SPACES OF WHITNEY MAPS

ALEJANDRO ILLANES

Let X be a continuum. Let 2^X (respectively, C(X)) be the hyperspace of nonempty closed subsets (respectively, subcontinua) of X, endowed with the Hausdorff metric. For $\mathscr{H} = C(X)$ or 2^X , let $W(\mathscr{H})$ denote the space of Whitney maps for \mathscr{H} with the "sup metric" and pointwise product. In this paper we prove that if there exists a homeomorphism $\phi \colon W(C(X)) \to W(C(Y))$ (or $\phi \colon W(2^X) \to W(2^Y)$) which preserved products and "strict order", then X is homeomorphic to Y. We also prove that there exists an embedding $\psi \colon W(C(X)) \to W(2^X)$ such that $\psi(u)$ is an extension of u for each $u \in W(C(X))$.

Introduction. A continuum is a nondegenerate compact, connected metric space. All the spaces considered here are continua. If X is a continuum, 2^X (respectively, C(X)) is the hyperspace of nonempty closed subsets (respectively, subcontinua) of X, endowed with the Hausdorff metric H. Let $\mathscr H$ be a nonempty closed subset of 2^X . A Whitney map for $\mathscr H$ is a continuous function $u\colon\mathscr H\to[0,1]$ such that (a) u(A)=0 if and only if A is a single point set; (b) u(A)=1 if and only if A=X; and (c) if $A,B\in\mathscr H$ and $A\subset B\neq A$, then u(A)< u(B). Let $W(\mathscr H)$ denote the space of Whitney maps for $\mathscr H$. We identify X with $\{\{x\}\colon x\in X\}\subset C(X), 2^X$. Given $u,w\in W(\mathscr H)$, we say that u is strictly smaller than w ($u \triangleleft w$) if u(A)< w(A) for each $A\in\mathscr H-(X\cup\{X\})$ and u is smaller or equal than w ($u\leq w$) if $u(A)\leq w(A)$ for each $A\in\mathscr H$. We consider $W(\mathscr H)$ with the "sup metric", the pointwise product and the orders defined above.

In this paper we prove that: (a) $W(\mathscr{H})$ is a topologically complete space. This answers a question asked by S. B. Nadler, Jr. [2, question 14.71.4]; (b) There is a natural way to embed 2^X in W(C(X)) and in $W(2^X)$; (c) If $\mathscr{H} = C(X)$ and $\mathscr{G} = C(Y)$ or $\mathscr{H} = 2^X$ and $\mathscr{G} = 2^Y$ and there exists a homeomorphism $\phi \colon W(\mathscr{H}) \to W(\mathscr{G})$ which is a semigroup isomorphism and preserves strict order (in the sense that $u \triangleleft w$ if and only if $\phi(u) \triangleleft \phi(w)$), then X is homeomorphic to Y (this answers, partially, question 14.71.1 formulated by S. B. Nadler, Jr. in [2]). In [3], L. E. Ward, Jr., showed that Whitney maps for \mathscr{H} can be extended to Whitney maps for 2^X . Using his constructions, we

- prove: (d) There exists an embedding $\phi: W(\mathcal{H}) \to W(2^X)$ such that $\phi(u)$ is an extension of u for every $u \in W(\mathcal{H})$.
- 1. $W(\mathcal{H})$ is topologically complete. Let \mathcal{H} be a nonempty closed subset of 2^X . Let $\mathcal{C}(\mathcal{H}) = \{f \colon \mathcal{H} \to [0,1] | f \text{ is continuous} \}$. We consider $\mathcal{C}(\mathcal{H})$ with the sup metric S defined by $S(f,g) = \max\{|f(A) g(A)| \colon A \in \mathcal{H}\}$. Then $(\mathcal{C}(\mathcal{H}), S)$ is a complete metric space. Let $W_0(\mathcal{H}) = \{f \in \mathcal{C}(\mathcal{H}) \colon A, B \in \mathcal{H} \text{ and } A \subset B \text{ implies that } f(A) \leq f(B), f(A) = 0 \text{ for every } A \in \mathcal{H} \cap X \text{ and } f(X) = 1 \text{ if } X \in \mathcal{H} \}$. It is easy to see that $W_0(\mathcal{H})$ is a closed subset of $\mathcal{C}(\mathcal{H})$ and, consequently, $(W_0(\mathcal{H}), S)$ is a complete metric space. If $A \in 2^X$ and $\varepsilon > 0$, let $N(\varepsilon, A) = \{x \in X \colon d_x(x, a) < \varepsilon \text{ for some } a \in A\}$, where d_x is the metric of X. Let \mathbb{N} be the set of positive integers.
 - 1.1. Proposition. $(W(\mathcal{H}), S)$ is topologically complete.

