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We are concerned with the algebraic representation of the spec-
tral maximal spaces for certain classes of decomposable operators on
Banach spaces. The main emphasis will be on those operators which
admit a functional calculus on a suitable algebra of functions such
as, for instance, differentiable functions, Lipschitz functions, or func-
tions with absolutely convergent Fourier series. Using appropriate
partitions of unity, we shall give a unified approach to various previ-
ous results in this area as well as to certain extensions and variants
thereof. In the case of spectral operators, we shall obtain the optimal
results without any assumption on the underlying Banach space or the
Boolean algebra of projections corresponding to the spectral measure.

0. Introduction and motivation. If E denotes the spectral measure
associated with a bounded normal operator T on a complex Hubert
space X, then the ranges of the spectral projections can be represented
in the form

E(F)X= f] (T-λ)X for all closed F c C
λeC\F

This remarkable description of the spectral measure in purely algebraic
terms was obtained independently by Putnam [19] and by Ptak and
Vrbova [17] after a slightly weaker result due to Johnson [9]. Apart
from its intrinsic value, the algebraic representation of the spaces
E{F)X turned out to be particularly useful for the automatic con-
tinuity of linear transformations intertwining a given pair of normal
operators [9], [21]. In order to handle the same kind of automatic
continuity problem in the more general setting of generalized scalar
operators [4], Vrbova [23] proved a similar representation theorem for
the spectral maximal spaces Xγ{F) of a generalized scalar operator T
on a complex Banach space X. In this case, the best one can hope for
is the algebraic representation

XT(F)= p | {T-λ)pX for all closed F C C
λ€C\F
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with a suitable integer p > 1. With respect to this exponent, the re-
sult of Vrbova [23] was then improved by Foia§ and Vasilescu [8] and
finally extended to the case of scalar systems of several commuting
operators by Albrecht and Vasilescu [3]; see also [22]. A somewhat re-
lated representation theorem for certain spectral subspaces involving
Banach modules over a locally compact abelian group G was recently
given by Johnson [10]. This result turned out to be useful in connec-
tion with the automatic continuity problem for homomorphisms of
Banach G-modules.

In the present paper, we attempt to give a simple and unified ap-
proach to the algebraic representation of the spectral maximal spaces
for certain decomposable operators [4], [22]. The basic idea is to
combine the beautiful geometric argument from the classical paper of
Johnson [9] with some elementary techniques on partitions of unity in
spaces of differentiable functions. This approach avoids the somewhat
complicated methods from previous papers, which have to invoke
some general principles like the Baire category theorem and require
specific results from the theory of generalized scalar operators. It turns
out that our more elementary approach yields the best known results
for generalized scalar operators and can be easily extended to other
classes of operators which possess a (non-analytic) functional calculus
on a suitable algebra of functions with partitions of unity. This in-
cludes, for instance, the case of Lipschitz functions or functions with
absolutely convergent Fourier series, but we shall also give a counterex-
ample for a certain non-quasianalytic class of functions. Moreover,
in the case of spectral operators, we shall obtain the best possible re-
sults without any assumption on the underlying Banach space or the
Boolean algebra of projections associated with the spectral measure.

The organization of this article is as follows. In §1, we discuss
the algebraic representation of the spectral maximal spaces for some
general classes of decomposable operators [4], [22]. In the case of cer-
tain multiplication and convolution operators, we are able to improve
the weak kind of representation obtained in [13]. In §2, we collect
some auxiliary results on partitions of unity for differentiable func-
tions. Here, the main point is to control the norms of the derivatives
for long products of differentiable functions; these estimates may be
of some independent interest. In §3, we finally present our main re-
sults on non-analytic functional calculi and spectral maximal spaces.
For simplicity, we restrict ourselves to the investigation of one sin-
gle operator, but our methods can certainly be expanded to the case
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of finite systems of several commuting operators. For applications in
automatic continuity theory, we refer to [9], [12], [13], [15], [21].

Most of the results of the present paper were obtained at the Work-
shop on Derivations and Radical Banach Algebras at Berkeley in July
1986. It is a pleasure to acknowledge the stimulating atmosphere of
this conference; we are particularly grateful to Garth Dales for several
valuable conversations.

