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SPACES OF WHITNEY MAPS

ALEJANDRO ILLANES

Let X be a continuum. Let 2% (respectively, C(X)) be the hy-
perspace of nonempty closed subsets (respectively, subcontinua) of X,
endowed with the Hausdorff metric. For 7 = C(X) or 2%, let W (%)
denote the space of Whitney maps for .%#" with the “sup metric” and
pointwise product. In this paper we prove that if there exists a home-
omorphism ¢: W(C(X)) — W(C(Y)) (or ¢: W(2X) — W(2¥))
which preserved products and “strict order”, then X is homeomorphic
to Y. We also prove that there exists an embedding y: W(C(X)) —
W (2%) such that y(u) is an extension of u for each u € W (C(X)).

Introduction. A continuum is a nondegenerate compact, connected
metric space. All the spaces considered here are continua. If X is a
continuum, 27X (respectively, C(X)) is the hyperspace of nonempty
closed subsets (respectively, subcontinua) of X, endowed with the
Hausdorff metric H. Let # be a nonempty closed subset of 2X. A
Whitney map for # is a continuous function u: # — [0, 1] such that
(a) u(A) = 0 if and only if A4 is a single point set; (b) u(4) = 1
if and only if 4 = X; and (c) if 4,B € # and A C B # A, then
u(A) < u(B). Let W(#) denote the space of Whitney maps for 7.
We identify X with {{x}: x € X} c C(X),2X. Given u,w € W(¥#),
we say that u is strictly smaller than w (u < w) if u(4) < w(4) for
each 4 € # — (X U {X}) and u is smaller or equal than w (u < w)
if u(4) < w(A) for each 4 € #. We consider W (#) with the “sup
metric”, the pointwise product and the orders defined above.

In this paper we prove that: (a) W (#) is a topologically complete
space. This answers a question asked by S. B. Nadler, Jr. [2, question
14.71.4]; (b) There is a natural way to embed 2% in W(C(X)) and
in W2X); c) If # =C(X)and £ = C(Y) or # =2¥ and & = 2¥
and there exists a homeomorphism ¢: W (#) — W(Z) which is a
semigroup isomorphism and preserves strict order (in the sense that
u < w if and only if ¢(u) < ¢(w)), then X is homeomorphic to Y
(this answers, partially, question 14.71.1 formulated by S. B. Nadler,
Jr. in [2]). In [3], L. E. Ward, Jr., showed that Whitney maps for #
can be extended to Whitney maps for 2X. Using his constructions, we
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prove: (d) There exists an embedding ¢: W (#) — W (2%) such that
¢(u) is an extension of u for every u € W (7).

1. W(#) is topologically complete. Let /# be a nonempty closed
subset of 2¥. Let #(#) = {f: # — [0,1]|f is continuous}. We
consider #(#) with the sup metric S defined by S(f,g) =
max{|f(A4) — g(A4)|: A € #}. Then (¥ (#),S) is a complete metric
space. Let Wy(Z) = {f € #(#): A,B € # and A C B implies that
f(4) < f(B), f(A)=0forevery A € ZNX and f(X)=1if X € #}.
It is easy to see that W((#) is a closed subset of #(#) and, conse-
quently, (W, (#),S) is a complete metric space. If 4 € 2X and ¢ > 0,
let N(e,A) = {x € X:dx(x,a) < ¢ for some a € A}, where d, is the
metric of X. Let N be the set of positive integers.

1.1. PROPOSITION. (W (%),S) is topologically complete.

Proof. By [4, Theorem 24.12] it is enough to prove that W (%) is
a Gy subset of Wy(Z). For each n € N, let F,, = {f € Wy(#): there
exist 4, B € Z such that f(4) = f(B), AC B and B ¢ N(1/n,A)}.
We will show that F, is closed in W, (#). Take a sequence ( f,)m in Fy,
which converges to f € Wy(#). For each m € N, let 4,,, By, € # be
such that 4,, C By, fm(Am) = fm(Bm) and B,, ¢ N(1/n, A,). Choose
points p,, € By, — N(1/n, Ap,). Then there exist 4,B€ #,p € X and
a strictly increasing sequence (m; ), in N such that 4,,, — 4, B,,, — B
and p,,, — p. Then f(A) = f(B), AC B,p€ Bandp ¢ N(1/n,A).
So f € F,. Hence F, is closed.

