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RELATIVE DIMENSION, TOWERS OF PROJECTIONS
AND COMMUTING SQUARES OF SUBFACTORS
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Dedicated to the memory of Henry Dye

We study the set of projections of the type II, factor A which
expected on the subfactor N C M are scalar multiples of the identity.
The set of all these scalars, denoted A(M, N), is an invariant for the
inclusion N C M. We compute A(M, N) when [M : N] < 4, when N
is locally trivial and some parts of A(M, N) when [M : N] > 4. We
prove that projections expected on the same scalar in N are conjugate
by a unitary element in N. We apply all these to the commuting
square problem.

Introduction. In a type II; factor a projection may have any di-
mension between 0 and 1. This corresponds to the fact that Hilbert
modules H over a type II; factor M may have any positive number
as (relative) dimension dim,, H [9].

There has been more and more evidence in the past ten years or so
that it is much more useful to regard a type II; factor M together with
its subalgebras N and more generally to consider pairs of arbitrary
algebras M, N. The corresponding appropriate notion of module is then
the one introduced by Connes in [2], the N — M Hilbert bimodules
(or correspondences).

If N C M is a subfactor of the type II; factor M then V. Jones had
the idea to consider the number

as an invariant up the conjugacy by automorphisms of M for the
subfactor N (this number is independent of H by [9]). Jones called
this number the index of N in M denoting it [M : N]. One of his
remarkable results in [6] is that [M : N] can only take the values
{4cos?n/(n+2)|n > 0} U[4, co].

The number [M : N] can also be interpreted in a more intrinsic way:
it is the dimension of the smallest nonzero projection in M which
expected on N is a scalar multiple of the identity (by [6] and [12]).
This is somehow related to the fact that [M : N] can be viewed as

the minimal possible dimension dims y H & dim um Hdimy H ([14))
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of an N — M Hilbert bimodule which is the restriction of an M — M
bimodule.

The conditional expectation Ey(e) of a projection e € M on the
subfactor N may be regarded as the dimension of the projection e
relative to the subfactor N. The interesting case is when Ex(e) is a
scalar multiple of the identity. In this paper we begin the study of
the geometry of such projections. The set A(M, N) of nonzero scalars
appearing this way is of course an invariant for N C M. This invariant
is in fact closely related to the index [M : N]. Our results here deal
with the description of A(M, N) and with the conjugacy problem by
unitary elements in N of the projections which have the same (scalar)
relative dimension over N.

To state our main result denote by P,(x) the Jones’ polynomials de-
fined recursivelyby P_; = 1, Py =1, Py 1(x) = Py(x)—xP,_1(x), n >
0. By [6] these polynomials have the property that

P((4cos’*n/(n+2)"H) >0, 0<k<n-1,

and P,((4cos?n/(n +2))~1) = 0. Moreover Pi(¢) > 0 for all k > 0
and ¢ < 1/4.

THEOREM. Let N C M be a subfactor of finite index.
(i) If[M : N] = 4cos’n/(n+2) for some n > 1 then A(M,N) =
{0} U{P_1(IM : NI"Y)/[M : N1P(IM : NI )|0< k <n—1}
(i) If[M : N)>4 andt < 1/2 is so that t(1 —t) = [M : N]~! then

AM,N)N(0,8) = {P_(IM : NI")/[M : N1P([M : NT)lk > 0}.

Moreover, if [M : N] < 4 (respectively [M : N] > 4) and f1, f, are
projections in M with Ex(f1) = En(f2) = al, where a € A(M,N)
(respectively o € A(M, N) N (0, t)) then there exists a unitary element
u € N such that ufiu* = f>.

The proof of this theorem has two parts: existence of values in
A(M, N) and restrictions on the values in A(M, N). To prove the re-
striction part we need to introduce a generalization of Jones’ tower
of projections. This leads us to consider a new class of algebras, gen-
eralizing the classical Hecke algebras. We compute some necessary
conditions under which these algebras have symmetric nondegenerate
representations. These conditions impose restrictions on the existence
of generalized towers of projections, in particular on the values in
A(M,N).
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In the case [M : N] > 4 the information given by the above theorem
is incomplete, yet for a special class of subfactors we have a complete
characterization of A(M, N). Namely Jones pointed out in [6] that
if for some projection f € M, 0 < t = 7(f) < 1/2, there is an
isomorphism 0 : fMf — (1 — f)M(1 — f) and if one denotes N =
{x®0(x)| x € fMf}, then [M : N] =t ' +(1 —-1t)"1 > 4 We
call such a subfactor a locally trivial subfactor of /. Then we prove,
independently of the preceding theorem, that if N is a locally trivial
subfactor of M and o € A(M, N) with a < 1/2 then a < ¢ and the
projection f € N’ N M is the unique one for which Ex(f) = t1y,.
Together with the above theorem this completes the computation of
A(M, N) in this case.

A major interest in understanding the set A(M, N) comes from the
orthogonalization problem for subalgebras of M or, in Jones’ termi-
nology, the problem of commuting squares of subalgebras, which is
as follows: Let N C M be a pair of finite von Neumann algebras.
The orthogonalization problem is to find subalgebras Ny ¢ M for
which EyEy, = Ey,Ex. If this relation holds true then we say that
Ny =NynNN, Ny, N, M form a commuting square of algebras. This
relation between two subalgebras Ny, N C M has been first considered
in [15]. It is important in connection with index problems for sub-
factors, a fact that has been extensively emphasized in [12]. It turns
out that if Ny, Ny, N are as before then A(M, N) O A(Ny, Ny). Thus,
obstructions on A(M, N) give obstructions on Ny. As an illustration
of this observation we obtain by the preceding theorems a complete
solution to the orthogonalization problem for locally trivial subfactors.

1. The set A(M, N) and the orthogonalization problem. Let M be
a finite von Neumann algebra with a normal, finite, faithful trace
7,7(1) = 1. Denote by ||x||> = 1(x*x)1/2, x € M, and by L?(M, 1) the
completion of M in this norm.

Let N C M be a von Neumann subalgebra of M always assumed to
have the same identity as M. Then the closure of N in L?(M, 1) can
be identified with L2(N, 7 | N). Let ey be the orthogonal projection
of L2(M, 1) onto L2(N, 15y) C L*(M, 1). Let Ey be the restriction of
en to M (when regarded as a vector subspace of L2(M, t)). Then Ey
takes values in N C L2(N, 1) € L?>(M, t) and in fact Ey is the unique
T-preserving conditional expectation of M onto N.

1.1. DEefFINITION. We denote A(M, N) = {a € R | there exists a
projection fy € M such that Eyx(fy) = aly}, the set of all possible
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dimensions of projections which expected on N are scalar multiples
of the identity.

1.2. ExampLE. If N = C1 then A(M, N) is just the range of the
trace 7 on the set of projections #(M) of M. In particular if M is a
type II; factor and N = C then A(M, N) = [0, 1].

Since a finite factor has a unique trace and any of its automorphisms
preserve the trace, we have:

1.3. ProrosITION. If M is a finite factor and N C M is a von Neu-
mann subalgebra then A(M, N) is an invariant for N up to conjugacy
by automorphisms of M.

The first invariant to consider for a subfactor N C M is the relative
commutant N’ N M. This invariant is in fact related to A(M, N):

1.4. ProPOSITION. If N C M are factors then
A(M,N) 2 ©(®(N' n M)).

Proof. If e € #(N' N M) then for any y € N we have
VEN(e) = En(ye) = En(ey) = En(e)y
so that Ex(e) € NN N =C. Thus Ey(e) = al = 1(e)l. O

Jones’ index [M : N] of the subfactor N C M is also related to
A(M, N). Indeed, with the convention co~! = 0, we have by [12]:

1.5. PROPOSITION. [M : N]~! =inf(A(M, N) \ {0}).

The computation of A(M, N) is closely related to an important
problem about subalgebras of M. Namely, we consider subalgebras
N, Ny C M for which the conditional expectations Ey, Ey, commute.