1. Some reduction principles. Given T e ^f{X), the continuous
linear operators on some complex Banach space X, let Lat(Γ) stand
for the collection of all closed Γ-invariant linear subspaces of X. T is
called decomposable, if for every open covering {U, V} of the complex
plane C, there exist Y,Z e Lat(Γ) such that Y + Z = X as well as
σ(T\Y) C U and σ(T\Z) C F, where σ denotes the spectrum. We
refer to the monographs [4] and [22] for the theory of decomposable
operators. An important feature in this theory is the investigation of
the spectral maximal spaces given by

χτ(F) = {xeX: στ(x) c F} for all closed FCC,

where στ(x) Q C denotes the local spectrum of the decomposable
operator T e &(X) at the point x e l i n the sense of [4], [22]. Here,
we are interested in representing the spaces Xτ(F) in terms of the
ranges (T - λ ) p X for suitable p e N and λ e C. In the present section,
this problem will be reduced to the much simpler case F = 0 for
some wide classes of decomposable operators; see also [8], [22] for the
special case of generalized scalar operators and [1], [12], [13] for some
related reduction principles of a similar algebraic flavor.

We shall consider the following subclasses of the decomposable op-
erators. An operator T G <2f{X) is said to be super-decomposable [13],
if for every open covering {U, V} of C, there exists some R €
such that RT = TR, σ(T\R{X)) c U, and σ(T\(I - R)(X)) C V.
More generally, T e ^f(X) is called well-decomposable [1], if for ev-
ery open covering {[/, V} of C, there exist an R e J?(X)9 an inte-
ger n e N and Y,Z e Lat(Γ) such that R(X) c 7,(7 - R)(X) c
Z,σ(T\Y) C U,σ{T\Z) c V, and finally C(T,T)nR = 0. The com-
mutator C(S, T): &(X) -> &{X\ for an arbitrary pair of operators
S,T e &(X)9 is defined by

C(S,T)A = SA-AT forallAe^(X).

It can be shown by examples that the exponent n e N occurring in
the last definition actually depends on the given covering and cannot
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be chosen uniformly in general. Well-decomposable operators and, in
particular, super-decomposable operators are obviously decomposable
and in fact strongly decomposable; for more information we refer to
[1], [7], [13].

1.1. PROPOSITION. Let T e &(X) be super-decomposable such that

λeC

for some p e N. Then we have the representation

(2) Xτ(F)= Π (T-λ)pX for all closed F CC.
λeC\F

Moreover, ifS e ^f(X) is super-decomposable and satisfies C(T,S)nI =
0 for some « E N , then we have

(3) Xs(F)= Π (S-λ)p+n~ιX for all closed F CC
λeC\F

1.2. PROPOSITION. Let T e&(X) be well-decomposable such that

(4) f| (τ-λyx = {oy
λeCpeN

Then we have the algebraic representation

(5) Xτ{F)= Π {T-λ)pX for all closed F c C.
λec\F,peN

Moreover, ifS e <Sf{X) is well-decomposable and satisfies C(T, S)nI =
0 for some n e N , then we have

(6) XS(F)= Γ| (S-λ)pX for all closed FCC.
λec\F,PeN

The proofs of the main assertions (2) and (5) are quite similar and
hence will be given simultaneously. The formally stronger statements
(3) and (6) will then be deduced from (2) and (5), respectively. We
shall need the following simple algebraic observation.

1.3. LEMMA. Assume that the operators A,S,T e &(X) satisfy
C(S, T)nA = Ofor some neN. Then we have

ATp+n-{(X)cSp(X) forallpefto.
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Proof of 1.3. We proceed by induction. The case p = 0 being trivial,
let p > 0 and assume that AT^n~λ{X) c 5«(ΛΓ) holds for all ̂  < /?.
Now, from C(S, Γ)M = 0 we conclude that

p+n

0 = (£ y
k=0

p+n ,

£ 7y+ΛΛ = Σ (P + n

and consequently

ATp+n(X) c
k=\

Next, for each k=l,...,p + nv/e observe that

which is obvious for k > p + 1, and if k< p + 1, it follows from our
inductive hypothesis by taking q = /? - k + 1. We finally arrive at the
inclusion

ATp+n(X) C ^ + ι ( I ) ,

thus completing the inductive argument. The assertion follows.

Proof of 1.1 am/ 1.2. Given an arbitrary closed subset F of C, let
Gτ(F) denote either the intersection on the right-hand side of (2) or
(5), respectively. Since it is well known that Xτ(F) e Lat(Γ) and
σ(T\Xτ(F)) c F, we obtain immediately XT(F) c GT(F) both for
1.1 and 1.2. To prove the reverse inclusion, we shall show that

GT(F)CXT(V),

where V denotes an arbitrary open neighborhood of F in C. Given
such an open set V, we choose another open set U C C such that
F c U c V c V and observe that {V,C\V} is an open covering of C.
Since T is well-decomposable, it follows that there exist an R e ̂ f(X)
and an integer « e N such that

C(T, T)nR = 0, R(X) c XΓ(F), (/ - Λ)(JΓ) c XT(C\U);

moreover, in the super-decomposable case we may take n = 1, which
amounts to RT = TR. Now, to show that Gτ{F) is contained in
Xτ(V)> it certainly suffices to prove that (I-R)Gτ(F) = {0}. Because
of our basic assumption (1) and (4), respectively, this assertion reduces
to

