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ON A NEW METHOD FOR DEFINING THE NORM
OF FOURIER-STIELTJES ALGEBRAS

MARTIN E. WALTER

This paper is dedicated to the memory of Henry Abel Dye

P. Eymard equipped B(G), the Fourier-Stieltjes algebra of a locally
compact group G, with a norm by considering it the dual Banach
space of bounded linear functional on another Banach space, namely
the universal C*-algebra, C*(G). We show that B(G) can be given
the exact same norm if it is considered as a Banach subalgebra of
3f(C*(G))9 the Banach algebra of completely bounded maps of C* (G)
into itself equipped with the completely bounded norm. We show
here how the latter approach leads to a duality theory for finite (and,
more generally, discrete) groups which is not available if one restricts
attention to the "linear functional" [as opposed to the "completely
bounded map99] approach.

1. Preliminaries. For most of this paper G will be a finite (discrete)
group, although we consider countably infinite discrete groups in the
last section. We now summarize certain aspects of duality theory that
we will need. The discussion is for a general locally compact group
G whenever no simplification is achieved by assuming G to be finite.
The reader familiar with Fourier and Fourier-Stieltjes algebras may
proceed to §2 and refer back to this section as might be necessary.

From [3] we see that the original motivation for the investigation
of Fourier-Stieltjes algebras came from the measure algebra, Mι(G),
where G is the (Pontryagin-van Kampen) dual group of locally com-
pact abelian group G and Mι(G) is the *-Banach convolution algebra
of (finite) complex regular Borel measures on G. In [5, §24] there is a
thorough discussion of G (where G is abelian) and the accompanying
Pontryagin-van Kampen duality theory.

Digressing briefly we note that in [5, §19.12] the convolution algebra
M(G)9 in the notation of Hewitt and Ross, is defined; and it is stud-
ied in [5, §19]. (Here G is a not necessarily abelian, locally compact
group.)

We use Dixmier's notation Mι (G), cf., [2, § 13.22], instead of Hewitt
and Ross' M(G)9 though they are identical mathematical objects. We
recommend [2, §13] for a study of Mι(G) as it relates to the set of
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continuous, positive definite functions on G, labeled P(G), and to the
continuous unitary representations of G on Hubert space.

We note for emphasis that as a Banach space Mι (G) is isometrically
isomorphic to the dual space of bounded, linear functional on CQ(G),

the continuous, complex-valued functions that vanish at infinity. This
duality, written in Bourbaki notation, is

(f>μ)= [ f(x)dμ(x),
JG

where

μeMι(G) and feC0(G).

The formula for convolution is

f{xy)dμ{x)dv{y),
GXG

, μ,veMι(G).

The formula for the involution on Mι(G) is

(f,μ*) = JGf(x)dμ*(x) = J f(χ-i)dμ(x),

f G Co(G), μ G Mι(G), overbars denoting complex-conjugation. Fi-
nally, the norm of μ G Mι(G) is given by

where

Returning to the original motivation for the investigation of the
Fourier-Stieltjes algebra, denoted B(G), for a group G we note that
B(G) as an algebra is just the (inverse) Fourier-Stieltjes transform, cf.,
[5, §23.9] or [9, §1.3.3], of M 1{G). By Bochner's Theorem, [9, §1.4.3],
since every μ G Mι(G) is a linear combination of at most 4 ("point-
wise") non-negative measures in Mι(G) (by Jordan's decomposition
theorem, [9, p. 266]), every element b G B(G) is a linear combination
of at most 4 continuous positive definite functions on G. If we equip
B(G) with the norm it naturally inherits from Mι(G) [more precisely,
if μ G B(G) is the (inverse) Fourier-Stieltjes transform of μ G Mι(G),