Proof. By [4, Theorem 24.12] it is enough to prove that $W(\mathcal{H})$ is a G_{δ} subset of $W_0(\mathcal{H})$. For each $n \in \mathbb{N}$, let $F_n = \{f \in W_0(\mathcal{H}): \text{ there exist } A, B \in \mathcal{H} \text{ such that } f(A) = f(B), A \subset B \text{ and } B \not\subset N(1/n, A)\}.$ We will show that F_n is closed in $W_0(\mathcal{H})$. Take a sequence $(f_m)_m$ in F_n which converges to $f \in W_0(\mathcal{H})$. For each $m \in \mathbb{N}$, let $A_m, B_m \in \mathcal{H}$ be such that $A_m \subset B_m$, $f_m(A_m) = f_m(B_m)$ and $B_m \not\subset N(1/n, A_m)$. Choose points $p_m \in B_m - N(1/n, A_m)$. Then there exist $A, B \in \mathcal{H}$, $p \in X$ and a strictly increasing sequence $(m_k)_k$ in \mathbb{N} such that $A_{m_k} \to A$, $B_{m_k} \to B$ and $p_{m_k} \to p$. Then f(A) = f(B), $A \subset B$, $p \in B$ and $p \notin N(1/n, A)$. So $f \in F_n$. Hence F_n is closed.

For each $n \in N$, let $U_n = W_0(\mathcal{H}) - F_n$. Clearly, $\bigcap \{U_n : n \in \mathbb{N}\} = \{f \in W_0(\mathcal{H}) : A \subset B \neq A \text{ implies that } f(A) < f(B)\}$. Since \mathcal{H} is compact and $\mathcal{H} - (X \cup \{X\})$ is open in \mathcal{H} , then there exists a sequence $(\mathcal{H}_n)_n$ of compact subsets of \mathcal{H} such that $\bigcup \{\mathcal{H}_n : n \in \mathbb{N}\} = \mathcal{H} - (X \cup \{X\})$. Define $V_n = \{f \in W_0(\mathcal{H}) : 0 < f(A) < 1 \text{ for every } A \in \mathcal{H}_n\}$. Then V_n is open in $W_0(\mathcal{H})$ and, since $(\bigcap \{U_n : n \in \mathbb{N}\}) \cap (\bigcap \{V_n : n \in \mathbb{N}\}) = W(\mathcal{H})$, we have that $W(\mathcal{H})$ is a G_δ subspace of $W_0(\mathcal{H})$. Hence $W(\mathcal{H})$ is topologically complete.

2. Embedding 2^X in $W(\mathcal{H})$. Throughout this section we suppose that \mathcal{H} is a closed subset of 2^X such that every point in X is a limit of nondegenerate elements of \mathcal{H} , that is, X is contained in the closure of $\mathcal{H} - X$ in 2^X . In this case, we show that 2^X can be naturally embedded in $W(\mathcal{H})$.

Throughout this section, u will denote a fixed Whitney map for 2^X . For $A \in 2^X$, we define $u_A : 2^X \to [0, 1]$ by: $u_A(B) = u(A \cup B)u(B)$.

- 2.1. Theorem. u_A has the following properties:
- (a) u_A is a Whitney map for 2^X for each $A \in 2^X$.
- (b) If $A, B \in 2^X$ and $A \neq B$, then $u_A | \mathcal{X} \neq u_B | \mathcal{X}$.
- (c) The function $\phi: 2^X \to W(\mathcal{H})$ given by $\phi(A) = u_A | \mathcal{H}$ is an embedding.
- *Proof.* (b) Take $A, B \in 2^X$ such that $A \neq B$. Suppose that $u_A | \mathcal{H} = u_B | \mathcal{H}$. Take $x \in X$. Let $(C_n)_n$ be a sequence of elements of $\mathcal{H} X$ such that $C_n \to \{x\}$. Then $A \cup C_n \to A \cup \{x\}$ and $B \cup C_n \to B \cup \{x\}$. Since $u_A(C_n) \equiv u_B(C_n)$, we have that $u(A \cup C_n) = u(B \cup C_n)$. Hence $u(A \cup \{x\}) = u(B \cup \{x\})$ for all $x \in X$.
- If $A \cap B \neq \emptyset$, taking $x \in A \cap B$, we have that u(A) = u(B). Since $A \neq B$, we can choose, for example $y \in B A$, then $u(A \cup \{y\}) = u(B \cup \{y\}) = u(B) = u(A)$. So $u(A \cup \{y\}) = u(A)$. This is a contradiction, so $A \cap B = \emptyset$. Choose points $a \in A$ and $b \in B$; then $u(A) = u(A \cup \{a\}) = u(B \cup \{a\}) > u(B) = u(B \cup \{b\}) = u(A \cup \{b\}) > u(A)$. This contradiction completes the proof of (b).
- (c) It follows from the fact that $H(A,B) < \delta$ implies that $H(A \cup C, B \cup C) < \delta$ for every $C \in 2^X$.
- 3. $W(\mathcal{H})$ determines X. Throughout this section we will suppose that $\mathcal{H} = C(X)$ and $\mathcal{G} = C(Y)$ or $\mathcal{H} = 2^X$ and $\mathcal{G} = 2^Y$. We say that $W(\mathcal{H})$ is equivalent to $W(\mathcal{G})$ if there exists a homeomorphism $\phi \colon W(\mathcal{H}) \to W(\mathcal{G})$ which is a semigroup isomorphism and preserves strict order (that is, $u \lhd w$ if and only if $\phi(u) \lhd \phi(w)$). In [1, Question 14.71.1], S. B. Nadler, Jr., asked the following question: If W(C(X)) (resp., $W(2^X)$) is homeomorphic, or both homeomorphic and algebraically isomorphic, to W(C(Y)) (resp., $W(2^Y)$), then must X and Y be homeomorphic? The aim of this section is to prove the following partial answer to Nadler's question:
 - 3.1. THEOREM. The following assertions are equivalent:
 - (a) $W(\mathcal{H})$ is equivalent to $W(\mathcal{G})$.
- (b) There exists a homeomorphism $F: \mathcal{H} \to \mathcal{G}$ which preserves inclusion (i.e. $A \subset B$ if and only if $F(A) \subset F(B)$).
 - (c) X is homeomorphic to Y.