(I-R)Gτ(F)C(T-λ)pX,
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where λ G C is arbitrarily given and p G N is either the integer given
by condition (1) in case 1.1 or an arbitrary integer in case 1.2. Now,
if λ G F, the desired inclusion is obvious, since (I - R)Gτ(F) is
contained in XT(C\U) and since the restriction (T - λ)\Xτ(C\U) is
known to be invertible for each λeU and hence in particular for each
A G F. In the remaining case λ G C\F, it follows from the definition
that

Gτ(F)C(T-λ)p+n-ι(X)

holds both for 1.1 and 1.2. Moreover, from C(T, T)nR = 0 we con-
clude that C(T - λ, T - λ)n(I - R) = 0 and therefore

(/ - R)(T - λ)p+n~ι(X) C (Γ - λ)pX

by the preceding Lemma 1.3. We thus arrive at (I - R)Gτ(F) c
(T - λ)pX, which completes the proof of (2) and (5). Now, to prove
the remaining assertions, let S e <2?{X) satisfy C(Ty S)nI = 0 for some
n G N. Then again Lemma 1.3 ensures that

(5 _ χy+n-i(x) c (Γ - λ)p(X) for all λeC.

Consequently S satisfies the corresponding version of condition (1) or
(4) so that the final assertions (3) and (6) follow immediately from
(2) and (5), respectively.

Using the same circle of ideas one can show that the algebraic rep-
resentation of the spectral maximal spaces in the sense of (2) or (5) is
preserved by nilpotent equivalence. Recall from [1] that two operators
S,T G &(X\ are said to be nilpotent equivalent if C(S, T)nI = 0 =
C(T,S)nI holds for some n G N. It is interesting to observe that the
following result ceases to be true for the case of quasinilpotent equiv-
alence in the sense of [4], since there are examples of quasinilpotent
operators T G &(X) which fail to satisfy condition (4); see for in-
stance Remark 1.6 of [13].

1.4. PROPOSITION. Let T G &{X) be a decomposable operator such
that condition (5) is fulfilled, and consider a nilpotent equivalent oper-
ator S G &{X) Then S is decomposable and satisfies condition (6). A
similar result holds for the conditions (2) and (3).

Proof. Since nilpotent equivalence certainly implies quasinilpotent
equivalence in the sense of [4], we infer from Theorem 2.2.1 of [4]
that S is also decomposable and satisfies Xs{F) = Xτ(F) for every
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closed FCC. Now, if n e N is chosen so that C(T,S)nI = 0, it
follows from Lemma 1.3 and condition (5) that

Xs(F)C p | (S-λ)pX=

We conclude that condition (6) is fulfilled. The proof of the final
assertion is of course similar and therefore is omitted.

In §3, the preceding results will be applied to generalized scalar op-
erators and to some other operators which admit a non-analytic func-
tional calculus. We close this section with another typical application
to multiplication operators and to multipliers on certain commutative
Banach algebras.

1.5. EXAMPLE. Let X be a commutative, semi-simple, and regular
Banach algebra, and let a e X. Then the operator T e <2?{X) given
by T(x) = ax for all x e X is super-decomposable and satisfies

XT(F)= p | (T-λ)X for all closed F c C
λeC\F

1.6. EXAMPLE. Let G be a locally compact abelian group, and
consider a regular Borel measure μ G M(G), whose continuous part
is absolutely continuous. Then the operator T e ^(X), given by
convolution with μ either on X = Lι(G) or on X = M(G), is super-
decomposable and satisfies

XT(F) = p | (T - λ)X for all closed F c C.
λeC\F

Proof of1.5 and 1.6. We first note that every multiplication operator
T on a commutative Banach algebra X satisfies

λeC

the radical of X, so that this intersection is trivial whenever X is semi-
simple. We conclude that the operators considered in 1.5 and 1.6
satisfy condition (1) with p = 1. On the other hand, these operators
are super-decomposable by Corollary 2.4 and Theorem 2.5 of [13].
Hence the assertions follow immediately from Proposition 1.1.



72 PHILIP C. CURTIS, JR. AND MICHAEL M. NEUMANN

2. Preliminaries on differentiable functions. In the present section,
we collect some auxiliary results on partitions of unity and norm es-
timates for differentiable functions. Let n e N be given, and en-
dow R" with the Euclidean metric. For K C Rn and ε > 0, let
K(ε) := {x e Rn: dist(.x, K) < e}. Given a mult-index a e Ng, let

| α | : = α i +••• + <*„ and Da := d?1 - d%*,

where d\,...,dn denote the usual operators of partial differentiation.
Finally, let || ||oo denote the supremum norm for bounded complex-
valued functions on R". Our first result is a slight extension of a
standard result in calculus; see for instance [14].