then ||//||£(<7) = IM|MI(<7)L then B{G) is a commutative, Banach al-
gebra with addition and multiplication of elements defined pointwise,
e.g., (b{b2)(x) = b{(x)b2(x)f bx,b2e B(G), xeG.
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P. Eymard's great insight was that virtually this same Banach alge-
bra could be defined for nonabelian, locally compact groups G. We
very briefly sketch Eymard's construction. We start with Lι(G), the 2-
sided *-ideal in Mι(G)9 consisting of measures absolutely continuous
with respect to (left) Haar measure on G, cf. [2, §13.2]. We let C*(G)
denote the universal enveloping C*-algebra of Lι (G), cf. [2, § 13.9]. We
note that if G were abelian, then C*(G) identifies with C0(G) and the
natural *-epimorphism (also surjection for finite G), Lι(G) -> C*(G),
identifies with the Fourier transform. We then have that P(G) iden-
tifies with the positive forms on C*{G), viz. C*(G)'+, cf. [2, §2.7.5].
Now P(G) is a semigroup with multiplication defined pointwise on G,
i.e., if pι,p2 € P(G)9 thenpip2 e P(G) where (p\p2)(x) = Pι(x)p2(x)
for all .x € G. Thus the finite linear combinations of P{G) form an
algebra, called B(G)9 the Fourier-Stieltjes algebra of G. But identify-
ing P(G) with C*(G)'+, the finite linear combinations of continuous
positive functionals form a Banach space, namely C*(G)', the Banach
space of bounded linear functionals on C*(G). A seminal result is
thus:

EYMARD'S THEOREM. The Fourier-Stieltjes algebra, B{G) is a com-
mutative Banach algebra given the norm it inherits upon identification
with C*(G)f and the algebra operations of pointwise sum and product
it inherits when identified with the linear combinations of continuous
positive definite functions on G.

We observe that Eymard also defined the Fourier algebra of G, A(G)9

to be the closure in B(G) of the subalgebra of functions in B(G) with
compact support. Thus A(G) is a 2-sided ideal in B(G). When G is
abelian, it follows from Wiener's Tauberian theorem that A(G) is the
(inverse) Fourier transform of Lι(G). Also, A(G) = B(G) if and only
if G is compact.

We note in passing that B{G) and A(G) are complete invariants
of G, even for nonabelian G and that a duality theory analogous to
Pontryagin duality is possible, cf., [11], [12].

In [13] (Theorem 1, p. 84), we observed that B(G) arises in a some-
what different context than that of Eymard's Theorem above. Namely,
let 3ί(C*(G)) be the Banach algebra of completely bounded maps of
C*(G) into C*(G) equipped with the completely bounded norm. For
a discussion of completely positive maps see [10], [7]. See [7] for a
discussion of completely bounded maps.
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Now let p be a continuous, positive definite function on locally
compact group G. We can define a map Tp of Lι{G) into Lι(G) as
follows:

Tp:feLι(G)^pfeLι(G)

where p / is the pointwise product on G. The map Tp extends to a map
of C*(G) into C*(G) which is completely positive (hence completely
bounded). The completely bounded norm of Tp is p(e)9 the value
of p at the identity e of G\ and this is also the norm of p when
it is identified with a positive linear functional on C*(G). If b e
B(G), Tjj E 3f(C*(G)) is also defined via pointwise multiplication;
and as [13, Theorem 1] states (in part), the completely bounded norm
of 7#, denoted | |7^| |^, is the same as the norm of b in B(G) when b is
viewed as a linear functional on C*(G). Thus B(G) may not only be
viewed as the dual space of linear functional on C*(G), it naturally
arises as a commutative, Banach algebra of completely bounded maps
of C*(G) into C*(G), i.e., B{G) c &(C*(G)).

It is this observation, namely that B(G) can be viewed as a "naturally
occurring" subalgebra of 3f(C*(G))9 which we now wish to apply to the
theory of finite (and eventually to countably discrete) groups. Before
proceeding to the main point of this article, however, we need to note
some final results from [13], [4] and [8].