1.6. DEFINITION. Let Ny, Np, N C M be von Neumann
subalgebras, where Ny = Ny N N. If Exy Ey = EyEy, we say that
Ni, Ny, N, M form a commuting square of algebras.

This relation between two algebras Ny, N was introduced in [15],
then in [12] it was shown to be related to index problems for subfac-
tors. More precisely it is shown there that to construct subfactors N
of the hyperfinite factor R, with trivial relative commutant and given
finite index, it is sufficient to find certain commuting squares of finite
dimensional algebras. Moreover it is shown in [13] that to find ob-
structions for the values [R : N] it is sufficient to show that there are
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finite dimensional subalgebras B, C R such that EyEp, = Ep Ey and
B, 1 M. Other comments on commuting squares can be found in [5].

Commuting squares of algebras and the invariant A are related by
the following:

1.7. ProposiTiON. If M, N, Ny, N, is a commuting square of
algebras as in 1.6 then A(Ny, Ny) C A(M, N). If in addition all these
algebras are factors then [M : N] > [Ny : N{].

Proof. Lete € #(Ny), En,(e) = al. Then al = Ey,(e) = EyEy,(e)
= En(e). Thus o € A(M : N). The second part follows now by 1.5. O

If N C M are given, then the problem to find Ny C M so that
EyNEy = ENEn, (= Eynn) Will be called the orthogonalization (or
commuting square) problem. The preceding proposition shows on the
one hand that if N ¢ M are given and we can find a commuting
square Ny, Ny, N, M for which we can compute A(Ny, N;) then we
get information about A(M, N). On the other hand it shows that if
A(M, N) is known then we get restrictions on the existence of Nj.

In the case N C M are Type II; factors with finite index [AM : N],
there are some canonical subalgebras of A/ which form commuting
squares with N. Namely Jones proved in [6] that the algebra M, gen-
erated by M and e, = ey in #(L2%(M, 1)) is a Type II, factor with
the property M C M;, [M, : M] = [M : N]. Iterating this construc-
tion, called the basic construction, one gets recursively an increasing
sequence of factors M_; = NCc M = My C M; C M, C --- with pro-
jections e, € M, so that [M,, : M,,_;] =[M : N}, exxe, = Ey,_,(X)eén,
X € M,_,Ey_(en) = [My : My,_117', n > 1 ([6]). The sequence
{My}n>1 1s called the Jones’ tower of factors and {e,},>; the Jones’
tower of projections associated with N Cc M.

Moreover it is shown in [6] that there exists a subfactor M_, C
M_;, = N Cc M = M, and a projection e in M so that M arises
as the basic construction for M_, C M_; with e satisfying exe =
Ej) ,(x)e, x € M. Furthermore, the subalgebra M_, C M_; and the
projection ¢ € M are unique up to conjugacy by a unitary element in
M_, = N by [12]. Iterating this construction, called the downward
basic construction, we get a decreasing sequence of factors --- M_3 C
M_,c M_ =N C My =M and projections ---e_3 € M_3, e_, €
M_,, e, e M_;, eg=e € M = M, such that

[M_j1:M_;]=[M:N], En,_(e_)=[M_1:M_]",
e_xxe_; =Ep , (X)e_y, xXeM_,_;, k>0.
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The sequence {M_; };>o is usually called the tunnel of factors and
{e_x} the tunnel of projections associated with N C M.
Let B, = Alg{l,ep,e_1,... ,e_},B7} = Alg{l,e_j,e_,,...e_;},

k>1,and Ry =UB%, R_y =B} By [12] B®,, BZ; are unique
up to conjugacy by a unitary element in N = M_;. However the
inclusion of Ry C M is not unique! Yet by Jones’ results the inclusion
R_; C Ry only depends on the index [M : N] and it is called Jones
pair of factors corresponding to the index [M : N]. The next result is
implicit in [6] and appears explicitly in [12].

1.8. PROPOSITION. ENEng = EngEN = FE - and Egr Ey =
ENEg,=Eg_,.

2. Generalized Hecke algebras and restrictions on A(M, N). The
considerations in this section are motivated by the following observa-
tion.

2.1. PrROPOSITION. Let N C M be a pair of finite factors with finite
index and A = [M : N17\. Let {M} },>, be the associated tower of fac-
tors with corresponding tower of projections {ey}x>. Let a € A(M, N)
and ey € M be a projection with Ey(eg) = al. Then ey, ey, ey, ... satisfy

the axioms:
a ifk=0,

1) €€ =

() k+1 kek+l { ﬂ. lf'k> O
(ll) eej=e;e;, lf Il—]l > 2.
Proof. Trivial by the definition.

2.2. DEerFINITION. A sequence of self-adjoint projections {ex}x>0
acting on a Hilbert space H is called a tower of projections if there are
some scalars {4, };>o such that

(i) The spectrum of e exex,; on ex . H is contained in {4, 1}.

(ll) ee; =eje; if |l —]l > 2.

(iii) A trace 7 on the algebra generated by {ey}r>o is called a
Markov trace of the tower if 7(w,w,) = 7(w;)r(w,) for any words
w; in €y, ey,... ,e, and wy In €5, €441, ... ,€,, Where m > n.

2.3. LEMMA. The relation (i) in 2.2 is equivalent to each of the
Jollowing:

(') exr1ekers1 = ex Nepy1 + Ag(€ryr — €k Aegyy).
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(") (Akrs1—€rs1€keiks1)? = (Ag—1)(Ak€rs1 —€xs1€xer1), in other
words Aie 1 — ey 1€xexy1 IS a scalar multiple of a projection.

Proof. Trivial by the definition.

As one can easily see the relations (i), (i1) in 2.2 generalize the
ones satisfied by the projections obtained from the generators in the
semisimple representations of Hecke algebras [7]. This suggests that
one should consider suitable more general algebras and study condi-
tions under which they have symmetric representations or equivalently
conditions under which there exist corresponding towers of projections
on Hilbert space. This leads us to introduce

2.4. DEFINITION. Let g1,...,9» € C. We denote by
H,.(q1,9>,...,qn) the complex algebra with identity and generators
g1, &, ..., &n satisfying the relations

(1) gt = (%~ Vgx + @, n >k > 1.
(2) (8+18k8k+1 + 8kr18k + ka1 + Gkt + &k + 1)
= (14 @4 1) (1 + Gk + Gk Qi 1)(8k+18k Bk 41 + 8k+18k + 8k 8k+1+
8k+1+ & + 1)
(3) gigj=g;& ifli—jl 22
We call this algebra the generalized Hecke algebra with generators
(&1,.-.,8n) and scalars (qy, ... ,g,) (the order is of course important
as this algebra is not symmetric in gy, ..., g,!).

2.5. PROPOSITION. Suppose q, # —1, n > k > 1 and let 4}, =
Gk+1/(1+ @ )(1 + gxyy) and e, = 1 + g /1 + qi. Then we have

(a) e = e,'f and the relation 2.4, (2) is equivalent to

(2,) (ellc+lel'ce;c+1 - lke;c+1)2 =(1- lk)(e;(+1€,’<€;<+l _}'kellc+1)
(b) Consider the relation

(2") 8k+18k8k+1 = 8k8k+18» n—12k2>1

Then (2") implies the relation (2) and if H)_ ,(41,92,-.-,4n) Iis the
algebra defined by the generators gi,... , g, satisfying (1), (2"), (3)
then it follows that q; = q = --- = qn. Moreover if q denotes this
common scalar then H) ,(q,...,q) coincides with the classical Hecke
algebra with n generators H,1(q).