2.1. PROPOSITION. For each r e N and all a e Ng there exists a
constant ca > 0 with the following property: given any collection of
compact non-empty subsets K\,...,Kr ofW and ε > 0, there exist
e\,..., er G ̂ ^ ( R " ) such that the following conditions are fulfilled:

(7) 0 < έ ? / < l forj=l,...,r,

(8) suppejC Kj(ε) for j = 1 , . . . ,r,

(9) e\ H \-er = I on some neighborhoodofK\ U U ^ r ,

(10) ||Z)α^ ||oo<cαβ-lαl forallaeN%andj=l,...,r.

Proof. For r = 1 the assertion follows immediately from Lemma
1.4.2 of [14]. Let ca > 0 for a e Ng denote the constants corresponding
to the case r = 1. Fix an arbitrary r e N, and consider compact non-
empty sets K\,...,Kr C Rw and some ε > 0. Then, for every y" =
1,..., r we obtain some fj e W°°{Rn) such that 0 < f} < 1, supp j) c
Kj(ε),fj = 1 on a neighborhood of A:7, and

< cQβ-lαl forallαGNg.

Obviously, the functions ei,... ,er e ^^(R") given by

2̂ = (1-/0/2,

satisfy (7) and (8). Moreover, one easily verifies by induction that
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from which we conclude that condition (9) is fulfilled as well. Finally,
let α G Ng be given arbitrarily. Then for all functions u and v of the
form // or 1 - /} we obtain from the Leibniz rule

β<a

for a suitable new constant ca > 0. An obvious repetition of this
argument shows that the estimates in (10) are fulfilled for a suitable
choice of constants. The assertion follows.

For fixed k e No it will be convenient to introduce

M = max{ l ,c α :αGNg with \a\ < k},

where ca are the constants from Proposition 2.1. This choice may
illuminate the assumption in the following result.

2.2. PROPOSITION. Let k e N o and M > 1 be given, and consider
em e W°°(Rn) and εm > 0 for all m e N such that the following two
conditions are fulfilled:

< Mε< Mε

o < 1 forallrneN,

for allmeN,ae Ng with \a\ < k.

Then for all m G N and a e Ng with \a\ < k we have:

Proof. For notational convenience, we restrict ourselves to the case
n = 2, which should be sufficiently typical and is all we need in the
following. So let us consider an m e N and an α = (p, <?), where
p, q G NQ and |α| = p -I- q < k. Then we have:

d{elp
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Here we adopt an obvious convention concerning higher derivatives
whenever // = //, kι = kj, or // = kj. Now observe that M > 1 and
p + q = \a\. Hence, with the appropriate case for higher derivatives,
we conclude from our assumptions:

m m m m 1 Λ Λ Λ

^ - > ^-^\ ^—\ 1 1 1 1

/ — 1 k, — 1 k — \ ' p ' *

I + ... + J . ) = M \ a \ ( L + ... + lΛ= Mp+q

The assertion follows.

2.3. COROLLARY. Let k G NO, M > 1,0 < δ < 1, α«ί/ em G

Λ WCΛ /Λαί ll^mlU < 1 for all m e N. Assume that

H^^mlloo < Mδ~m^ for allmeN,ae N(j with \a\ < k.

Then there exists a constant M > 1 such that

\\Da{ex ^ w ) | |oo < Mδ~m^ for all m e N,α G Ng with \a\ < k.

Proof, The assertion follows immediately from Proposition 2.2 with
the obvious choice εm = δm for all m e N.

3. Main results. We turn now to the algebraic representation of the
spectral maximal spaces for certain operators which admit a functional
calculus on a suitable algebra of functions. It will follow from [13] that
all the operators to be considered here are super-decomposable so that
the general reduction theory from § 1 may be applied. We start with
the most prominent case, that of generalized scalar operators.

Given a complex Banach space X, an operator T e &{X) is called
generalized scalar [4], [22], if there exists a continuous homomorphism
Φ: g?°°(C) -> &{X) satisfying Φ(l) = / and Φ(Z) = T, where Z
denotes the identity function on C. Let us mention in passing that the
continuity of such a Ψ°°-functional calculus Φ for T is equivalent to
a certain algebraic condition on T, namely that every linear subspace
Y of X which is T-divisible in the sense of (T -λ)Y = Y for alU e C
has to be zero; see Theorem 6.5 of [2]. Of course, the continuity of
Φ: W°°(C) —> <2f{X) means precisely that there exist some compact
Ω C C, a constant c > 0, and an integer k > 0 such that

(11)
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where C is canonically identified with R2, and the seminorm || \\kΛ

on W°°{C) is given by

Ω= Σ ^

for all / e ^°°{C). The order k(T) e N o of a generalized scalar
operator T G &(X) is defined to be the smallest integer k > 0 such that
(11) holds for some g700-functional calculus Φ for T. Note that every
generalized scalar operator is super-decomposable by Proposition 2.2
of [13].