First, let Γ^ = { /̂;: 1 <i,j <n}9 the matrix units for Mn, the n x n
complex matrices. Thus e^ is the n x n matrix with a single 1 in the
spot determined by the intersection of the zth row and y'th column
with zeros everywhere else. In [13] Γn, more abstractly known as the
principal transitive groupoid on ^-elements, is studied; and a duality
theory much analogous to that for groups is developed. In particular,
there is a slightly larger variety of algebras (with their accompanying
dual algebras) to choose from than there is in the group case. In the
case of a group G,Lι(G) and A{G) are "dual" to each other, and Mι (G)
and B(G) are,"dual". In the case of groupoid Γn we can define Lι(Γn)
to be (Mn, *, || ||χ,i), namely, Mn with the matrix product, *, and norm
||(α / 7) | |L, = ΣΊ;j=ι \aij\. This L{ (Γπ) is a *-Banach algebra; it is also the
dual space of L°°(Γn). If one had to pick a dual algebra for Lι(Γn)
one would be led to (Mn,o, \\ | | T r ) , i.e., Mn with Schur-Hadamard
product and trace norm. Here the Schur product is defined by (α/;) o
(bij) = (aijbij), where (αy) and φij) are in Mn. Also ||(α/7 ) | | T r =
Tr(|(αo )|) = Tτ[(aij)*(aij)]ι/2

9 where (au)* = (3y) and Tr is the "sum
of the diagonal elements". By [13, Proposition 5] (AfΛ,o, || | |T r) is a
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commutative algebra and it is the dual space of (Mn, *, || ||) where || ||
denotes the usual operator-norm or C*-norm.

It might seem that the pair of algebras Lι(Γn) = {Mn, *, || | |Lι) and
(Mn, o, || | |T r) would be the natural candidates as analogues for the pair
Lι(G),A(G) where G is a group. This, of course, is one possibility.
There are, however, some difficulties with this approach. If we allow
n to be infinite or if we look at more general groupoids, the "obvious"
candidate spaces fail to be Banach algebras with the dual space norm.
The dual space norm appears to be "too large", in general, especially
for groupoids with an infinite number of units.

We do have an alternative, however. If we take the C*-completions
of Lι(Γn) and (Mn,o, || | | T r ) , we get (λfn, *, || • ||) and (Mn,o, || • IU),
respectively, where 11(0//) lloo = sup{|<Z/,|: 1 < ij < n}. We define
C*(ΓΛ) = (Mn,*t || | |), viz., Mn with its usual C*-algebra structure;
and we define C*(Γn) = C(ΓΛ) = (Mn, o, || H^), where C(ΓΠ) is the set
of all (continuous) complex-valued functions on the (discrete) space
ΓΛ. Then there arise in 3f(C*(Γn)) and &(C*(Γn)) analogues of A(G)
and Lι(G), respectively, see [13, §3].

The analogues of Lι (G) we will denote by L\ (Γn) and Lj (Γπ), where
r denotes the fact that L\{Γn) arises as an algebra of operators in
3f(C*(Γn)) that "act on the right" and L){Tn) "acts on the left". Thus
we define L\{Tn) = (Mn, *, || ||/pΓ) where | | (α y ) | |/ i Γ = sup. Σj M We
define L}{Tn) = (M,,*, | | . \\Ld) where ||(α/y ) | | w = s u p y E / l ^ | . We
use the subscript d, following previous authors, though the subscript /
might seem more natural in this setting. The important point, which
as far as we know was unnoticed before [13], is that these norms arise
naturally as completely bounded norms.

Now the natural (cf., Theorem 1 below) dual of L\{Γn) (and/or
L}(Tn)) is A(Γn) which we define to be the subalgebra of 3f(C*tχn))
obtained by letting Mn act on C*(Γn) via the Schur-Hadamard prod-
uct, i.e., A(Γn) = (Λ/Λ,o, || | |^J where ||(tf//)|U is the completely
bounded norm of the mapping

(xu) G C*(Γn) h+ (fly) o (Xij) e C*(Γ,).