Proof. Proofs of (b) \Rightarrow (a) and (b) \Leftrightarrow (c) are immediate (see page 473 in [2]). To prove (a) \Rightarrow (c) it is necessary to introduce some terminology.

We make $\mathcal{H}_1 = \mathcal{H} - (X \cup \{X\})$ and $\mathcal{G}_1 = \mathcal{G} - (Y \cup \{Y\})$. If $A \in \mathcal{H}_1$, $u, w \in W(\mathcal{H})$ and $u \leq w$, we say that A is the contact between u and w if A is the only element of \mathcal{H}_1 in which u and w agree. We denote by $(\mathcal{C}[0,1],D)$ the metric space of continuous functions of [0,1] in [0,1] with the "sup metric" D.

For each $t \in [0, 1]$, we define $h_t: [0, 1] \to [0, 1]$ by:

$$h_t(s) \begin{cases} (5/4)s & \text{if } s \in [0, t/2], \\ (3/4)s + (t/4) & \text{if } s \in [t/2, t], \\ (5/4)s - (t/4) & \text{if } s \in [t, (t+1)/2], \\ (3/4)s + (1/4) & \text{if } s \in [(t+1)/2, 1]. \end{cases}$$

Then h_t has the following immediate properties:

- (1) $h_t \in \mathcal{C}[0,1]$.
- (2) $h_t(s) \ge s$ for each $s \in [0, 1]$ and $h_t(s) = s$ if and only if $s \in \{0, t, 1\}$.
- (3) $D(h_t, h_r) \le |t r|$ for every $t, r \in [0, 1]$. Then the function $t \to h_t$ from [0, 1] in $(\mathscr{E}[0, 1], D)$ is continuous.
- (4) h_t is a strictly increasing homeomorphism from [0, 1] onto [0, 1]. We shall prove a sequence of results which will lead us to the proof of (a) \Rightarrow (b). We suppose that $\phi \colon W(\mathcal{H}) \to W(\mathcal{G})$ is an equivalence between $W(\mathcal{H})$ and $W(\mathcal{G})$.
- (A) If $A \in \mathcal{H}_1$ and $u \in W(\mathcal{H})$, then there exists $w \in W(\mathcal{H})$ such that $u \leq w$ and A is the contact between u and w.

To prove (A), take a Whitney map $U: 2^X \to [0,1]$ which extends u (see §4 in this paper). Consider $u_1: \mathcal{H} \to [0,1]$ defined by $u_1(E) = U(A \cup E)U(E)$. Then (see 2.1 (a)), $u_1 \in W(\mathcal{H})$. Let t = u(A); then 0 < t < 1. Define $w = h_t \circ \sqrt{u_1}$. For $E \in \mathcal{H}$,

$$w(E) = h_t(\sqrt{U(E \cup A)U(E)}) \ge \sqrt{U(E \cup A)U(E)} \ge u(E).$$

Thus $w \ge u$. Suppose that $E \in \mathcal{H}_1$ is such that w(E) = u(E). Then $U(E \cup A)U(E) = (U(E))^2$ and $\sqrt{U(E \cup A)U(E)} = t$. It follows that $A \subset E$ and $\sqrt{U(E)U(E)} = t = U(A)$. Hence A = E.

(B) If $u, w \in W(\mathcal{X})$ and $u \leq w$, then $\phi(u) \leq \phi(w)$.

Choose a sequence of increasing homeomorphisms $(g_n)_n$ of [0, 1] on itself such that $g_n \ge \operatorname{Id}$ (Id = identity of [0, 1]), $D(g_n, \operatorname{Id}) \to 0$ and $g_n(t) = t$ if and only if t = 0 or t = 1. Define $w_n = g_n \circ w$. Clearly, $w_n \in W_0(\mathcal{H})$, $u \le w \vartriangleleft w_n$ and $w_n \to w$. Then $\phi(u) \vartriangleleft \phi(w_n)$ and $\phi(w_n) \to \phi(w)$. Hence $\phi(u) \le \phi(w)$.