3.1. THEOREM. If T e &{X) is generalized scalar, then for all
closed FCC and all p e N with p > k{T) + 3 we have

(12) Xτ(F)=
λeC\F

Proof. In view of Proposition 1.1, it suffices to show that if

yef](T-λ)pX for some p > k(T) + 3,
λec

then necessarily y — 0. Choose a ^°°-functional calculus Φ for T
such that (11) holds for some compact Ω c C and k = k(T), and let
eo G ̂ ^ ( C ) have compact support and satisfy 0 < eo < 1 and eo = 1
on some neighborhood of Ω. Then it is clear that Φ^o)^ = y> Next,
choose a square PQ C C such that supp^o ^ ^o a n d fiχ an arbitrary
constant y, 0 < γ < J. Define <J = ̂  + 2γ and εn = yJ11"1 J ( P 0 ) f o r all
Λ € N, where j(P) denotes the side length of a square P c C. Now
divide PQ ί n t 0 f°UΓ squares ΛΓi,...,Λ^4 with size length JS(PQ) and
apply Proposition 2.1 with the choice ε = e\. For the corresponding
partition of unity f \ , . . . , / 4 in ̂ °°(C) we obtain the estimate

7=1

and consequently ||y|| < 4| |Φ(/ ; e0)>;|| = 4||Φ(/})>>|| for at least one j e
{1,..., 4}. Let e\ = fj and P\ = Kj(ε\) for such a j e {1,..., 4}. Then
we have eλ e &°°(C) and 0 < ex < l,suppei c Plf \\y\\ < 4||Φ(ei)>;||5
and

\\Dae{ Hoc < Mε~la{ for all α E N j with |α| < k,

where M > 1 is some universal constant. Moreover, it is obvious that
s(P\) = SS(PQ). Proceeding in the same way by induction, we obtain
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for each n e N a function en e ^ ^ ( C ) and a square ? n C C such that
the following conditions are fulfilled:

0 < en < 1; s u p p ^ c Pn; s(Pn) = (5Λ

P>αe#i||oo < Me~lal for all αGN§ with |α| < k\

Since the intersection of the squares Pn may well be empty, we finally
introduce for each n e No the square Qn with the same center as Pn,
but with twice the side length of Pn. Then one easily deduces from
the assumption γ < | that Qn c (?„_! for all « G N . Since .S((2Λ) —> 0
as n —• oo, it follows that the squares Qn decrease to exactly one point

Now, by our assumption on y there exists some x G X such that
y = (T - λ)px. Since suppe,? C P W C Qrt? we arrive at the estimates

<4n\\<t>{eχ. -en{Z-λγ)x\\

<A"c\\x\\\\eχ. en{Z-λy\\kιQn

|α|<A: *

\<A<k ' β<a

for all n e N. The last terms can be estimated as follows. Since λ e Qn

and s(βΛ) = 2(Jn5l(Po)» a n elementary calculation shows that

\\Dβ{Z - λ)p\\0>Qn < Ciδ^-W for all n e N

with some suitable constant Cj > 0 not depending on n. On the other
hand, it follows from the choice of εn and from Corollary 2.3 that

\\Da-β{eY ^)||oo < c2c5-" ( | α |- | / ? l ) for all n e N,

where again the constant c2 > 0 does not depend on ft. Taking all
these estimates into account, we finally obtain

\\y\\ < c34
nδnp-nk = c3(4δp-k)n for all n e N

for some suitable constant C3 > 0 not depending on n. Recall that
p — k > 3 and that δ = \ + 2γ9 where 0 < γ < j could have been
chosen arbitrarily small. Hence it is possible to achieve 4δ3 < 1 for
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a suitable choice of γ. Letting n —• oo in the last inequality for y, we
conclude that y = 0, which completes the proof.

3.2. REMARKS, (a) The last lines of the preceding proof for the
representation (12) reveal that the best possible exponent p which can
be obtained by the present approach is p = k(T) + 3. Exactly the
same exponent for the representation (12) was also obtained by Foia§
and Vasilescu in Theorem 3.2 of [8] by using a completely different
method. On the other hand, we shall see that in certain cases the
optimal exponent for (12) can be improved to be p = k(T) + 2. Let
us note that in general the representation (12) need not hold for p <
k{T) + 2, as can be easily derived from Example 2.10 of [8] even in
the case of certain spectral operators.