The subscript 3S denotes the completely bounded, i.e., "dual", norm
arising from the Schur-Hadamard "action".

Now this norm would be intractable if it were not for a "famous" but
unpublished (as far as we know) theorem of Uffe Haagerup. In fact,
this article rests quite heavily on the following theorem of Haagerup.
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[We note in passing that it follows from Haagerup's work that

IIKOIk = Maij)\\*iC*(ΓΛ)) = sup{||(flV) o (xu)\\: \\(χu)\\ < 1},

i.e., the completely bounded norm of the map ( cy) ι-> (α, 7 ) o ( cy)
coincides with its bounded norm.]

THEOREM (Haagerup). Let (Ω, μ) be a a-finite measure space, and
let A be the maximal abelian von Neumann algebra L°°(Ω, μ) acting as
multiplication operators on H = L2(Ω, μ). Let φ e L°°(Ω xΩ,μx μ)
and let Mφ be the operator on %5?{H\ the Hilbert-Schmidt operators on
H, defined by Mφ{Qk) = Qφk, k e L 2 ( Ω x Ω , μ x μ ) , where (Qkf)(x) =
/ Ω k(s, t)f(t) dμ(t). Then the following are equivalent:

(1) \\Mφx\\ < \\x\\forallxeX9>(H).
(2) Mψ has a σ-weakly continuous extension Mφ to 3S(H) such that

\Mφ\ < 1. Here 3§{H) denotes all bounded, linear operators on H.
(3) There exist two sequences of functions (fn)NeN and {gn)neN in

L°°(Ω,μ) such that

and φ(s, t) = ΣZi Ms)gn(t) μ x μ-a.e.
(4) There exist a separable Hilbert space %* and two functions ζ, η e

L°°(Ω,^,μ) such that I^IU < 1, M^ < 1 and

,t) = (ξ(s)\η(t)) μxμ-a.e.

Moreover, any σ-weakly continuous, A bimodule map on 3&{H) with
norm less than or equal to 1 is of the form Mφfor aφ e L°°(ΩxΩ, μxμ)
satisfying conditions (1) through (4).

As an immediate consequence of this theorem, we have the follow-
ing:

COROLLARY. Let Mn be the C*-algebra of complex nxn matrices.
Let

Mx: y eMn\-> χoy e Mn.

Then \\MX\\&S < 1 if and only if there exists a Hilbert space %? and In
vectors ζ\,..., ξn, η\,..., ηn in the unit ball of%? such that

A short proof of this corollary is to be found in [8].
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2. The Cayley representations. In this section we look at an old
mathematical construction from a slightly new perspective. Let G be
a finite group, and let g\,g2,...,gn be a list of the elements of G.
Now construct an n x n array consisting of elements of G:

g2

82

 l S2

Sx

e

8\

gn

gn1 Snλg\ e

where the element in the intersection of the /th row and 7 th column is
g~ιgj. This array is essentially the multiplication table of G written
in a manner that has a certain symmetry. Now one can think of
this array as a single element in C*(G) <g> Mn, i.e., the n x n matrices
with entries from C*(G), cf. [10, p. 192]. Recall that C*(G) is the
(universal) C*-completion of the Banach algebra, with usual product
and*,

L\G) = i E C , gi e G, \ < i < n

where

V(G) ί=l

Fortunately, C*(G) can be realized, simply as the left regular repre-
sentation of LX{G) on the Hubert space

igΓ λi G C, ft € C, 1 < i < /i

where

(def.)
More precisely, consider λ(f)ξ = / * ξ for ξ G L2(G), f G Lι(G),
where / * ξ(x) = ΣyeGf{y)ζ{y~xx), x e G. This left-regular repre-
sentation,λ: LX(G) -+^(L2(G)) maps L\G) faithfully (that is λ(f) =
0 if and only if / = 0) onto a C*-subalgebra of ^(L2(G)), λ(Lι(G)),
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and we have that λ{Lι(G)) is isometrically isomorphic to C*(G). Re-
call that (E =i λigiγ = ΣU hg~X and that λ(f*) = λ{fy for all /
in Lι(G).