- (C) Let $A \in \mathcal{H}_1$ and $u, w \in W(\mathcal{H})$ be such that $u \leq w$ and A is the contact between u and w. Then there exists a unique $B \in \mathcal{G}_1$ such that B is the contact between $\phi(u)$ and $\phi(w)$.
- By (B), $\phi(u) \leq \phi(w)$. Since $u \not = w$, we have that $\phi(u) \not = \phi(w)$. Then there exists $B \in \mathcal{G}_1$ such that $\phi(u)(B) = \phi(w)(B)$. Take $E \in \mathcal{G}_1$ such that $\phi(u)(E) = \phi(w)(E)$. By (A), there exists $v \in W(\mathcal{G})$ such that $\phi(w) \leq v$ and E is the contact between $\phi(w)$ and v. Thus $\phi(u) \leq v$ and $\phi(u)(E) = v(E)$. So $u \leq w \leq \phi^{-1}(v)$ and $u \not = \phi^{-1}(v)$. This implies that there exists $D \in \mathcal{H}_1$ such that $u(D) = \phi^{-1}(v)(D)$. Then u(D) = w(D). So D = A. Hence $u(A) = \phi^{-1}(v)(A)$.
- Using (A) again, we have that there exists $v_1 \in W(\mathscr{G})$ such that $\phi(w) \leq v_1$ and B is the contact between $\phi(w)$ and v_1 . Proceeding as before, $u(A) = \phi^{-1}(v_1)(A)$. Then $u^2 \leq \phi^{-1}(v_1)$ and $u^2(A) = \phi^{-1}(v_1)(A)$. So $u^2 \not = \phi^{-1}(v_1)$. Thus there exists $C \in \mathscr{G}_1$ such that $\phi(u^2)(C) = v(C)v_1(C)$. If $C \neq E$, then $\phi(u)(C) \leq \phi(w)(C) < v(C)$ and $0 < \phi(u)(C) \leq v_1(C)$. This implies that $\phi(u^2)(C) < v(C)v_1(C)$. This contradiction proves that C = E. Similarly, C = B. Hence C = B is the contact between C = C and C = C.
- (D) Let $u, v, w, z \in W(\mathcal{H})$ and $A \in \mathcal{H}_1$ be such that $u \leq v, w \leq z$ and A is the contact between u and v and w and z. Then the contact between $\phi(u)$ and $\phi(v)$ is the contact between $\phi(w)$ and $\phi(z)$.

Since uw(A) = vz(A), we have that $\phi(uw) \le \phi(vz)$ and $\phi(uw) \not = \phi(vz)$. Then there exists $B \in \mathcal{G}_1$ such that $\phi(uw)(B) = \phi(vz)(B)$. This implies that $\phi(u)(B) = \phi(v)(B)$ and $\phi(w)(B) = \phi(z)(B)$. Hence B is the contact between $\phi(u)$ and $\phi(v)$ and $\phi(w)$ and $\phi(z)$.

We define $F: \mathcal{H}_1 \to \mathcal{G}_1$ in the following way: For $A \in \mathcal{H}_1$, we take $u, w \in W(\mathcal{H})$ such that $u \leq w$ and A is the contact between u and w. We define F(A) as the element of \mathcal{G}_1 which is the contact between $\phi(u)$ and $\phi(w)$. Then, by (D), F is well defined. Clearly, we can define $F^{-1}: \mathcal{G}_1 \to \mathcal{H}_1$ in a similar way. Hence F is bijective.

(E) F is continuous.

Take a sequence $(A_n)_n$ of \mathcal{H}_1 which converges to an element A from \mathcal{H}_1 . Let $B_n = F(A_n)$ and B = F(A). Since \mathcal{G} is compact, $(B_n)_n$ has a subsequence which converges to a D in \mathcal{G} . Without loss of generality we may suppose that $B_n \to D$. We will prove that D = B.

Fix $u \in W(2^X)$. By 2.1(c), $u_{A_n} \to u_A$. So $\sqrt{u_{A_n}} \to \sqrt{u_A}$. Let $t_n = u(A_n)$ and t = u(A). Then $h_{t_n} \to h_t$. So $h_{t_n} \circ \sqrt{u_{A_n}} \to h_t \circ \sqrt{u_A}$. Define $w_n = (h_{t_n} \circ \sqrt{u_{A_n}})|\mathscr{H}$, $w = (h_t \circ \sqrt{u_A})|\mathscr{H}$ and $u_1 = u|\mathscr{H}$. As we showed in (A), $u_1 \leq w_n$, $u_1 \leq w$, u_n is the contact between u_1 and u_n and u_n is the contact between u_n and u_n is the contact between u_n and u_n and u_n is the contact between

 $\phi(u_1)$ and $\phi(w_n)$ and B is the contact between $\phi(u_1)$ and $\phi(w)$. Since $B_n \to D$, $\phi(u_1)(B_n) = \phi(w_n)(B_n)$ and $\phi(w_n) \to \phi(w)$, we have that $\phi(u_1)(D) = \phi(w)(D)$. If $D \in \mathcal{G}_1$, since B is the contact between $\phi(u_1)$ and $\phi(w)$, we have that D = B. Then we must show that $D \in \mathcal{G}_1$.