(b) If the operator T e &(X) has a functional calculus on ^°°(R),
then our method can be carried through by using intervals in R instead
of squares in C. In this case, the respective interval will be divided
into just two subintervals in each inductive step. This modification
will obviously result in the weaker inequality 2δp~k < 1 instead of
4δp~k < 1, which can be fulfilled by some δ > \ provided that p-k >
2. Hence, in this case, our optimal exponent for (12) turns out to be
p = k{T) + 2. This was also observed in [8] using a different type of
argument.

(c) If the operator T e £?{X) has a ^°°(C)-functional calculus of
order k(T) and if σ(T) c R, then it is shown in Theorem 5.4.5 of [4]
that T admits a ^°°(R)-functional calculus of order < 2k(T). Using
the improved result of (b), this observation will lead to a better expo-
nent in the case k(T) = 0, but not necessarily in the case k(T) > 1.

(d) The geometry of squares is less important for our approach to
the representation (12) than one might expect. For instance, one may
exploit the same kind of argument with triangles instead of squares in
the complex plane, where at each step of the inductive construction
the respective triangle will have to be divided into two subtriangles of
equal size. This modification of the preceding proof leads to the rep-
resentation (12) with exactly the same optimal exponent p = k(T) + 3;
let us note that the approach given in [23] is based on triangles instead
of squares.

(e) Since hyponormal operators are known to be, up to similarity,
restrictions of generalized scalar operators [18], an interesting conse-
quence of Theorem 3.1 is that hyponormal and, in particular, subnor-
mal operators do not have non-zero divisible subspaces. This obser-
vation is of particular importance in the automatic continuity theory
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for intertwining linear transformations; see for instance [9], [12], [13],
[15], [21].

(f) Finally, let T = (T\,..., Tn) be a system of several commuting
operators from &(X)9 and assume that the system T has a continu-
ous functional calculus on C°°(Cn). Then an obvious extension of our
approach to Theorem 3.1 will lead precisely to the algebraic represen-
tation of the spectral maximal spaces for the system T in the sense
of Corollary 3.7 of [3]. In this case, the best possible exponent given
by our method turns out to be p = k(T) + 2n + 1, which was also
obtained by Albrecht and Vasilescu [3] by expanding the correspond-
ing argument from [8]. This higher dimensional result is also closely
related to Theorem 3.3 of [10].

We now turn to the case of functional calculi on certain Lipschitz
algebras. Given an arbitrary α,0 < a < 1 and a nonempty compact
subset K of C, let Lipα(AΓ) denote the space of all functions f:K^C
such that

< 00.

It is well known and easily seen that Lipa(K) is a regular Banach func-
tion algebra with respect to pointwise multiplication, where the norm
is given by || | |α = || ||oo + Pa on Liρα(l5:). Hence, if Φ: Upa(K) -+
<2f{X) is a continuous homomorphism with Φ(l) = /, then for each
/ G Lipa(K) the operator Φ(/) £ &(X) is super-decomposable by
Theorem 2.3 of [13]. Moreover, the operator T = Φ(Z) is obviously
generalized scalar with k(T) < 1 so that Theorem 3.1 yields the repre-
sentation (12) with p > 4. Actually this can be improved as follows.

3.3. THEOREM. Let Φ: lλpa{K) -• J?(X) be a continuous unital
homomorphism, where 0 < a < 1 and K C C is compact Then the
operator T = Φ(Z) e &{X) satisfies (12) for all p > 3. Moreover if
KCR, then (12) holds for all p>2.

Proof. Given an arbitrary p e N, an obvious adaptation of the
proof of Theorem 3.1 to the present situation leads to the following
estimates

- λy\\0,Qn + PaiMZ - λ)>)),

where fn = en e{ on K for all n e N. Since s(Qn) = 2δns(P0) for
some <5, \ < δ < 1, we obtain immediately
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and for some constant C\ > 0 not depending on n. To estimate the
term involving pa let us introduce

H (1J lΛ _ \Mu)(u-λy-fn(v){v-λy\
Hn{U)V) ~ μΓ^h

for all n G N and all u,v e K with uφv. If both w, i; £ i^, we infer
from supρ/ r t c Pn that fn(u) = /Λ(v) = 0 and hence Hn(u,v) = 0.
Without loss of generality, we may therefore assume that uePn. Now,
if υ G K satisfies \u - υ\ > s(Qn), then obviously υ φ Pn and hence
fn{v)= 0, which implies that

Hn(u, v) < s(Qny~a < cιδn(p-°) for all n e N.