We can realize annxn "multiplication table matrix" (gj~ιgj) as an
operator

p=

Now

\

Also P* = P = P2/n, i.e., P/« is a projection operator in C*(G)®Mn.
We have the following proposition.

PROPOSITION 1. A "multiplication table projection" ofG, viz.,

w in fact a self-adjoint {positive), idempotent in C*(G)®Mn.

If / : G —• C is any complex-valued function on finite group G, then
/ is an element of A(G) where we can identify A(G) with either the
dual space of C*(G), C*{G)'9 or a certain subalgebra of 3f(C*(G)).
More importantly at this moment, however, we can identify / with
a certain n x n matrix via what we shall refer to as a local Cayley
representation. Thus we have the following

DEFINITION. Given G = {g\,gi>... ,gn} and / : G -• C, we define
a local Cayley representation of / to be that complex matrix, denoted
b y (fij) w h e r e fj = f(g~ιgj)t i,j =\,...,n.

REMARK. Note that we refer to "a" local Cayley representation since
the representation depends on the specific way in which the elements
of G are enumerated.

REMARK. If we consider / (by uniquely "extending") as a linear
functional on C*(G) we can obtain a local Cayley representation of/
as follows. Let P/n be the "multiplication table projection" of Propo-
sition 1. Now P G C*(G) <g> Mn, and we can apply the map f ®In to
P. The result will be the corresponding local Cayley representation of
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REMARK. Clearly / e P(G) if and only if any one of its local Cayley
representations is a positive definite matrix.

The local Cayley representation defines a map, called a local Cayley
map determined by G,

IG:A(G)-+(Mn,o,\\.ys)=A(Γn)

which is clearly an algebraic isomorphism (into), cf. Theorem 1 below.
We now define a global Cayley representation of C*(G). Let δgι be

that function on G which is 1 on gf and 0 elsewhere. Then Iciδg,) is
an n x n permutation matrix, and we leave it to the reader to verify
that we have just reconstructed the classical Cayley representation of G
into the n x n permutation matrices. We can extend this representation
uniquely to all of C*(G) and we call this unique extension, IG, a global
Cayley representation. Thus

IG:C*(G)->Mn

is a *-isomorphism (isometric) of C*(G) into Mn, the C*-algebra of
n x n matrices. Clearly the initial enumeration of the elements of G
can affect this map, hence we use again the indefinite article "a".

We digress briefly from the main thrust of this paper to give a char-
acterization of finite-group C*-algebras in terms of an "index" defined
on all finite dimensional C*-algebras.

DEFINITION 2. If A is a finite dimensional C*-algebra we define γ(A)
to be the order of a group of unitary elements of A with the following
two properties:

(i) This group of unitary elements of A span A, i.e., every element
of A is a linear combination of elements of this group, and

(ii) no group of unitary elements of A of strictly lesser order spans
A.

REMARKS. Every finite dimensional C*-algebra A has a unit; thus
it makes sense to speak of the unitary elements of A. We leave it
to the reader to show that γ(A) is well-defined. Though γ(A) is well-
defined there may be two non-isomorphic groups of unitary elements
of A which yield the index γ(A). A classical example is A = C 4 ® M2

which is spanned by the eight element quaterion group and the eight
element dihedral group. The letter γ was chosen to stand for "the
Gasemyr index" since this index was discovered by the author in a
conversation with Jorund Gasemyr.

Various properties of γ can be shown, but we only prove the fol-
lowing.
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PROPOSITION 2. A finite dimensional C*-algebra A is ̂ -isomorphic
to the group C*-algebra of a finite group if and only ifγ(A) = dim A
In this case A = C*(G) for any group G of unitary elements of A which
form a basis of A as a vector space.