Suppose that $D \in X \cup \{X\}$. Let $s_n = \phi(u_1)(B_n) = \phi(w_n)(B_n)$ and $v_n = h_{s_n} \circ \phi(w_n) \in W(\mathcal{S})$. Since $B_n \to D$, then $s_n \to 0$ or $s_n \to 1$. So $h_{s_n} \to h_0$ $(h_0 = h_1)$. Thus $h_{s_n} \circ \phi(w_n) \to h_0 \circ \phi(w)$. Since $\phi(u_1)(B_n) = s_n = h_{s_n}(s_n) = h_{s_n}(\phi(w_n)(B_n))$, we have that $\phi(u_1) \not = h_{s_n} \circ \phi(w_n)$. Then $u_1 \not= \phi^{-1}(h_{s_n} \circ \phi(w_n))$, so there exists $C_n \in \mathcal{H}_1$ such that

$$u_1(C_n) \ge \phi^{-1}(h_{s_n} \circ \phi(w_n))(C_n) \ge w_n(C_n) \ge u_1(C_n).$$

Thus $C_n = A_n$ and $\phi^{-1}(h_{s_n} \circ \phi(w_n))(A_n) = u_1(A_n)$. And since $\phi^{-1}(h_{s_n} \circ \phi(w_n)) \to \phi^{-1}(h_0 \circ \phi(w))$, we have that

$$\phi^{-1}(h_0 \circ \phi(w))(A) = u_1(A).$$

But $\phi(u_1) \leq \phi(w) \triangleleft h_0 \circ \phi(w)$ implies that $u_1 \triangleleft \phi^{-1}(h_0 \circ \phi(w))$. This contradiction proves that $D \notin X \cup \{X\}$ and completes the proof of (E).

- (F) If $u, w \in W(\mathcal{H})$, then $v = \max\{u, w\} \in W(\mathcal{H})$ and $\phi(v) = \max\{\phi(u), \phi(w)\}$.
- (G) Let $u, w \in W(\mathcal{H})$ and $A \in \mathcal{H}_1$ be such that u(A) = w(A). Then $\phi(u)(F(A)) = \phi(w)(F(A))$.
- By (A), there exists $v \in W(\mathscr{H})$ such that $\max\{u,w\} \leq v$ and A is the contact between $\max\{u,w\}$ and v. Then $u,w \leq v$ and A is the contact between u and v and w and v. So F(A) is the contact between $\phi(u)$ and $\phi(v)$ and $\phi(w)$ and $\phi(v)$ where in particular, $\phi(u)(F(A)) = \phi(v)(F(A)) = \phi(w)(F(A))$.
- (H) Let $A, B \in \mathcal{H}_1$ be such that $B \not\supset A$. Then there exists $u \in W(\mathcal{H})$ such that u(A) < u(B).

Fix $w \in W(2^X)$. Since $B \not\subset A$, there exists $n \in \mathbb{N}$ such that $(w(A))^n w(A) < (w(A \cup B))^n w(B)$. Define $u_1 : 2^X \to [0, 1]$ by $u_1(E) = (w(A \cup E))^n w(E)$ and let $u = u_1 | \mathcal{H}$.

(I) If $A, B \in \mathcal{H}_1$ and $B \subset A$, then $F(B) \subset F(A)$.

Suppose that $F(B) \not\subset F(A)$. Let $w \in W(\mathscr{G})$ such that w(F(A)) < w(F(B)). Put $u = \phi^{-1}(w)$. Choose $n \geq 2$ such that $\sqrt[n]{u(B)} > u(A)$. Let r = w(F(A)), s = w(F(B)) and $q = \sqrt[n]{w(F(B))}$. Then 0 < s < q < 1. So there exists an increasing homeomorphism $\sigma \colon [0,1] \to [0,1]$ such that $\sigma(t) = t$ if $t \in [0,r]$; $\sigma(t) > t$ if $t \in (r,1)$; $\sigma(1) = 1$ and $\sigma(s) = q$. Then $\sigma \circ w \in W(\mathscr{G})$ and $(\sigma \circ w)(F(A)) = r = w(F(A))$. Let $v = \phi^{-1}(\sigma \circ w)$. By analogy to property (G) for ϕ^{-1} and F^{-1} , we have that $v(A) = \phi^{-1}(w)(A) = u(A)$.

Notice that $(\sigma \circ w)^n \in W(\mathscr{G})$ and $(\sigma \circ w)^n(F(B)) = (\sigma(s))^n = q^n = w(F(B))$. Then $\phi^{-1}((\sigma \circ w)^n(B)) = \phi^{-1}(w)(B)$ (by the analogy to property (G) for ϕ^{-1} and F^{-1}). Thus $v(B) = \sqrt[n]{u(B)} > u(A) = v(A)$. Hence v(B) > v(A). This contradiction proves (I).