Proof. The first part follows by direct computation. The second
part by the identity g2gy,i8k = 8k8k+18k8k+1 = &k+18k&F > Which



188 SORIN POPA

follows by (2”). Indeed, this equality yields together with (1) and
(2") : Gk 8k+18k = Gk+18k+18k> thUS G = gy O

This proposition shows that whenever H,,,(q;,...,q,) is repre-
sented on a Hilbert space, the elements 1 + g, /1 + g, become pro-
jections. We call a representation on a Hilbert space symmetric if
1 + gx/1 + gx go into selfadjoint projections. 2.5 above shows that
if ¢, is the image of 1 + g;/1 + g, under a symmetric representa-
tion then e, is a tower of projections as in 2.2 with scalars 4, =
Qr+1/(1 + qi)(1 + gr41)- Thus to find conditions for which such rep-
resentations exist is equivalent to finding conditions for which gener-
alized towers of projections exist. To do this we need a notation:

2.6. DEFINITION. To any numbers {4, },>o We associate recursively
the numbers P_; =1, Ph=1, Pi(d) =1 — 4o,
Prey1(Ao,Ar, oo s A) = Pr(do, .- s A1)
— Ak P10y - v, A—2), k> 1
Note that if A = A; =--- =4, = 4 then P,(4g,...,4,_;) coincides

with the Jones’ polynomial P, (4).
The next result is a generalization of Wenzl’s formula in [18]:

2.7. THEOREM. Let {e;};>0 be a tower of projections with cor-
responding scalars {Ay}x>o0 and let sy = 1 —eyV ---V e,k > 0. If
P, =P (Ao,... ,Ak—1) #0 for all k < n then

1° s =Sk — f’}‘f‘-sk_leksk_l, forall 0<k<n.

2°. (Spep+18n)* = E;s:isne,,ﬂsn.

Proof. We prove this formula by induction over k. Suppose it is
true up to some k < n. Since e, ; commutes with ey, e;,... ,e,_;, by
induction and 2.3 we get:

)
€k+15kC€k+1 = €k+15k—1 — Tsk—lek+lekek+lsk—l

_ P
= €1Sk—1 = ~p— Sk—1€k N €t 15k-1
k
Py
— Ak P, k- (€ks1 — €k N €ry1)Sk—1-
Now since s;85;_; = S, and sge, =0, si(ex A exy1) = 0 and we get
2
(Sk€r+15k)” = Sk(€xs15k—1 — (Pr—1/Prc)Sk—1€k N €xs15k—1

— A Pre—1/ PicSic—1(€k+1 — €k A €ky1)Sk—1)Sk
= (1 = A Pr_1/ Pi)skex+15k = (Pry1/ Pi)Skex+15k-
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Thus (Py/Py,1)Sker+15k 1S a projection, which implies that

Skr1 = Sk — (Pic/ Pics1)Sk€h+15k

is a projection under s; as well. Moreover e, s;_ €1 = 0 so that

Sir1€k+1 = 0 so that s < 5. But clearly Sk+lS],(+1l= Sk+1 DY
. . ’ — _
definitions, so that s, < s;, as well. Thus 5,y = 5, = 8 —
Pre/ Pri1Skeics15k- O

This result immediately implies certain restrictions on the possible
values of the scalars {4, }>o for which such a tower exists.

2.8. COROLLARY. Let {A}k>0 correspond to a tower of projections
{ex}kso-

(i) If P = Pi(Ag,... ,Ak—1) > 0, k < n, and sye,.; # O then
P,y =Po1(Ags-.. 4n) > 0. If Py = O then sye, = 0, or equiva-
lently, $,,1 = Su-

(ii) If there is a Markov trace t on the tower of projections {ej }r>o
and if P, #0, k <n, then

T($n) = T(Sn—1)Pnr1(A0, -+ , An—1, T(€n))/Pn.
In particular 1(s,_,) # 0 and P, > 0 imply
Ppi1(A0, A1, .- v An—1, T(€n)) 2 0.
Moreover if 1(ey) = Ay, k < n, then 1(sy) = Ppyy.
Proof. 1f sye, .1 # O then by 2.7, 2° we get P, /P, > 0 so that
P, > 0 implies P,.; > 0. If P,,; = O but P, > 0, k < n, then

(Sn€n+15n)? = 0 so that s,e,,; = 0. If 7 is a Markov trace on {e; }x>o
and P, #0, k < n, then

P,
©(sn) = T(sn-1) = —p—T(Sn—1€nSn—1)
n

Pn—l

Py

= 1(Sp_1) — T(Sp—1€n)

= (sn-1) — e, 7(en)

= Xo(p, — w(en)Pin)

= T(Sp-1)Pus1(A0, -+ An—1, T(€n))/Pn. O

Let us now prove some properties of the Jones’ polynomials P,(A).
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2.9. LEMMA.

10, Pa(A)? = Pocy (A)Pus1(R) = A(Pyei (1) = Paca(APa(A)); m > 1.

2°. Py(A)? = Py (A)Prss (A) = 741, 2 0.

3. If0<A<1/4and 0 <t < 1/2 is so that t(1 —t) = A then
P,(A) > O for every n > 1 and the sequence

{/ka—l(}“) }
Pr(2) ) k>0
is increasing with initial term A = AP_, /Py and limit point t.
4°,
Py((4cos’m/(n+2))"") =0,
Pu(e) >0 fore< (4cos’n/(n+2))"" and
Pu(e) <0 for (4cos’m/(n+2))"! <e< (4cos’n/(n+1))~L.

Moreover if A = (4cos? t/(n + 2))~! then the finite sequence

G

increases from A to 1 and the finite sequence

ool

decreases from 1 to 0.

Proof. We have

Pn(;L)2 - Pn—l('l)PrH-l('l)
= Pu(A)(Pu-1(A) — APy _2(4)) = Pu—1(A)(Pn(4) — APy—1(4))
= A(Py-1(4)? = Pa_2(2)Pa(2)).

This proves 1°, then 2° follows applying 1° recursively » times until
we get

Py(2)? = Pui(A)Pyiy(A) = A(P§ — P Py(2)) = A"+,
The first parts of 3° and 4° are proved in [6], 4.2.5. Since
Pn(/l) Pn—l()“) /I’HI

Pii(A)  Pu(A)  Pup1(A)Pu(R)
the rest of the statement follows by 2°. O
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2.10. LEMMA. IfAg = a, Ay =Ay=---= A, =4, then
Peii(Aos - s Ag) = Pi(A) — aP_ 1 (4),

where P, (A) denotes the Jones’ polynomials, 0 < k < n.

Proof. Since P (a,4) = P (4)—aP;_,(4) is a linear combination of
Jones’ polynomials it follows that P/, 1 < k < n, satisfy the recursive
relation P; | = P/ —AP,_,. Moreover, since P{ = 1—-a = Pi(d), P, =
1 — a— 4= Py(4p, ) the statement follows by induction. O

2.11. THEOREM. Let {e; }x>o be a tower of projections with scalars
{Ak}k>0 and with a Markov trace t. Suppose iy = t(€) = a, Ay =
t(ex) = A fork > 1. Then A € [0,1/4] U {(4cos’nt/(n +2))"|n > 1}
and a satisfies the condition:

(a) If A = (4cos? t/(n+2))"! for somen > 1 then a = Pi(A)/Pr_(A)
for some 0 <k < n.