For each n € N, let U, = Wy(#) — F,. Clearly, N{U,: n € N} =
{f € Wo(#): A C B # A implies that f(4) < f(B)}. Since # is
compact and # — (X U {X}) is open in #, then there exists a se-
quence (%), of compact subsets of /# such that | J{#,: n € N} =
Z — (X U{X}). Define V,, = {f € Wy(#): 0 < f(A) < 1 for every
A € #,}. Then V, is open in Wy(#) and, since (({U,: n € N}) N
(N{Vyp: n € N}) = W(#), we have that W (#) is a G5 subspace of
Wo(#). Hence W (#) is topologically complete.

2. Embedding 2X in W (#). Throughout this section we suppose
that 2% is a closed subset of 2¥ such that every point in X is a limit of
nondegenerate elements of #, that is, X is contained in the closure of
# — X in2X. In this case, we show that 2¥ can be naturally embedded
in W (#).

Throughout this section, u will denote a fixed Whitney map for 2¥.
For A € 2X, we define u,: 2X — [0,1] by: u4(B) = u(AU B)u(B).



SPACES OF WHITNEY MAPS 69

2.1. THEOREM. u, has the following properties:

(a) uy is a Whitney map for 2X for each A € 2X.

(b) If A, B € 2X and A # B, then u,4|# # up|#.

(c) The function ¢: 2X — W (#) given by ¢(A) = uy|# is an em-
bedding.

Proof. (b) Take A4, B € 2X such that 4 # B. Suppose that u,|# =
ug|#. Take x € X. Let (C,), be a sequence of elements of # — X
such that C, — {x}. Then AUC, - AU{x} and BUC, —» BU{x}.
Since u4(Cy) = ug(Cp), we have that u(4A U C,) = u(B U C,). Hence
u(Au{x}) =u(BU{x}) for all x € X.

If AN B # &, taking x € AN B, we have that u(A4) = u(B). Since
A # B, we can choose, for example y € B — A4, then u(4AU {y}) =
u(Bu{y}) = u(B) = u(A4). So u(AuU{y}) = u(4). This is a contra-
diction, so AN B = &. Choose points a € A and b € B; then u(A)
= u(du{a}) = u(BU{a}) > u(B) = u(BU{b}) = u(Au {b}) >
u(A). This contradiction completes the proof of (b).

(c) It follows from the fact that H(4,B) < J implies that
H(AUC,BUC) < ¢ for every C € 2.

3. W(#) determines X. Throughout this section we will suppose
that # = C(X) and € = C(Y) or #Z = 2X and & = 2Y. We say
that W (#) is equivalent to W (%) if there exists a homeomorphism
¢: W(#) — W(Z) which is a semigroup isomorphism and preserves
strict order (that is, # < w if and only if ¢(u) < ¢(w)). In [1, Question
14.71.1], S. B. Nadler, Jr., asked the following question: If W (C(X))
(resp., W(2X)) is homeomorphic, or both homeomorphic and alge-
braically isomorphic, to W (C(Y)) (resp., W(2Y)), then must X and
Y be homeomorphic? The aim of this section is to prove the following
partial answer to Nadler’s question:

3.1. THEOREM. The following assertions are equivalent:

(a) W(#) is equivalent to W (Z).

(b) There exists a homeomorphism F : % — & which preserves in-
clusion (i.e. A C B if and only if F(A) C F(B)).

(¢) X is homeomorphic to Y.