We define $f\colon X\to Y$ in the following way: Given $x\in X$, take a sequence $(A_n)_n$ of elements of \mathscr{H}_1 such that $A_1\supset A_2\supset \cdots$ and $\{x\}=\bigcap\{A_n\colon n\in \mathbf{N}\}$. Then $F(A_1)\supset F(A_2)\supset \cdots$. Thus $B=\bigcap\{F(A_n)\colon n\in \mathbf{N}\}$ is closed and nonempty. Since $B\subset F(A_1)\in \mathscr{G}_1$, we have that $B\neq Y$. If $B\notin Y$, then $B\in \mathscr{G}_1$. Let $A=F^{-1}(B)\in \mathscr{H}_1$. By (I) applied to F^{-1} , $A_n\to A$. So $A=\{x\}\in \mathscr{H}_1$. This contradiction proves that B is as a set of a single point Y. We define f(x)=Y.

(J) f is well defined.

Let $(A_n)_n$ and $(B_n)_n$ be sequences in \mathcal{H}_1 such that $A_1 \supset A_2 \supset \cdots$; $B_1 \supset B_2 \supset \cdots$ and $\{x\} = \bigcap \{A_n \colon n \in \mathbb{N}\} = \bigcap \{B_n \colon n \in \mathbb{N}\}$. Put $C_n = A_n \cup B_n \in \mathcal{H} - X$. Then $\{x\} = \bigcap \{C_n \colon n \in \mathbb{N}\}$. Thus $\emptyset \neq \bigcap \{F(A_n) \colon n \in \mathbb{N}\}$, $\bigcap \{F(B_n) \colon n \in \mathbb{N}\} \subset \bigcap \{F(C_n) \colon n \in \mathbb{N}\}$ by the paragraph above, the last set is a singleton. Hence $\bigcap \{F(A_n) \colon n \in \mathbb{N}\} = \bigcap \{F(B_n) \colon n \in \mathbb{N}\}$. This proves (J).

Similarly, we can define $f^{-1}: Y \to X$, then f^{-1} is well defined and f is bijective.

(K) f is continuous.

Notice that if $A \in \mathcal{H}_1$, then $x \in A$ if and only if $f(x) \in F(A)$. Suppose that f is not continuous in a point $x \in X$. Let $\varepsilon > 0$ and let $(x_n)_n$ be a sequence in X such that $x_n \to x$; $d_Y(f(x), f(x_n)) \ge \varepsilon$ for every $n \in \mathbb{N}$ and $\varepsilon <$ diameter of X. Since Y is compact, we may suppose that $f(x_n) \to y$ with $y \in Y$. For $n \in \mathbb{N}$, make $y_n = f(x_n)$ and choose $B_n \in C(Y)$ such that $y_n \in B_n$ and $\varepsilon/4 \le$ diameter of $B_n \le \varepsilon/2$. We may suppose also that $B_n \to B$ with $B \in C(Y)$. Then $B \in C(Y) \cap \mathcal{G}_1$ and $y \in B$. Let $A_n = F^{-1}(B_n)$ and $A = F^{-1}(B)$. Then $A_n \to A$ and $x_n = f^{-1}(y_n) \in F^{-1}(B_n) = A_n$. So $x \in A$ and $f(x) \in B$. Thus $f(x), y \in B$, diameter of $B \le \varepsilon/2$ and $f(x_n) \to y$. This is a contradiction with the choice of $(x_n)_n$.

This completes the proof of Theorem 3.1.

- 3.2. Corollary. The following assertions are equivalent:
- (a) W(C(X)) is equivalent to W(C(Y)).
- (b) $W(2^X)$ is equivalent to $W(2^Y)$.
- **4. Embedding** $W(\mathcal{H})$ in $W(2^X)$. In this section we suppose that \mathcal{H} is an arbitrary closed nonempty subset of 2^X . In [3]. L. E. Ward, Jr.,

proved that any Whitney map for \mathscr{H} can be extended to a Whitney map for 2^X . His proof is based in Nachbin's order-theoretic version of Tietze's Theorem for "normally ordered" spaces [1]. Here we prove, with explicit formulas, this version of Tietze's Theorem for the particular case of hyperspaces (it states that every map in $W_0(\mathscr{H})$ can be extended to a map in $W_0(2^X)$). Then, using the constructions of L. E. Ward, Jr., we prove that there exists an embedding $\phi \colon W(\mathscr{H}) \to W(2^X)$ such that $\phi(w)$ is an extension of w for every $w \in W(\mathscr{H})$.

Notice that every map $w \in W(\mathcal{H})$ can be extended, in a natural way, to a map $w_0 \in W(\mathcal{H} \cup X \cup \{X\})$ and the correspondence $w \to w_0$ is continuous. So, we also suppose that $X \cup \{X\} \subset \mathcal{H}$.

Given T > 0, we denote by A([0, T]) the metric space of bounded real-valued functions defined in [0, T] with the "sup metric".

4.1. LEMMA. Let T > 0 and let $f: [0, T] \to \mathbf{R}$ be a strictly increasing function such that f(0) = 0 and f is continuous at 0. Then we can choose a strictly increasing continuous function $g: [0, T] \to \mathbf{R}$ such that g(0) = 0, $g(t) \ge f(t)$ for each $t \in [0, T]$ and the correspondence $f \to g$ from A([0, T]) in A([0, T]) is continuous.