(b)IfA<1/4andif0<t<1/2issothatt(l—t)=Athena >1-t
implies o = P(A)/Py_(A) for some k > 0.

Proof. If A > 1/4 then there exists n > 1 so that
(4cos’m/(n+3))"' <A< (4cosm/(n+2))"".

If we assume A # (4cos?n/(n + 2))~! then it follows that P,(4) > 0.
Considering the tower of projections {e,},>; with scalars A = 4; =
Ay = --- , it follows by 2.8 that P, (1) > 0. On the other hand, since
A > (4cos?m/(n+ 3))~! it follows that P,,;(A) < 0, a contradiction.
Both in case (a) and in case (b) (when a > 1 —t) it follows that
for some k > 0 we have Py (A)/P(A) < a < P(A)/Pr_1(4). If
a # P (A)/Pr_1(4) then P (o, 4,... ,A) = P () —aPr_1(A) > 0 so
that by 2.8 we get P ,(a,4,...,4) > 0, thus P (A) — aPr(4) >0,
which means that a < P, (4)/P(4), a contradiction. O

We end this section by reformulating some of the previous results
in terms of representations of generalized Hecke algebras. More on
these algebras, including computation of indices for associated pairs
of subfactors, when a Markov trace is around and in the most simple
situations (e.g. under the condition 2.1 (i), (ii)), will be discussed in
a forthcoming paper.

2.13. ProrposiTION. 1°. If H,. 1(q1,...,qn) admits a symmetric
representation then Ay = qi.1/(1 + ai)(1 + gx1) satisfy the conditions
0 < Ax < 1. Moreover if the representation admits a Markov trace t
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then t(e,) < P(Ar, ..., Ak)/ Pe_y(Ar, ... ,Ak—y) for all k > 1 for which
P, >0, when 0<i<k.

2°. If Hx(q0,41,-..) admits a symmetric representation m with a
Markov trace T and if q, = q for all k > 1 then the scalars a =
q/(1 +qo)(1+q), 2= q/(1 + q)? satisfy the conditions

(a) A€[0,1/4)u {4cos’n/(n+2)|n>1}

(b) if A =4cos?n/(n+2) then a = P(A)/Pc_,(4) for some 0 < k <
n.
(c)ifA<1/4andift <1/2issuchthatt(l —t)=2Athena>1-t
implies a = Py (1)/Pi_1(A) for some k > 0.

Proof. Follows by 2.4, 2.5, 2.11. O

3. Restrictions on A(M, N) for locally trivial subfactors. For a
special class of subfactors we obtain further restrictions on A(M, N).

3.1. DErFINITION. Let M be a type II; factor, f € M a projection
of M with 0 < 7(f) < 1/2. Suppose there exists an isomorphism
0:fMf - (1-—f)M(1-f). Denote N ={x®0(x)|xe€ fMf}. N
is then called a locally trivial subfactor of M.

3.2. THEOREM. Suppose N C M is a locally trivial subfactor of M
likein3.1. Ifa € A(M,N), a <1/2, then o < t(f). Moreover if f is
a projection with Ex(fy) = 1(f)1 then fo = f.

Proof. Let us first observe that if y € fMf then Ex(y) = t(y®0(y))
andif y € (1 — /)M (1 — f) then Ex(y) = (1 — £)(6~(y) @ y), where
t = 7(f). Suppose fy € M is so that Ex(fy) = al with a = 7(fy) >
t=1(f). Then fi = foA(1 - f)#0and f; <1-— f sothat 7(fy)l =
En(fo) 2 En(fi) = (1=)(67'(f1)® f1) which implies 7(fp) > 1-¢ >
1/2 > 1(fy). This shows that we must have 7(fy) = 7(f) = ¢

To prove that we necessarily have f; = f we need first some con-
siderations.

Let f'=f — foAf, f" =support ((1 - f)fo(1 = f)). Then

(") = (s((1 = N1 = 1)) = (s((1 = N fo = oA S)(1 = 1))
=1(s((fo—So AN =)o - SoAS))
=1(fo) = t(foAS) = () = t(fo A S) = =(f").
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We now show that 8(fy A f) = 1— f — f". Indeed by the formula
of Ex(y) we get:

tl1 = Ex(fo) = Ex(ffof + (1 = ) fo(1 = f))
>En(fonf+(1=1)fo(1-1))
2t0(foNf)+ (=)= f)fo(1 = f).

Thus 0(fy A f) is orthogonal to s((1 — f)fo(1 — f)) = f”, so that
0(foAf)<1-—f— f". To show the other inequality observe that:

En(fo) = t(ffof ® 6(ffof))
+(1 =071 =N -e - 1)fe(l-f)
and since 1 — f — f” is orthogonal to (1 — f) fo(1 — f) we get

(1= f = ") =Ex(fo)(1 = f = ") =t0(ffo ) (A - f = /).

Thus 8(ffof)(1—f—f") = 1—f—f" which implies that 1 — f — " is
under the spectral projection of 8(ffyf) corresponding to [1, c0). But
this spectral projection is equal to ( foAf). Thus O(foAf) > 1—f—f".

We now show that fy A f = f. This will end the proof because
together with 7(fy) = 7(f) it implies fo = f

To do this note that

-y =6t - ) = o)
=t(@(fon))=t1-f-f")=010-1)-(f")
=(1-18)—t(f").

Thus t — 7(f') =t — (¢/1 — t)7(f’) so that 7(f’) = 0 which means

that ©(f — foAf) =0, thus foAf =f a

As one can see, the proof of 3.2 is elementary and uses no results
of [6] or [12]. It will be used here to give a complete characterization
of A(M, N) and of the orthogonalization problem for locally trivial
subfactors N C M (see §6 below). We mention in this section only
a straightforward consequence of the above theorem. This result was
proved in [12] by using all the technical machinery developed there.
It is important in order to understand the representations of Jones’
tower of projections given in [12].

3.3. CoROLLARY. Let N C M be a locally trivial subfactor like
in 3.1 and {e_x}x>0 C M the tunnel of projections associated to this
pair of factors like in §1. Then the projection f (¢ N' N M) belongs
to the von Neumann algebra R, generated by {e_i}r>o. Moreover if
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R_y = {e_1}}, then R_if = fRof, R-i(1 = f) = (1= f)Ro(1 - f)
and R_; ={x®6(x)|x € fRof}

Proof. First we show that R’ ; N Ry # C. (This part of the proof
is taken from [12].) We have Eg (f) € R"; N Rg. Moreover by the
uniqueness of ey € M up to conjugacy by unitary elements in M we
have thatey = (1-t)p+tg+(t(1—1))/2(v4v*), where p < f, ¢ < 1—-f
are projections with

(p)=1(q) =t(1-t) (=[M:NI""),
def

g = 1-f—-0(p) and v*v = p,vv* = q. Indeed we clearly have
En(eg) = t(1 — t)1y so that by [12] ¢y (the first projection in the
tunnel) is of this form.

Let A = t(1 — t). We have fepf = (1 — t)p so that A(1 —¢) =
7(eof) = 1(Eg,(e0f)) = t(eoER,(f)) and if Eg (f) would be a scalar
multiple of the identity then t(egEg,(f)) = At, a contradiction. Thus
R,—l NRy #C.