Proof. Proofs of (b) = (a) and (b) < (c) are immediate (see page
473 in [2]). To prove (a) = (c) it is necessary to introduce some
terminology.
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Wemake Z =Z — (XU{X})and & =% — (YU{Y}). If A€ A,
u,w € W(#) and u < w, we say that 4 is the contact between u and
w if A4 is the only element of /# in which ¥ and w agree. We denote
by (#]0, 1], D) the metric space of continuous functions of [0, 1] in
[0, 1] with the “sup metric” D.

For each ¢ € [0, 1], we define 4;: [0,1] — [0, 1] by:

(5/4)s if s €[0,¢/2],
(3/4)s + (t/4) if s e[t/2,1],
(5/4)s —(t/4) ifse[t,(t+1)/2],
(3/4)s +(1/4) ifse[(t+1)/2,1].

hs(s)

Then A, has the following immediate properties:

(1) h, € 2[0, 1].

(2) hi(s) > s for each s € [0,1] and A,(s) = s if and only if s €
{0,¢,1}.

(3) D(hy, hy) < |t—r| for every t,r € [0, 1]. Then the function ¢ — A,
from [0, 1] in (Z[0, 1], D) is continuous.

(4) hy is a strictly increasing homeomorphism from [0, 1] onto [0, 1].

We shall prove a sequence of results which will lead us to the proof
of (a) = (b). We suppose that ¢: W(#) — W(¥Z) is an equivalence
between W (%) and W (Z).

(A) If 4 € # and u € W(%'), then there exists w € W(#) such
that ¥ < w and A4 is the contact between u and w.

To prove (A), take a Whitney map U: 2X — [0, 1] which extends u
(see §4 in this paper). Consider u;: . Z — [0, 1] defined by u,(E) =
U(AUE)U(E). Then (see 2.1 (a)), uy € W(#). Let t = u(A); then
0<t< 1. Define w = h;0/u;. For E€ 7,

w(E) = h(VU(EUAU(E)) 2 VU(EUAU(E) 2 u(E).

Thus w > u. Suppose that E € # is such that w(E) = u(E). Then
U(EUA)U(E) = (U(E))? and /U(EUA)U(E) = t. It follows that
ACE and VJUE)U(E)=t=U(A4). Hence A = E.

(B) If u,w € W(#) and u < w, then ¢(u) < p(w).

Choose a sequence of increasing homeomorphisms (g,), of [0, 1]
on itself such that g, > Id (Id = identity of [0, 1]), D(g,,Id) — 0 and
gn(t) =t if and only if t = 0 or ¢ = 1. Define w, = g, o w. Clearly,
wy, € Wo(#), u < w <4 w, and w, — w. Then ¢(u) < ¢(w,) and

¢(wn) — (w). Hence ¢(u) < p(w).
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(C) Let A € # and u,w € W(#) be such that u < w and A4 is the
contact between ¥ and w. Then there exists a unique B € % such that
B is the contact between ¢(u) and ¢(w).

By (B), ¢(u) < ¢(w). Since u 4 w, we have that ¢(u) 4 ¢(w). Then
there exists B € & such that ¢(u)(B) = ¢(w)(B). Take E € & such
that ¢(u)(E) = ¢(w)(E). By (A), there exists v € W(Z) such that
¢(w) < v and E is the contact between ¢(w) and v. Thus ¢(u) < v
and ¢(u)(E) = v(E). Sou < w < ¢ '(v) and u # ¢~ !(v). This
implies that there exists D € #{ such that u(D) = ¢~!(v)(D). Then
u(D) = w(D). So D = A. Hence u(A) = ¢~ (v)(4).