It remains to estimate Hn(u, v) for the case ue Pn and \u-v\ < s{Qn).
Then it is clear that \u—λ\ < s(Qn) and \v -λ\ < 2s(Qn). Furthermore,
since ||Z)^/rt||oo < c2S~n for all n e N and all β e Ng with |/?| < 1, we
obtain

\u-v\"

+
\u-v\a

for all n G N, where again the constants C2, C3 > 0 do not depend on n.
Finally observe that the last term can be estimated easily by making
use of the identity

a? - bp = (a - b)(ap~ι + ap~2b + + abp~2 + bp~ι)

with the obvious choice a = u - λ and b = υ - λ. We conclude that

Hn(u, v) < c4δ
nip~a) for all n G N,

and consequently

pa(fn(Z - λ)p) < c4δ
n{p-a) forallrcGN

with some suitable constant C4 > 0 not depending on n. We finally
arrive at

\\y\\ < cs(4δp-a)n forallnGN
with some universal constant C5 > 0. Now, if we assume that p > 3,
then choosing δ > \, we have 4δp~a < 1. Taking the limit as n —• 00
in the last inequality for y, we conclude that y = 0, which completes
the proof of (12) for p > 3. In the special case K c R, the proof can
be carried through by using intervals in R instead of squares in C. In
this case, we arrive at the condition 2δp~a < 1, which can be fulfilled
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by a suitable choice of δ > \ provided that p > 2. This completes the
proof.

The preceding result can be extended easily to the case of differ-
entiable functions. For simplicity, let / be a compact interval in R,
and consider some k G N o and some α, 0 < a < 1. Then &k'a(I)
is defined to be the space of all k times continuously differentiate
functions / : / —• C with the property fW G Lipα(/). With the usual
pointwise operations, Wk>a(I) is a regular Banach algebra with respect
to a suitable algebra norm which is equivalent to the norm || ||^ a given
by

k

ll/llfcα = Σ H/ωlloo + Pa(fίk)) for all / G **-*(/).
7=0

The proof of the following result is similar to the proofs of 3.1 and
3.3 and is therefore omitted.

3.4. THEOREM. Let Φ: &k'a(I) -> &{X) be a continuous unital
homomorphism, where fceNo,O<α < 1, and I c R is a compact
interval. Then the operator T = Φ(Z) G <2f(X) satisfies (12) for all
p>k + 2.

There are some other interesting cases, where the optimal exponent
p for the representation (12) given by 3.1 can be improved. For exam-
ple, let AC (I) denote the Banach algebra of all absolutely continuous
functions / : / —> C for a compact interval / C R , where the norm || ||
is given by

dt for all / G AC(I).

Then, for every continuous unital homomorphism Φ: AC (I) —• &(X),
the operator T = Φ(Z) G &(X) satisfies (12) for all p > 2. This can
be seen following the lines of the proof of Theorem 3.1, but the details
are slightly more involved and will not be given here.

In light of the preceding results, one might conjecture that every
operator, which admits a continuous functional calculus on a reason-
able algebra of functions with partitions of unity, should enjoy the
algebraic representation of the spectral maximal spaces in the sense
of (12) for some suitable integer p. The following counterexample
will show, however, that in general such operators may have divisi-
ble subspaces different from zero and hence will fail to satisfy even
condition (4). The basic idea is to look for a suitable quasinilpotent
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operator, since such an operator cannot be generalized scalar unless it
is nilpotent; see for instance Proposition 4.1 of [15]. Actually, the ex-
istence of non-trivial divisible subspaces rules out even the weak kind
of algebraic representation of the spectral maximal spaces considered
in Proposition 1.5 of [13].

3.5. EXAMPLE. There exists a compact and quasinilpotent operator
T e ^f(X) on a Banach space X, such that T has a non-trivial divisible
subspace, but admits a continuous functional calculus on a regular
natural Banach function algebra contained in ̂ °°{[0f 1]).

Proof. Consider the Banach space X = &([0,1]) and the Volterra
operator T e ^f(X) given by

(Tf)(s) = Γ f{t) dt for all / e &([0,1]) and s e [0,1].
Jo

Then T is both compact and quasinilpotent and has the following
non-trivial divisible subspace

Y = {/ e g?°°([0,1]): / ( /°(0) = 0 for all k e No}.

Next, take some α, 1 < a < 2 and consider the space Aa consisting of
all / E ̂ °°([0,1]) with the property

00 l l / w l l o o _

This space has been considered in a number of articles; in particular, it
follows from the results in [5] and [16] that the space Aa endowed with
the norm || | |α is a Banach algebra with the maximal ideal space [0,1]
and that the polynomials are dense in Aa with respect to the norm
|| | |α. Moreover, one can use the Denjoy-Carleman theorem and the
standard techniques of the theory of non-quasianalytic classes to show
that the Banach algebra Aa is regular and hence admits partitions of
unity; in this connection we refer to Chapter 19 of [20]. Now, given
a polynomial

for all ze [0,1],
k=0 k=0

we define Φ(p) = p(T) e &{X) and observe that

k=0 * k=0
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and hence ||Φ||(/?)|| < \\p\\a, where we have made use of the fact that
\\Tk\\ = l/k\ for all k G N Q . Since the polynomials are dense in Aa,
we obtain the desired functional calculus for T on Aa by extending Φ
continuously to Aa.