Now since [Rg : R_i1] = t(ep)"! = A~1 = 1/t + 1/1 — ¢ it follows
that if f, € R, N Ry with 0 < 7(fp) < 1/2 then 7(fp) > 7(f). Indeed
because otherwise we would have by [6]:

[Ro:R_1]1 2 1/t(fo) + /(1 - fo)
> 1/t(f)+1/7(1 - f) =[Ro: R_1]

a contradiction.
Now since 7(fy) > 7(f) and since

En(fo) = ENER,(fo) = Er_,(fo) = ©(fo)1
it follows by 3.2 that fy = f. The rest of the statement is now
trivial. 0

3.4. COROLLARY. Let {e_;}i>0 be the Jones’ projections with scalar
A and let Ry = {e_i}}>o R-1={e_x}is- IfA<1/4then R_, isa
locally trivial subfactor of Ry.

4. Values in A(M, N) and unitary conjugacy. By Jones’ results in
[6], if N C M has finite index and A = [M : N]~! then A € A(M, N).
We show now how we can generate a whole sequence of values in
A(M, N) starting from A. In what follows we use the notation M# for
the f-amplification of M by B > 0 (for the definition see e.g. [12]).
As usual M| D M is the factor obtained by the basic construction for
NcM.
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4.1. PROPOSITION. 1°. Ifa € A(M,N) then 1 —a € A(M,N).
2°. Ifa € AAM,N), a # 0,1, then 1/a € AM{, M*) and
Ml —aeAM!™ M-

Proof. If fy € M is such that Ex(fy) = al then M* = fyMf, C
foMy fo = M{ and f; = a~! foe, fo € MP is a projection (e; € M, is
the projection with 7(e;) = A,e;xe; = Ex(x)e;,x € M). Indeed we
have (foe1f0)? = afperfo. It follows that the trace of f; in foM, fy
is A/a and Ej.(f1) = A/al. Taking 1 — « instead of a completes the
proof. O

4.2. COROLLARY. If P (x), k > —1, denote the Jones’ polynomials,
as usual, and if P,([M : N]7!) > 0 for 1 < k < n then P,_,([M :
N17Y)/[M : N1P(IM : N]7') e A(M,N) for 0 < k< n.

Proof. We prove this by induction. Suppose we proved that
Pe_(IM : NI"Y)/[M : NJP(IM : NI"'Y e AIM,N) for k<m.

Let a = P,_([M : NI"1)/[M : N1P,(IM : NI"!))and B = (1 —a)" L.
Let Nf ¢ M?# be the B amplification of N ¢ M and let N, ¢ N#
be a subfactor so that M# be the extension of Nf by N;. Let also
éy € M ¥ be the projection implementing the conditional expectation
of N? onto N,. Since [Nf : N|] = [MP# : Nf] = [M : N] it follows by
the induction hypothesis that o € A(N#, N7). Let f; € N? be so that
Ey (f1) = al. By 4.1 it follows that A/1 —a € A((MBYI=o, (NB)I-a),
But (M#)1-2 = M, (NB)!-« = N. Since

A1 =0 =Pu(IM : NI™Y)/[M : N1Pp i ([M : NT7Y),
the result follows. O

To solve the conjugacy problem for the values a = AP,_1(4)/P,(4)
we need to prove another formula for the projections f, € M for
which Ey(fp) = al.

4.3 LEMMA. Let A = [M : NI7',{My},>1,{€n}n>1 be the Jones’
tower of factors and respectively projections associated with N C M as
in §1. Let 0 < k be so that AP,_(1)/P;(1) > 0 for all i < k and let
a = AP,_1(A)/P(A). Let fy € M be a projection such that Ex(fy) = al
(cf 4.2). If wedenote p; = (1 —e))A---A(l—e;), po.i = foA(1—e)A
-+ A (1 — e;) then we have:

(i) fo=A"FPe_1(A)Enm(po)
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(it) pj e N'N M, j <k, pox € pxMypr and we have Ey,, (po i) =
[pxMypy : Npp] 'L

Proof. Since 1 — fy,eq,es,... satisfy the axioms of a generalized
tower of projections with scalars 1 — AP,_;(1)/Pi(4),4,4,... it fol-
lows by 2.7 that pg x = Po k-1 — (Pis1(4)/APr(4)) Po k—1€kPo k-1 Thus
Ey,_(Pox) = APry1(A)/P(A)po -1 and (i) follows now by induc-
tion. In particular this shows that Ey(pg ) is a scalar multiple of
the identity. Since clearly p, € N' N M, and p; > pg it follows
that En, (po) is also a scalar multiple of the identity and in fact

that Ey, (Pox) = En(pos)pit(pr)™" = t(Pox)T(pi)”'1. By 2.10 we
have 7(pox) = Pi(A) — (1 — a)P_1(4). Thus we get 7(pox)/T(pk) =
(Pr(A)? = P 1(A)Pr_1(4))/ P (A)?. On the other hand we have by 4.2.5
in [6] the formula [py My py : Np ] = [My : N]t(pr)t'(px). Since
Dy 1s generated by projections ¢;, 1 < i < k, and since 7’ coincides
with 7 on the algebra generated by such projections, it follows that
[P My D : Npi] = A%~ P, (4)2. Now (ii) follows by 2.9. a

4.4. CoROLLARY. Let fi, f, € M be projections with the property
that Ex(f1) = En(f2) = al. Suppose a = APi_(A)/Pc(A) for some
k > 0 for which P;(A) > 0, i < k. Then there exists a unitary element
w € N such that w fiw* = f>.

Proof. Let Dik = fin(l—e)AN --AN(l—-¢)€ M, i =12,
Di = (1—e))A---A(l—e;) € N'NM; as in 4.3. By the preceding lemma
we have Ey,, (p; 1) = [Px My px : M, ]7'1. By 1.6 in [12] it follows that
there exists a unitary element wy € Np; so that wop, yw; = p - But
then wy = wpy for a unitary element w in M. Thus wp, yw* = pyx
and applying the conditional expectation E), to both sides, we get by
4.3, (i) wfiw* = f>. O

We will now point out some other properties of the projections
whose dimension relative to NV are scalars of the form AP, _;(1)/Pi(4),
A=[M:NI"L

4.5. PROPOSITION. If fy € M is so that Ex(fy) = aly with a =
AP _1(A)/ P (R) for some k for which P;(A) >0, 1 <i <k, then there
exists a subfactor Ny C N of index [N : Ni] = A*"1P,(A)? so that
fo€ NI, nM.

Proof. Using the notations in the proof of 4.3 we have that Np, C
DMy pi has index A~%~1P () and pox = fo A pr has the property
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that Enp, (pox) = [Pk My pi : Npi]™! = 2%*1 /P, (2)%. Thus there exists
a subfactor N; C N so that p M, p; and p;,; come from the basic
construction for the inclusion N;p;, C Np,. It follows in particular
that if y; € Ny then yippox = PoxViPr. Since poy < pi and
[Pk, y1] = 0 it follows that [py, ¥1]1 = 0. Thus 0 = [Ep(Po k), 1] =

[Prs1(A)/ Pr(A) fo, y1]- a

4.6. REMARK 1°. We mention that the numbers AP, _;(4)/P(4)
coincide with the traces of the projections coming from the genera-
tors of the Hecke algebras when regarded in their symmetric semisim-
ple representations which have a Markov trace. More precisely let
H,, (q) be the Hecke algebra with n generators g;,..., g, and let
e, = 1+ gi/1+q. Suppose 7 is a representation of H,,;(g) on a
Hilbert space so that n(e;)* = n(e;) are self-adjoint projections. De-
note by A = ¢/(1 + q)%. It is shown in [7] that {e,};>; then satisfy 2.2
(1), (i) with 4; = 4, = --- = 4. Moreover [7], [17] it follows that A can
only take the values

Ae(0,1/4]U{(4cos’/(n+2))"' | n>1}.