Using (A) again, we have that there exists vy € W() such that
¢(w) < vy and B is the contact between ¢(w) and v;. Proceeding
as before, u(4) = ¢~'(v;)(4). Then u? < ¢~!(v v;) and u?(4) =
¢~ (v vy)(A). So u? 4 ¢~ (v vy). Thus there exists C € & such that
$(u?)(C) = v(C)vy(C). If C # E, then ¢(u)(C) < ¢(w)(C) < v(C)
and 0 < ¢(u)(C) < v{(C). This implies that ¢(u?)(C) < v(C)v;(C).
This contradiction proves that C = E. Similarly, C = B. Hence B is
the contact between ¢(u) and ¢(w).

(D) Let u,v,w,z,€ W(#) and A € Z be such that u < v, w < z
and A4 is the contact between # and v and w and z. Then the contact
between ¢(u) and ¢(v) is the contact between ¢(w) and ¢(z).

Since uw(A4) = vz(A4), we have that ¢(uw) < ¢(vz) and ¢p(uw) 4
@(vz). Then there exists B € £ such that ¢(uw)(B) = ¢(vz)(B). This
implies that ¢(u)(B) = ¢(v)(B) and ¢(w)(B) = ¢(z)(B). Hence B is
the contact between ¢(u) and ¢(v) and ¢(w) and ¢(z).

We define F: # — % in the following way: For 4 € #{, we take
u,w € W(#) such that u < w and A is the contact between u and
w. We define F(A) as the element of £, which is the contact between
¢(u) and ¢(w). Then, by (D), F is well defined. Clearly, we can define
F~1': 2 — % in a similar way. Hence F is bijective.

(E) F is continuous.

Take a sequence (A4,), of # which converges to an element 4 from
#. Let B, = F(A,) and B = F(A). Since & is compact, (B,), has a
subsequence which converges to a D in Z. Without loss of generality
we may suppose that B, — D. We will prove that D = B.

Fix u € W(2X). By 2.1(c), uy, — u4. So fiy, — /lg. Let
tn = u(A,) and t = u(A4). Then h;, — h;. So hy, o \Juy, — hy o \Juy.
Define wy, = (h;, o /i 4,)|#, w = (h o \Juy)|# and u; = u|Z. As we
showed in (A), u; < wy, u; < w, A, is the contact between | and w,
and A is the contact between u; and w. So B, is the contact between
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¢(uy) and ¢(w,) and B is the contact between ¢(u;) and ¢(w). Since
By — D, ¢(u1)(Ba) = $(wy)(By) and $(w,) — $(w), we have that
o(u)(D) = ¢p(w)(D). If D € &, since B is the contact between ¢(u;)
and ¢(w), we have that D = B. Then we must show that D € .

Suppose that D € X U {X}. Lets, = ¢(u;)(B,) = ¢(w,)(B,) and
Up = hy, 0 p(wy,) € W(Z). Since B, — D, then s, — 0 or s, — 1. So
hs, — ho (ho = hy). Thus hg, o ¢p(wy) — hg o p(w). Since ¢(u;)(Bn) =
Sn = hs, (Sn) = hs,(p(wy,)(By)), we have that ¢(u;) 4 hs, o p(wy). Then
u; 4 ¢~ (hs, o p(wy)), so there exists C, € # such that

u(Cp) 2 ¢_l(hs,. 0 p(wn))(Cn) = wu(Cp) > ui(Cy).

Thus C, = A, and ¢~ '(hs, o ¢(w,))(4,) = u;(A4,). And since
¢~ (hs, o p(wn)) — ¢~ (ho o p(w)), we have that

¢~ (ho o p(w))(A) = us (4).
But ¢(u;) < ¢(w) < hg o d(w) implies that u; <1 ¢~ (hg o p(w)). This
contradiction proves that D ¢ X U {X} and completes the proof of
(E).

(F) If u,w € W(#), then v = max{u,w} € W(#) and ¢(v) =
max{@(u), p(w)}.

(G) Let u,w € W(#) and 4 € 7 be such that u(4) = w(A4). Then
P(u)(F(A)) = p(w)(F(4)).