In view of the preceding counterexample, it seems natural to restrict
the attention to functional calculi on algebras of functions which con-
tain at least all the ^°°-functions. Hence, let us consider now a natural
Banach function algebra A on some compact subset K of C and let us
assume that, for some integer k > 0, all the restrictions to K of the
^k-functions on C are contained in A. Then A is certainly semi-simple
and regular. It therefore follows from Theorem 2.3 of [13] that for
every continuous unital homomorphism Φ: A —»2f[X) and for every
g e A the operator T = Φ(g) e ^(X) is super-decomposable. It is
natural to ask whether the representation (12) of the spectral maximal
spaces remains valid in this more general setting. Of course, one may
try to extend the proof of 3.1 from the special case g = Z to the case
of an arbitrary g e A, but this method doesn't work for some of the
examples we have in mind. Another possible approach is based on
the idea of composition. Assume that g e A has the property that
for each / E ^°°(C) the composition fog belongs to A and that the
corresponding mapping from W°°(C) into A is continuous. Then it
makes sense to consider the mapping Φ: &°°(C) —> J?(X) given by

φ ( / ) = φ ( / o g) for all fe&°° (C),

which is certainly a continuous homomorphism satisfying Φ(Z) =
Φ(g). Hence, under the given assumptions, the operator T = Φ(g) is
generalized scalar so that the algebraic representation (12) of its spec-
tral maximal spaces holds by Theorem 3.1. It can be checked that this
method works for many interesting Banach function algebras A includ-
ing, for instance, the algebras Wk(I),Wk>Q(I), and AC(I). However,
in the case of the Banach algebra A(Ί) of all continuous functions
on the unit circle T having an absolutely convergent Fourier series,
the indicated method fails, since it is known [11] that only the real-
analytic functions operate on A(Ύ). Whether in A(Ύ) multiplication
by g e A(Ύ) can have a divisible subspace appears to be open. A
solution to the following problem would be quite interesting.

3.6. Problem. Let Φ: A(Ί) —• &{X) be a continuous homomor-
phism such that Φ(l) = /, and consider the operator T = Φ(g) £

for an arbitrarily given g e A(Ί). Does it follow that the
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representation (12) holds for some integer p or at least that T has
no divisible subspace different from zero?

We turn finally to the case of spectral operators in the sense of
Dunford; see [6] for the basic theory of these operators. The follow-
ing result was obtained by Foia§ and Vasilescu in [8] under certain
restrictions on the underlying Banach space or on the Boolean algebra
of projections corresponding to the spectral measure. These were nec-
essary since their approach was based on Bade's multiplicity theory
[6]. Here the exponents are optimal by Example 2.10 of [8].

3.7. THEOREM. IfTe^f(X) is scalar, then

XT(F)= p | (T-λ)2X for all closed F CC.
λeC\F

Moreover, ifTe <S?{X) is spectral of type m € NQ, then

XT(F)= p | (T-λ)m+2X for all closed FCC.
λeC\F

Proof. We shall combine certain ideas from the proof of Theorem
3.1 and from [17]. First observe that spectral operators are super-
decomposable by Proposition 2.1 of [13]. Hence it follows from
Proposition 1.1 that it suffices to prove that

λeC

for an arbitrary scalar operator T e Jΐf(X). Let E denote the corre-

sponding spectral measure, fix an arbitrary

yef)(T-λ)2X
λeC

and take some continuous linear functional φ on X. By the Hahn-
Banach theorem, it suffices to show that φ{y) = 0. We follow the
lines of the proof of Theorem 3.1 to obtain a decreasing sequence of
squares Pn C C of side length s{Pn) = 2~ns(Po) such that

\φ(y)\<4n\φ(E(Pn))y\ for all n e N.

Let λ G C be the intersection of all the squares Pn, and choose some
x G X such that y = (T - λ)2x. Let μ denote the variation of the
complex measure φ(E(-)x). Then it follows that

\φ{y)\ < 4" / |Z - λ\2 dμ = 4" ί \Z - λ\2 dμ
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for all « e N . NOW an obvious application of the Lebesgue dominated
convergence theorem shows that the right hand side of this inequality
tends to zero as n —• oo. We conclude that φ(y) = 0, which completes
the proof.

Let us note finally that for spectral operators on Hubert spaces the
exponents of the preceding result can be improved due to the rather
special geometry of Hubert spaces; for details we refer to [3] and [17].
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