Proof. Clearly γ(A) > dim^4, always. If A is the group C* -algebra of
a finite group G, then it is well known (and easy to see) that there is a
group of unitary elements of A isomorphic with G such that this group
is a basis of A as a vector space. Thus γ{A) = dim A. Conversely,
suppose γ(A) = dim^ί. Then there is a group of unitary elements, G,
in A which is a basis for A. Consider the universal enveloping C*-
algebra of Gy C*(G). By universality there is a *-homomorphism of
C*(G) onto A. But G is a basis of A and of C*(G), thus C*(G) = A.

The following result is some of our strongest evidence that the "com-
pletely bounded operator norm" on A(Γn) is the "correct" norm for
duality studies.

THEOREM 1. If G is a group of order n and A(G) is its Fourier al-
gebra, then the local Cay ley map IQ\ A{G) —• A(Γn) is an isometric
isomorphism strictly into for n > 1. The analogous map, A{G) —•
(Mn,o, || | | T r ) , is not isometric unless n = 1.

REMARK. Thus given the choice of equipping the dual of groupoid
Γn with the "dual space norm" || | | T r or the "completely bounded
operator norm" || | | ^ , we see that only the latter is compatible with
the norm on the Fourier algebra offor n > 1. finite group G of order
n. In this latter case then A(G) c A(Γn), where A(G) is isometrically
a subalgebra of A(Γn).

Proof of Theorem 1. Let a e A(G). By [3, §2.14 and Chapitre
3] there are ξ and η in L2(G) such that a = ζ * ή and ||<z|U(G) =

Note: ή(g) = η(g~ι) for g in G. Without loss of
generality suppose that \\a\\A{G) = 1 = \\ξ\\L2{G) = |M|z,2(G). N O W bY
means of a fixed local Cay ley representation we can identify a, ξ and
η with certain n x n matrices denoted (#//), (&/), (*///), respectively.
Let us look closely at these matrices. If we assume g\ = e is the group
identity, then the first row of (£y) is ζ(gj),j = 1,2,..., n, i.e. ξ. The
/th row is ξ{g~ιgj)j = 1,2,...,«, or λ(gi)ξ. Similarly for η. Now
referring to the notation of the corollary to Haagerup's theorem we
have 2n vectors, ξ\,...,ζn, η\>- >*ln ("two cross-sections of a Hubert
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bundle on the units of Γn") where ξt == λ(gj)ξ and r\j = Kgj)*!* Uj =
1,. . . ,Λ. Now 11̂ /11̂ 2(0 = 1 = I I ^ H L Z ^ for all /, j . Now we claim
that since a = ξ * */ on G, then for all i,j9 a\j = (£/|J?/)3 i.e., (αy) =
(ξiήiiij)*- Thus H(fly)IU(ΓΛ) < 1» by Haagerup's corollary. Let us
verify that (α/7) = (£/;•)(*///)* and α o = (ξi\ηj). Recall that

Λy = a(gfιgj) = € * flfUΓ1*)-) = Σ ί(*)*(*~V«/)

If we write Σ^eσί^Γ1^)^^/1^) a s Σ L i ^ Γ 1 ^ ) ^ 7 1 ^ ) w e s e e

that (ay) = (ξij)(ηij)\
Now let us observe that

\\(aij)\\A(rn) = sup{||(fly) o (Xij)\\Mn: | | ( ^ ) | | M n < 1}

where (x/7) is an arbitrary element with norm 1 or less in Mn viewed
as a C*-algebra. In addition

where (JC/7 ) is an arbitrary element of norm one or less in C*(G) viewed
as an (isometric) C*-subalgebra of Mn via the appropriate global Cay-
ley map. We clearly have then that ||(αy)|U(Γn) > ||<z|U((?) and hence
\\{aij)\\A{τn) = \\a\\Λ{Gy

Finally, if n > 1, then | | / | | τ r = n > 1 = ||/|U(r«) where / is the n x n
identity matrix. This shows that A(G) is not isometrically a subalgebra
of (AfΛ, o, || | | T r ) , and we are done.

