D. Fisher-Colbrie, Some rigidity theorems for minimal submanifolds of the
sphere, Acta Math., 145 (1980), 29-46.

[6] R. Greene, and H. H. Wu, Function Theory on Manifolds Which Possess a Pole,
Lecture Notes in Math. 699, Springer-Verlag, New York, 1979.

[7] L. Jorge, and F. Xavier, An inequality between the exterior diameter and the
mean curvature of bounded immersions, Math. Z., 178 (1981), 77-82.

[8] L. Karp, Differential inequalities on complete Riemannian manifolds and appli-
cations, Math. Ann., 272 (1985), 449-460.

[9] S. Kobayashi, Transformation Groups in Differential Geometry, Springer-Verlag,
New York, 1972.

[10] S. Kobayashi, and K. Nomizu, Foundations of Differential Geometry, Vol. I.,
John Wiley and Sons, New York, 1963.

[II] M. Obata, The Gauss map of immersions of Riemannian manifolds in spaces of
constant curvature, J. Diff. Geom., 2 (1968), 217-233.

[12] M. Rigoli, The harmonicity of the spherical Gauss map, Bull. London Math.
Soc, 18(1986), 609-612.

[13] E. Ruh, and J. Vilms, The tension field of the Gauss map, Trans. Amer. Math.
Soc, 149(1970), 569-573.

[14] A. Sanini, Applicazioni armoniche trafibrati tangenti unitari, Rend. Sem. Mat.
Univers. Politecn. Torino, 43 (1985), 159-170.

[15] C. M. Wood, The Gauss section of a Riemannian immersion, J. London Math.
Soc, 33(1986), 157-168.

[16] Y. L. Xin, An estimate for the image diameter and its application to submanifolds
with parallel mean curvature, Acta Math. Sci., 5 (1985), 303-308.

[17] K. Yano, and S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker, New
York, 1973.

Received September 1, 1987.

WASHINGTON UNIVERSITY
ST. LOUIS, MO 63130

AND

INTERNATIONAL CENTER FOR THEORETICAL PHYSICS
STRADA COSTIERA 11, MIRAMARE
34100 TRIESTE, ITALY