Proof. For $n \ge 2$, let $y_n = f(T/(n-1))$. Let $y_1 = 2f(T)$. Then, for every $n \in \mathbb{N}$ and $t \in [0, T/n]$, $f(t) \le y_{n+1} < y_n$. Define $g: [0, T] \to \mathbb{R}$ by:

$$g(t) = \begin{cases} (n(t/T) - 1)(n+1)(y_n - y_{n+1}) + y_n & \text{if } t \in [T/(n+1), T/n], \\ 0 & \text{if } t = 0. \end{cases}$$

4.2. THEOREM. There exists an embedding $\phi: W(\mathcal{H}) \to W(2^X)$ such that $\phi(w)$ is an extension of w for each $w \in W(\mathcal{H})$.

Proof. For each $w \in W_0(\mathcal{H})$ ($W_0(\mathcal{H})$ is defined in §1), we define $f: [0, \infty) \to \mathbf{R}$ by f(0) = 0 and, for t > 0,

$$f(t) = \sup\{w(A) - w(B): A, B \in \mathcal{H} \text{ and } A \subset N(t, B)\}.$$

(A) f is an increasing function and f is continuous at 0.

Clearly, f is an increasing function. Suppose that f is not continuous at 0. Then $\varepsilon = \inf\{f(t): t > 0\} > 0$. So $f(1/n) > \varepsilon/2$ for every $n \in \mathbb{N}$. Thus there exist sequences $(A_n)_n$ and $(B_n)_n$ in \mathscr{H} such that $w(A_n) - w(B_n) \ge \varepsilon/2$ and $A_n \subset N(1/n, B_n)$. Let $A, B \in \mathscr{H}$ and let $(n_k)_k$ be a strictly increasing sequence in \mathbb{N} such that $A_{n_k} \to A$ and

 $B_{n_k} \to B$. Then $\varepsilon/2 \le w(A) - w(B)$, so w(B) < w(A). But $A_{n_k} \subset N(1/(n_k), B_{n_k})$ for all k, implies that $A \subset B$. Thus $w(A) \le w(B)$. This contradiction proves (A).

Define T=2 (diameter of X) and $f_1:[0,T]\to \mathbb{R}$ by: $f_1(t)=f(t)+t$. (B) The correspondence $w\to f_1$ from $W_0(\mathscr{H})$ in A([0,T]) is continuous, f_1 is strictly increasing and continuous in 0.

By Lemma 4.1, we can associated a continuous function g to f_1 such that $g(t) \ge f_1(t)$ for each $t \in [0, T]$, g(0) = 0 and g is strictly increasing. Then the correspondence $w \to g$ from $W_0(\mathscr{H})$ in A([0, T]) is continuous. We define $v: 2^X \to \mathbb{R}$ by: $v(B) = \inf\{w(A) + g(t): A \in \mathscr{H}, 0 < t \le T \text{ and } B \subset N(t, A)\}$.

(C) v is continuous, v extends $w, v \in W_0(2^X)$ and the correspondence $w \to v$ is continuous.

Take $\varepsilon > 0$. Let $\delta > 0$ be such that $B_1, B_2 \in \mathcal{H}$; $H(B_1, B_2) < \delta$ and $s, t \in [0, T]$; $|s - t| < \delta$ implies that $|w(B_1) - w(B_2)| < \varepsilon/2$ and $|g(s) - g(t)| < \varepsilon/2$. Let $B_1, B_2 \in \mathcal{H}$ be such that $H(B_1, B_2) < \delta/2$. Take $A_1 \in \mathcal{H}$ and $t \in (0, T]$ such that $B_1 \subset N(t, A_1)$ and $v(B_1) \leq w(A_1) + g(t) < v(B_1) + \varepsilon/2$. Since $B_2 \subset N(\delta/2, B_1)$ and $B_1 \subset N(t, A_1)$, we have that $B_2 \subset N(t + \delta/2, A_1)$. Let $s = \min\{T, t + \delta/2\}$. Then $B_2 \subset N(s, A_1)$ and $|s - t| < \delta$. Thus $|g(s) - g(t)| < \varepsilon/2$ and

$$v(B_2) \le w(A_1) + g(s) \le w(A_1) + g(t) + \varepsilon/2 < v(B_1) + \varepsilon.$$

Hence $v(B_2) < v(B_1) + \varepsilon$. Similarly it can be proved that $v(B_1) < v(B_2) + \varepsilon$. This proves the continuity of v.

If $B \in \mathcal{H}$, since $B \subset N(B,t)$ for all $t \in (0,T]$, then $v(B) \leq w(B)$. From definition of f it follows that $v(B) \geq w(B)$. Hence v(B) = w(B). It is easy to prove that $v \in W_0(2^X)$ and that the correspondence $w \to v$ is continuous.

From now on, we copy Ward's proof giving explicit constructions for some steps in order to be able to check that ϕ is continuous.