REMARK. We are dealing with a fundamental difference between
the "dual space" and "completely bounded operator" points of view.
(Mn,o, | | . | |T r) is a Banach algebra, but it fails to be a Banach algebra
for n > 1 if the trace is normalized to 1 on /. When n is infinite,
renormalization is not even possible.

3. The infinite, discrete case. Using the completely bounded opera-
tor approach we now turn to defining the Fourier and Fourier-Stieltjes
algebras for Tn when n is countably infinite. Here, the dual space ap-
proach apparently breaks down totally when one attempts to define the
Fourier-Stieltjes algebra, JB(Γoo), where Γoo is the principal transitive
groupoid on, say, the natural numbers.

Now we can realize Γoo in much the same way as Tn for n finite,
viz., Γoo = {eij- 1 < i,j < oo}, the matrix units for the (countably)
infinite, complex matrices.
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Now the set of all uniformly bounded, complex functions on Γoo,
denoted /^(Γoo), is none other than the (countably) infinite com-
plex matrices with uniformly bounded entries, i.e., /^(Γoo) = {(*//):
sup/j \Xij\ < oo}. If N denotes the natural numbers, and /2(N), the
usual Hubert space of (absolutely) square summable complex se-
quences, then not every element in /°°(Γoo) represents a bounded op-
erator on /2(N).

For example, the matrix with every entry equal to 1 does not yield a
bounded operator on /2(N), but it is in /°°(Γoo). Also it is an example
of what we shall call a positive definite function on Γoo.

DEFINITION. A bounded function / : Γoo —• C is positive definite if
given any sequence of complex numbers λ\, A2, A3,... which is 0 except
for (at most) finitely many subscripts we have Σ/j=i f(eu)^j > 0.
The set of all (bounded) positive definite functions on Γoo will be
denoted

PROPOSITION 3. The positive definite functions, P(Γoo), form a semi-
group under pointwise multiplication.

Proof. This result, in other words, says that the Schur-Hadamard
product of two (countably) infinite positive definite matrices is positive
definite. This result follows from the finite case which is well known,
cf. [1, Lemma 3.2].

DEFINITION. The Fourier-Stieltjes algebra of Γoo, denoted 2?(Γoo),
as an algebra is the set of finite linear combinations of functions in

REMARK. The finite linear combinations of elements from a semi-
group always form an algebra by "abstract reasoning".

Let ^(/ 2(N)) be the C*-algebra of compact operators on Hubert
space /2(N). To simplify notation let g7 = ̂ (/ 2(N)) where convenient.

PROPOSITION 4. The set of all completely bounded maps ofψ into
itself i.e., &(&), contains /f (Γco) via the SchurΉadamard "action" of

) on

Proof. If p = (pij) is in P(Γoo), it defines a map of ^(/ 2(N)) into
itself by pointwise multiplication, i.e., Schur-Hadamard product. If
(Xij) e ^(/ 2(N)), then pox = (Pij) o (Xij) = ( A 7 X 0 ). In fact the
map x e i Ή p o x e f i s completely positive and has a completely
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bounded norm equal to sup, p, /. Since b G lϊ(Γoo) means b is a linear
combination of positive definite functions on ΓQO, X G ^ *-+ box G ^ is
a linear combination of completely positive operators, hence x ^ box
is a completely bounded map.

Thus -B(Γoo) identifies with a normed subalgebra of &(&). Now
if / G /^(Γoo) we can consider the pointwise or Schur-Hadamard
product, fox, for x € W. We can ask the question: For which
/ € /^(Γoo) i s j c G g Ή ^ / o x G ^ a (completely) bounded map? The
answer is:

THEOREM 2. The Fourier-Stieltjes algebra B(Γoo) consists exactly of
those f G /^(Γoo) ./or wΛ/cΛ ίAe map x e& *-+ foχe& is completely
bounded.