If in addition there is a Markov trace t = 7, on {n(e;)};>; (i.e.,
7 satisfies 2.2 (iii)) then we must have one of the following: if 1 =
(4cos2n/(n +2))~', n > 1, then 1(¢;) = AP,_;(A)/Pi(4) for some
O<k<nandalli > 1;if A < 1/4 then t(e;) = AP_;(4)/P,(4) for
some kK >0and all i > 1.

2°. It seems then legitimate to ask: is there a “generalized basic
construction” which associates the projection fy € M, with Ex(fy) =
APy _1(A)/Pc(4), to the inclusion M C M in an as canonical as possible
way? Propositions 4.3 and 4.5 give a partially positive answer to this
question. More precisely, if we take the factors M_;_, C M_;_; C
- CN=M_,CMy=McC M, C--- C M, and denote p, =
(I—e))A---A(1—ey), p, = (1—e_g)A---A(l—e_;) then one can only see
that p; py My py pj comes from the basic construction for the inclusion
Pk D M_i_ 1D Dk C Di D) Np; Di. If € is the projection implementing
the conditional expectation of py p; Np; pj onto p; p; M_;_,p; p) then

we get
P (4)

for, = p* Ty Em@).

Thus, once the subfactors {M_,_>};>,>¢ of the tunnel are fixed,
fop;, is canonical.

3°. If N=R_, C Ry = M is the Jones’ pair of factors of in-
dex 47! then R_;p; C pi R pi has the same index as does the pair
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of hyperfinite factors P_; C P, associated to the representation 7,
and trace 7, of the infinite Hecke algebra (cf [17]). Also we have
(R_1px) N p R pr = C by an unpublished result of Skau. The ques-
tion then arises: does the inclusion R_;p;, C pi R p; coincide with
P_, c Py? Wenzl computed the towers of higher relative commutants
for R_ p; C prRp; and for his pair of factors in [17] and showed that
they don’t coincide. Thus R_; p;y C pxRpy is in fact not isomorphic
to the pair of factors P_; C Py in [17].

4.7. PROPOSITION. Let A € {(4cos’m/(n + 2))"!|n > 1} U[4,00)
and let R_, C Ry be Jones’ pair of factors of index A~!, as in [6].

Let Ry & R, & R, & ... be the associated tower of projections and
pr=0—-e)AN---AN(1—-e)€R_NRy as in 4.3. Then
[DkRipi : Roypi] = A7 Pe(2)?
If in addition A = (4cos? n/(n + 2))~! then
A~k=1P (2)? = (sin?(k + 2)m/(n + 2))/ sin? 7t/ (n + 2)
and (R_,p;)' N pi Ry px = C. Moreover, if we put q/(1 + q)* = A then
ATRTP(A) = (1 - ¢%)/q®=D/2(1 - ¢))%.

Proof. Trivial by 4.3, by the formula Py (1)2 — P, 1 (A)P,_; (A) = Ak+1
and by
P.((4cos’m/(n +2))71)
= (sin(k + 2)z/(n + 2))/2¥* cos** n/(n + 2) sinn/(n + 2)
(cf. [6]). The trivial relative commutant is a consequence of the above

mentioned unpublished result of Skau. The rest is simple computa-
tion. O

4.8. COROLLARY. If A = (4cos*n/(n + 2))~! then the inclusion
R_\pi C p Ry Dy has the same index and relative commutant as the
pair of factors A C B of 4.2 in [17] associated with appropriate sym-
metric representations of Hecke algebras.

5. Computation of A(M, N).

5.1. THEOREM. Suppose [M : N] = 4cos’n/(n + 2) for some n >
1. Then A(M,N) = {P,([M : NI"Y)/P._{(IM : N]"Y|n > k > 0}.
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Moreover if f|, € M are projections such that Ex(f1) = Ex(f2) = aly
then there exists a unitary element u in N such that ufiu* = f5.

Proof. By 4.2 we have that P.([M : N]"1)/P._;([M : NI'!) €
A(M, N) for each n > k > 0 and by 4.4 any two projections expected
on the same scalar on NV are conjugate by a unitary element in M. By
2.8 these values are the only ones that may appear in A(M, N). The
conjugacy follows by 4.4. O

5.2. THEOREM. Suppose [M : N]1> 4 and let 0 < t < 1/2 be so that
t(1—1t)=[M: N]"\. Then
A(M,N)NIO0, 1]
= {0, £} U{P_y(IM : NI"")/[M : N]P([M : NI ")k > 0}
and

AM,N)N[1 —¢, 1]
= {1 -t} U{P(IM : N1")/P_(IM : N )|k > 0}.
Moreover if a # t, 1 —t is in either of these sets and f| , are projections

in M with Ex(f1) = En(f2) = aly then there exists a unitary element
u € N so that ufiu* = f>.

Proof. The existence of values a = Py([M : NI1)/P._,([M : NI™1)
follows by 4.2 and the unitary conjugacy by 4.4. The other values are
of the form 1 —aora =1t 1—t¢. Thattis in A(M, N) follows by 1.7,
1.8, 3.4. The obstructions follow by 2.8. O

5.3. THEOREM. Let N C M be locally trivial subfactor as in 3.1.
Then
AM,N) = {0} U{P,_(IM : NT"")/[M : N]P(IM : N]"")|k > 0}
U{t,1 -1} U{P(IM : NI")/P_(IM : NI7)|k > 0}.
Moreover, given any a in A(M,N) and f,, € M projections with

En(f1) = En(f2) = aly there exists a unitary element u € N such
that uflu* = fz.

Proof. By 5.2 and 3.3 the statement follows. O

As one can see, the information about A(M, N) that we obtained
here depends entirely on the index [M : N]. In the case [M : N] > 4
this information is incomplete, in the sense that we don’t know what
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happens in the interval (¢, 1 —¢). As in the case of the index problems,
it seems that the case N' N M = C is of most interest. Yet there
are a number of other problems that should be clarified and that we
mention here:

5.4. Problems. 5.4.1. If p € N is a projection, is it true that
A(pMp, pNp) = A(M, N)?

5.4.2. Is A(M, N) equal to A(M,, M)? Is this true if N'N M = C?

5.4.3. Is it true that if NN M = C,[M : N] > 4 then A(M,N)Nn
(t,1—1t)# @? (Where t(1 —t) =[M : N]"L)

54.4. If [M : N] > 4 and f, fy € M are projections with Ey(f) =
En(fy) = tly does there exist u € N with ufu* = f,? Does there
always exist a tunnel of projections {e_; }x>o C M associated with the
inclusion N C M so that f € R” | N Ry?

5.45. If NN M = C and f] ; are projections in M with Eyx(f}) =
Exn(f2) = al for some a € A(M, N), does it follow that f;, f, are con-
jugate by a unitary element in N? (Of course in the cases uncovered
by 5.1, 5.2.)

5.4.6. Can A(M, N) be uncountable? Is it always closed? Can it
contain an interval?

In connection with 5.4.1 we should mention here one of Jones’ prob-
lems in [6]. He asked there whether M splits the hyperfinite II; factor
R, ie., M ~ M ® R, then there exists a hyperfinite II; subfactor R
in Nsothat N=RVR NN)and M = RV (R'nM). That N
splits R, if M does, was proved in [12]. In the case M itself is the
hyperfinite II; factor R it follows by Connes’ fundamental theorem
that N is also isomorphic to R. Then for a special but most inter-
esting class of subfactors N C R, called subfactors with finite depth,
Ocneanu announced in [11] results which in particular imply that the
inclusion N C R splits in this case the hyperfinite II; factor. In case
the inclusion N C M splits R the inclusions pNp C pMp is isomor-
phic to N C M for any projection p in N. There is of course a natural
invariant to consider for the inclusion N C M along these lines.