Let β be a denumerable basis for the topology of X. For each finite sequence $L = (T_i, T_2, \dots, T_k)$ of elements of β , define $G(L) = \{A \in 2^X : A \subset \operatorname{Cl}_X(T_1 \cup \dots \cup T_k)\}$ and

$$K(L) = \{A \in 2^X : A \cap \operatorname{Cl}_x(T_1) \neq \emptyset; \dots : A \cap \operatorname{Cl}_x(T_k) \neq \emptyset \}.$$

Then G(L), $K(L) \in 2^{2^X}$ and $X \in K(L)$. Let $((L_n, M_n))_n$ be an enumeration of $\{(L, M): L \text{ and } M \text{ are finite sequences of elements of } \beta \text{ such that } G(L) \cap K(M) = \emptyset\}$.

Given $w \in W(\mathcal{H})$, take $v \in W_0(2^X)$ as in (C). For each $n \in \mathbb{N}$, let $r_n = \max w | (G(L_n) \cap \mathcal{H}) \text{ and } R_n = \min w | (K(M_n) \cap \mathcal{H}).$

Define $v_n: G(L_n) \cup \mathcal{H} \cup K(M_n) \to \mathbf{R}$ by:

$$v_n(A) = \begin{cases} \min\{r_n, v(A)\} & \text{if } A \in G(L_n), \\ \max\{R_n, v(A)\} & \text{if } A \in K(M_n), \\ w(A) & \text{if } A \in \mathscr{H}. \end{cases}$$

It is easy to prove that:

(D) v_n is well defined, $v_n \in W_0(G(L_n) \cup \mathcal{H} \cup K(M_n))$ and the correspondence $w \to v_n$ is continuous.

Take $u_n \in W_0(2^X)$ an extension of v_n as in (C) (then the correspondence $v_n \to u_n$ is continuous).

Define $u: 2^X \to [0, 1]$ by $u = \sum (u_n)/(2^n)$. Then: (E) $u \in W(2^X)$, u extends w and the correspondence $w \to u$ is continuous.

Let $A, B \in 2^X$ be such that $A \subset B \neq A$. We will prove that u(A) < Au(B). For this, it is enough to show that there exists $n \in \mathbb{N}$ such that $A \in G(L_n), B \in K(M_n)$ and $r_n < R_n$. Assume the last assertion is false. Let $K \in \mathbb{N}$ be such that $B \subset N(2/K, A)$. For $k \geq K$, choose finite sequences $L = (T_1, ..., T_a)$ and $M = (S_1, ..., S_b)$ of β such that $A \subseteq T_1 \cup \cdots \cup T_a \subset N(1/k, A); B \subset S_1 \cup \cdots \cup S_b;$ diameter of $T_i < 1/k;$ diameter of $S_i < 1/k$ and $B \cap S_i \neq \emptyset$ for all $i \in \{1, ..., b\}$. Then $A \in G(L), B \in K(M)$ and $G(L) \cap K(M) = \emptyset$. So there exists $s_k \in \mathbb{N}$ such that $(L, M) = (L_{s_{\iota}}, M_{s_{\iota}})$.

Because we are assuming, $r_{s_k} \geq R_{s_k}$. So there exist $A_k \in G(L_{s_k}) \cap$ \mathcal{H} such that $w(A_k) \geq w(B_k)$. Let $A_0, B_0 \in \mathcal{H}$ and $(A_{k_c})_c, (B_{k_c})_c$ be subsequences of $(A_k)_k$, $(B_k)_k$, respectively, such that $A_{k_c} \rightarrow A_0$ and $B_k \to B_0$. Then $A_0 \subset A$, $B_0 \subset B$ and $w(A_0) \geq w(B_0)$. This is a contradiction since w is a Whitney map. This completes the proof of u(A) < u(B).

Define $\phi: W(\mathcal{H}) \to W(2^X)$ by $\phi(w) = u$. Then ϕ is continuous. Define $\psi: W(2^X) \to W(\mathcal{H})$ by $\psi(u) = u|\mathcal{H}$, then $\psi \circ \phi = u|\mathcal{H}$ Identity of $W(\mathcal{H})$ and $\phi \circ (\psi | \phi(W(\mathcal{H}))) = Identity$ of $Im \phi$. Hence ϕ is an embedding.

4.3. COROLLARY. $W(\mathcal{H})$ is homeomorphic to a subspace of $W(2^X)$ which is a strong deformation retract of $W(2^X)$.

Proof. Let ϕ and ψ be as above; then Im ϕ is homeomorphic with $W(\mathcal{H})$ and Im ϕ is a retract of $W(2^X)$. Thus, since $W(2^X)$ is convex ([2, 14.71.3]), Im ϕ is a strong deformation retract of $W(2^X)$.

Added in proof. The author has proved that W(C(X)) is homeomorphic to l_2 for every continuum X. ("The space of Whitney levels" preprint).

REFERENCES

- [1] L. Nachbin, Topology and Order, Van Nostrand, 1965.
- [2] S. B. Nadler, Jr., Hyperspaces of Sets, Dekker, 1978.
- [3] L. E. Ward, Jr., Extending Whitney maps, Pacific J. Math., 93 (1981), 465-469.
- [4] S. Willard, General Topology, Addison-Wesley, 1970.

Received October 25, 1987 and in revised form May 24, 1988.

CIUDAD UNIVERSITARIA CIRCUITO EXTERIOR, MEXICO, D.F. C.P. 04510, MEXICO