Proof. Returning back to Haagerup's theorem in the first section,
let Ω = N and identify ΓQO with N x N via the correspondence e^ <=>
(i,j) for all i,j G N. Let μ be the counting measure on N. Then
H = L2(Ω, μ) = /2(N), L°°(Ω xQ,/ίx/ί) = /^(Γoo).

Now if / G /^(Γoo) the map x G ̂  ^ /ox G ^ has norm one or less
if and only if the double transpose of this map, i.e., x G ^(/2(N)) •-•
f ox e ^(/ 2(N)), (is cr-weakly continuous and) has norm one or less.
This latter condition is condition (2) of Haagerup's theorem.

Now we can without loss of generality assume / = /*, where
f*(eij) = f(eji), by the following. We have

and

< 1 and
/ - / *

2/
< 1.

So if / = /• and / e /^(Γoo) is such that xeW^fox
(completely) bounded norm of one or less, then Haagerup's theorem
tells us that there is a separable Hilbert space %? and two sequences
of vectors in <£*, viz., ξχ,ξ2,... and η\,ηi, , such that sup, ||&|| <
1, supy Hf/yll < 1 and f(eu) = (f/lty) for all i and .

Let p and ^ be elements in i>(Γoo) defined by />(£//) = (ί/|^
= (>/,i^) for all / and j . The matrix

P f
f Q
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is positive definite in the appropriate sense, and it follows that

(p + q)/2±feP(Γ0o).Thns

2/« (£+! + /)-(£+!-/).

and hence / is a linear combination of elements from P(Γoo). Thus

COROLLARY. The Fourier-Stieltjes algebra, B(Γoo), is a Banach al-
gebra, viz., B(Too) is a closed subalgebra of

REMARK. We here give BiΓoo) the normed algebra structure it in-
herits "naturally" as an algebra of completely bounded operators.

Proof. 3r(ff) is a Banach algebra, cf. [13, Proposition 1]. Consider
2?(Γoo) c 3f(W) as in Proposition 4. Let {bn} c B(Too) be a sequence
and let \\bn - b\\&(&) —• 0, b e &(&). Let e^, for fixed / and j , be
simultaneously considered as an element of ΓQO and of W. Now

y = \\(bn - b){eφ\W < \\bn -

Thus b(βij) = Urrin^oo bn(βjj)eij = X^βy for a suitable λ/y G C. Thus
the operator b e 3ί{W) is none other than Schur-Hadamard multipli-
cation by the matrix (Ay) e /^(Γoo). Thus by Theorem 2, b e 5(Γoo).
Thus ^(ΓQO) is complete, i.e., it is a Banach algebra.

In analogy with the group case we can define 4̂(Γoo) to be the closure
in 2?(Γoo) of the functions with finite support.

Now let G be a countably infinite discrete group, and enumerate the
elements of G as g\, g2, gi, As in the case of a finite group in §2, we
can construct corresponding Cayley representations for G and B(G).
We can show that ^(ΓQO) not only contains (many copies of) B(G) but
all the "completely bounded multipliers" of A(G) as well (inclusions
are perhaps not isometric). We have already seen that for finite n
A(Γn) contains (usually several copies of) the Fourier algebra of any
group of order n. Clearly A(Γm) contains A(Γn) for n < m. It follows
that in a sense we shall not make precise that B(Γoo) "contains" the
dual algebras of all countable (both finite and infinite) groups. This is
the beginning of a much larger story, however. We hope to return and
tell more of this story in subsequent papers. The main point of this pa-
per has been to show that without adopting the "completely bounded
operator" approach an interesting investigation into noncommutative
harmonic analysis cannot take place.
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