5.4.7. DeFINITION [14]. Let M be a type 11, factor, N C M atype II,
subfactor (not necessarily with finite index). Let (M, N) = {f > 0|
N# c MP# is isomorphic to N ¢ M}. We call this set the fundamental
group of the inclusion N C M (it is clearly a multiplicative subgroup
of R%).

It is easy to see that # (M, N) is invariant up to conjugacy of N by
automorphisms of M and ¥ (M, M) = (M) is just the fundamental
group of M. If N C M splits R then we have ¥ (M, N) = R%. In other
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situations however it seems very difficult to compute (as it is & (M)!).
We mention two more problems related to this definition:

5.4.8. Find a type II; subfactor N C R, of finite or infinite index,
so that # (R, N) #R%.

5.4.9. If M splits R and N C M is a locally trivial subfactor, does
it follow that N Cc M splits R?

To handle the values A(M, N)N (¢, 1 —¢) (in the case [M : N]~! =
t(1 —t) < 1/4) seems very difficult. We can however deduce from
5.1 that in case the inclusion N C M is isomorphic to the inclusions
PNp C pMp obtained by reducing it with certain projections of A,
then from one given value in A(M, N) we can get a whole sequence of
values in A(M, N), with ¢ (or 1 — ¢) as limit point.

5.5. ProrosITION. Let N C M be type 11, factors with 4 <
[M: N]< oo. Suppose a € A(M,N), t < a < 1/2 where t(1 —t) =
[M : NI7! = A Let {an}n>o be the sequence of elements defined recur-
sively by ag = o, ap ) = A/1 —ay,n > 0. If the inclusion N C M splits
R (i.e., there exists R C N with N =RV (R'NN), M =RV (R'NM))
then {azn}n>0 C A(M,N),{azs+1}n>0 C A(M;, M) and o, is a se-
quence decreasing to t. More generally if A/1—a—A is in the fundamen-
tal group F (M, N) of the inclusion N C M then {az,},>0 C A(M, N).

Proof. By 5.1 if @, € A(M,N) then a,.; € A(M] ™%, M=),
apyz € A(MY Tonmem) | pgll=ani=en)y "Byt by 1.5 in [12] we have
M} > M} isomorphic to M D N. The fact that o, is decreasing

to t follows by induction and by the relation lima,,; =
A/1-limay,. O

6. Application to the orthogonalization problem.

6.1. THEOREM. Let N be a subfactor of finite index of the type 11, fac-
tor M. Suppose Ny C Ny are subfactors of M which form a commuting
square with N,M, ie, EyEy, = EyEy = Ey. If
[M : N] = 4cos’n/(n+2) < 4, for some n > 1, then [Ny : N|] =
[M : NIP.(IM : NI™Y/P._{([M : NI7') for some 0 < k < n. If
[M:N]>4andt<1/2is such that [M : N]~! = t(1 —t) then either
[No: Nil = [M : N1P,(IM : NT-Y)/Po_,(IM : NI-") for some k > 0
or[Ng: Nj]<t~ L.

Proof. By 1.7 we have A(NyN;) C A(M,N). Since [Ny : Ni]"! €
A(Ny, Ny) the statement follows by 5.1 and 5.2. O
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There are of course other restrictions coming from the condition
A(Ng, N;) ¢ A(M,N) and from 5.1, 5.2, conditions that in fact
imply that in the case [M : N] is “small” one almost always have
[No : Ni] =[M : N]. We leave the detailed analysis of those situations
as an exercise to the reader. There is one case when the description
of commuting squares is complete:

6.2. THEOREM. Let M be a type 11, factor f € M a projection of
trace 0 < t < 1/2. Suppose there exists an isomorphism 0 : fMF —
(1= f)M(1 - f) and let N denote the corresponding locally trivial
subfactor of M, N = {x ® 0(x)|x € fMf}. If Ny is a subfactor of M
which forms a commuting square with N C M , i.e. EN Ex = Enxn,
and if Ny ¢ N then f € (NgNN)Y NNy, and NgNn N ={x @ 0(x)|x €
SNof }-

Proof. Let Ny = NgNn N. We have 1 < [Ny : N|] < [M : N]. If
[No: Ni] >4 and fy < 1/2 is such that #5(1 — £y) = [Ny : N;]~! then
by 5.2 there is a projection fy € Ny such that Ey,(fy) = 1. Since
[No: Ni17! > [M : N]7! it follows that z; > ¢. By 3.2 it follows that
fo=f to=tand [M : N] =[Ny : N;]. Thus f € Ny and since f € N’
we have f € N{ N Ny. Moreover [Ny : Ni]=1(f)"'+7(1 - f)~! and
Jones’ formula [6] imposes N, f = fNof, Ni(1-f) = (1=f)No(1=1).
Since N; C N we must then have Ny = {x® 0(x) | x € fNyf}.

Now if [Ng : Ni] < 4 then N{ N Ny = C by [6]. Thus if fo€ Ny is a
projection so that Ey, (fy) = [No : N1]7!1, then

En(fo) =[No: Nl "1

and since Ennn,(fo) = T(fo)1, Ennm(fo) will also be a scalar mul-
tiple of the identity. Since a = 7(fy) > 1/4 it follows by 5.1 that
a=P._([M:N]"1)/[M : N]P([M : NI7!) for some k > 0. It turns
out that for projections f; in M which expected on the locally trivial
subfactor N are scalars we must have Enq(fo) = af +b(1—f), with
a # b, so that En.np(fp) can never be a scalar. This contradiction
will end the proof of the theorem. The actual computation of a and
b is contained in the next:

6.3. LEMMA. Let N C M be a locally trivial subfactor like in 6.2
and A = [M : NI7' = t(1 = t). If fo € M is such that Ex(fy) =
aly where a = APi_(A)/ P (), for some k > 0, then Exnp(fo) =
arf + b (1 — f) with ay, by satisfying the recursive relations: a; =
(1= )2 (1 = b)) (Pe(A)/ Pisr (A))%, art + by (1 — 8) = AP (A)/ Pi(A).
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The sequence {ay }>¢ is increasing from (1 —1)* to 1 and the sequence
{bi}r>0 is decreasing from t* to 0. Moreover a; > by for all k > 0.

Proof of 6.3. Let first f; = ey be the projection in M with Ex(fp) =
[M : NI"'1y = t(1 —t)ly = Aly. By the first part of the proof
of 3.2 we have 1(egf) = (1 — t)t(eg). On the other hand we have
t(eof) = t(Ennm(eof)) = t(Ennm(e) f) = t((aof + bo(l — f))f) =
aot(f) = apt. Thus agt = t(1 — t)2 so that ay = (1 — )? and by =
(t(e0) — aot)/7(1 - f) = £~

Let further M_, ¢ N = M_; be a subfactor of N so that M
be the extension of M_; = N by M_, and so that [eo,M_z] = 0.
By [12] M_, is a locally trivial subfactor of M_; = N. Let f; €
M_, be a projection so that Ey, ,(f1) = /lPk_l(,l)/Pk(l). Then py =
Pr(A)/ Py (A)(1 = fi)eo(1 — f1) is a projection in (1 — f1)M(1 - f})
and E;_1,yn(1-1,)(Po) = AP (A)/ Py (A) (by 4.1). Let f'e M ,nM_,
be the projection with 7(f’) = t. Since fepf = (1 —t)(1— f')f we then
have

(1 - fi)ti_s(pof) = f((’) (1= fi)eo(1 = £1)f)

10 Pk(,l)
7oy (= ef) = gL tErau(1 = fi)eof)
A0 ,
s (U= 0eErr a1 = (L= )

But by induction we have
Eyviom(1=f1) = (L=ag_ ) f + (1 = be_)(1 = f').

Thus Pooi() ( 2
k+1 —1
T t(1 = br_y).
Pk().) 1 f;( Of) (1 f) ( k l)
But we also have 7,_;,(pof) = ait. It follows that

@ = e = £y (1= 021 = by

P2) "
- (7%5) 0o -5

That g, is increasing and b, is decreasing follows now by induc-
tion and by 2.9. The limits a and b will then satisfy a = limg;, =
Hm(P(A) /P (A)(1 = 1))2(1 =limby_;) =1 —band at+b(1—1t) =t
But this implies a = 1, b = 0. Moreover, since ay > by and since a,
is increasing and b, is decreasing, it follows that a, > b, for all ».
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This shows in particular that Ex.qar(fo) # 7(fp)1 for any projection
which expected on N gives a scalar. This completes the proof of the
lemma and thus also of the theorem. O

6.4. REMARK. As we mentioned in 4.6 the values AP;_;(A)/Pi(A)
of the traces of projections that expect on scalars coincide with the
values of the Markov traces on the projections coming from repre-
sentations of the generators of the Hecke algebras. There naturally
arises the question whether we can choose projections fy € My, f; €
M,, f, € M,,...,in the Jones’ tower of factors associated to the inclu-
sion N C M, so that Ep;_ (fi) = APx_1(4)/Pi(4) forall n > i >0 and
so that { f;},>i>0 generate the semisimple Hecke algebra corresponding
to the parameter A as in [17]. This is in fact impossible. Indeed if this
would be true we could get a contradiction by using Theorem 5.1. An-
other way to get the contradiction is by using [12] and one of Wenzl’s
results in [17]: if 4; = Alg{1, fo,..., fi_1}, B; = Alg{l, fo,..., fi},
where f; are as before and satisfy the Hecke algebra axioms f; f;, | fi —
Afi = fisrfifis1 — Afiz, then EgEy = Ey,_ Ep = Ey4 and by
[12] lim; A(B;, A;) coincides with the inverse of the index of the cor-
responding pair of subfactors (associated with the corresponding rep-
resentations of Hecke algebras in [17]). By [17] this index is equal
to A~k=1P,(2)? so it is strictly larger than A~!. But since 4; C B; and
M;_| C M; form a commuting square, A = A(M;, M;_,) < A(B;, A4;),
which is impossible if i is large enough.

7. A related dilation problem. Instead of a subfactor of finite index
N C M we may of course consider arbitrary von Neumann subalgebras
B c M and let A(M, B) be defined like in 1.1 to be the invariant up
to conjugacy by automorphisms of M. There are at least two special
cases that seem of most interest, when B is a subfactor and when B
is a maximal abelian subalgebra of M.

7.1. PROPOSITION. If B is either a subfactor of infinite index and
trivial relative commutant of M or an abelian subalgebra of M then
A(M, B) = [0, 1]. If B is maximal abelian and the normalizer of B in
M generates a type 11, von Neumann subalgebra of M then A(M, B) =
[0, 1].

Proof. If B is abelian then let B C M be a maximal abelian von
Neumann subalgebra of M containing B. If o € A(M, B) (or A(M, B))
then clearly o € A(M, B) (respectively A(M, B)). But arguing as in
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[16] it is easy to see that any rational number lies in A(M, B). If B C
M is so that BN M = C and [M : B] = oo then a similar proof
as that of 2.3 in [12] shows that A(M, B) = [0, 1]. If B is maximal
abelian and N = .#/(B)" is a type II; von Neumann subalgebra then
there exists By C B and R C N a hyperfinite subfactor generated
by unitaries normalizing Bj so that Bj is maximal abelian in R (see
e.g. [16]). But then by Connes-Feldman-Weiss theorem [3] we may
assume there exist unitary elements u € By, v € R so that u generates
By, and vu = e*™'yy for some irrational number ¢ € [0,1]. Then
any projection in the von Neumann algebra generated by v projects
on By on a scalar. Since such projections may have any trace, this
shows that A(R, By) = [0, 1]. But it is easy to see by construction that
EREp = Bp,. Thus A(M,B) D A(R, B) D A(R, By) = [0, 1]. |

There is also another interesting possible problem: we may consider
instead of the set A(M, B) the set of all possible relative dimensions
A(M, B) = {Eg(e) | e projection in M} or the set Ag(M,B) = {f :
[0, 1] — [0, 11| f(2) is the trace of the spectral projection of Eg(e) cor-
responding to the interval [¢, 0o0]}. It would be interesting to compute
these sets at least in the most simple examples (e.g. B semiregular).

It is not difficult to show that if B is maximal abelian then A(M, B)
coincides with the unit ball of the positive cone of B.

The problem of finding whether an elementa € B, 0 < a <1 is the
image by Ep of a projection e € M can alternately be regarded as a
dilation problem. Indeed if a is given then there exists a unique unital
completely positive map ¢ : C2 — B so that ¢((1,0)) = a, 9((0, 1)) =
1 —a. To show that there exists a projection e € M so that Eg(e) =a
is the same as to show that there is a *-morphism 7 : C2 — M so
that the compression of n to L%(B, 7)) coincides with ¢ (where B is
viewed in its representation on L?(B, 1)). Instead of C? we may of
course consider other algebras:

7.2. Problem. Study special classes of completely positive maps
@ : Ap — B which can be dilated to M, i.e., for which there exists a
*-morphism 7 : 49 — M so that ¢ = Egn.

In the case N C M is a subfactor of finite index then the small
values in A, Ay can be completely characterized, in particular also the
dilation problem for 4y = C2. More precisely we have:

7.3. PROPOSITION. Suppose ey € M is so that Ey(ey) = Aly where
A=[M:N]' > 0. Let Ny C N be so that M,e, come from the
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basic construction for the inclusion Ny ¢ N (i.e, Ny = N n{ey},
[N : N\]=[M : N)). Ife € M is a projection so that Ey(e) < Aly then
there exist a projection f € N, and a unitary element w € N so that
e = wey fw* and so that Ey(e) = Aw fw*. In particular, if ¢',e" € M
are projections of the same trace and Exn(e') < Al, En(e") < Al then
e',e" are conjugate by a unitary element in N.

Proof. By hypothesis and 2.1 in [12] we have e > eEy(e)e > Ae.
But this implies that (1 — e)Eyx(e)e = 0, hence [Enx(e),e] = 0. It
follows that if the spectrum of Ey(e) would contain a value distinct
of 0 and 4 then the projection f’ defined to be the spectral projection of
Ex(e) corresponding to (0, o] would satisfy [f’,e] =0, 0 # Ex(f'e) =
En(e)f' < al < Al, a contradiction. Thus Ey(e) = Af” for some
projection f” € N. Since f” > En(e), f” > e. Since N is a factor, there
exists a unitary element wy € N so that f = wj f"wo € N; = N'N{eop}.
Then in M, we have the projections e f and wgewy, and Ex, (eof) =
En,(wgewg) = Af = Aly,. By [12] there exists a unitary element
w; € Ny so that wiwgewow, = ey f. Thus f and w = wo(w;+(1-f))
satisfy the requirements. O

Added in proof. After this work had been completed we learned that
the inclusion A(M,N) C {a > 0| 3f € M such that Ex(f) = al},
which is part of the equation in Theorem 5.1, as obtained indepen-
dently by A. Ocneanu.
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