By (A), there exists v € W (#) such that max{u,w} < v and 4 is
the contact between max{u,w} and v. Then u,w < v and A4 is the
contact between u and v and w and v. So F(4) is the contact between
¢(u) and ¢(v) and ¢(w) and ¢(v) where in particular, ¢(u)(F(A)) =
P(v)(F(4)) = p(w)(F(4)).

(H) Let A, B € # be such that B 7 A. Then there exists u € W (%)
such that u(A4) < u(B).

Fix w € W(2X). Since B ¢ A, there exists n € N such that
(w(A))"w(A) < (w(AU B))"w(B). Define u;: 2X — [0,1] by u,(E) =
(W(AU E))"w(E) and let u = u,|Z.

(I) If A4,B € # and B C A, then F(B) C F(A).

Suppose that F(B) ¢ F(A). Let w € W(Z) such that w(F(4)) <
w(F(B)). Put u = ¢~!(w). Choose n > 2 such that </u(B) > u(A4).
Let r = w(F(A)), s = w(F(B)) and q = /w(F(B)). Then 0 < s <
g < 1. So there exists an increasing homeomorphism o: [0, 1] — [0, 1]
such that a(¢) =t if t € [0,r]; a(t) > tift € (r,1); a(1) = 1 and
o(s)=¢q. Thenoow € W(%) and (6 ow)(F(A4)) =r = w(F(A4)). Let
v = ¢~ (o ow). By analogy to property (G) for ¢~! and F~!, we have
that v(A) = ¢~ (w)(A4) = u(A).
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Notice that (g o w)" € W (%) and (¢ o w)"(F(B)) = (a(s))" = ¢" =
w(F(B)). Then ¢~ !((¢ o w)*(B)) = ¢~ !(w)(B) (by the analogy to
property (G) for ¢~! and F~!). Thus v(B) = ¢/u(B) > u(A4) = v(4).
Hence v(B) > v(A4). This contradiction proves (I).

We define f: X — Y in the following way: Given x € X, take
a sequence (A,), of elements of /# such that 4, D 4, D --- and
{x} = N{4,: n € N}. Then F(A4;) D F(4;) D ---. Thus B =
({F(A4,): n € N} is closed and nonempty. Since B C F(4,) € &,
we have that B# Y. If B¢ Y, then B€ %. Let A = F~(B) € #.
By (I) applied to F~!, 4, — A. So A = {x} € #. This contradiction
proves that B is as a set of a single point y. We define f(x) = y.

(J) f is well defined.

Let (4,), and (B,), be sequences in Z such that 4, D 4, D
-3 By D By D - and {x} = (\{4n:n € N} = (\{B,: n € N}.
Put C, = 4, UB, € # — X. Then {x} = N{C,: n € N}. Thus
& # (WF(4y): n € N}, ({F(Bn): n € N} € ({F(Cy): n € N}
by the paragraph above, the last set is a singleton.  Hence
N{F(An): n € N} =({F(Bn): n € N}. This proves (J).

Similarly, we can define f~!: Y — X, then f~! is well defined and
f is bijective.

(K) f is continuous.

Notice that if 4 € #{, then x € A4 if and only if f(x) € F(A).
Suppose that f is not continuous in a point x € X. Let ¢ > 0 and
let (x,), be a sequence in X such that x, — x; dy(f(x), f(xn)) > ¢
for every n € N and ¢ < diameter of X. Since Y is compact, we may
suppose that f(x,) — y with y € Y. For n € N, make y, = f(x,)
and choose B, € C(Y) such that y, € B, and ¢/4 < diameter of
B, < ¢/2. We may suppose also that B, — B with B € C(Y). Then
BeC(Y)n% andy € B. Let A, = F~'(B,) and A = F~!(B). Then
Ay, — Aand x, = f~(y,) € F-1(B,) = Ay. So x € A and f(x) € B.
Thus f(x), y € B, diameter of B < ¢/2 and f(x,) — y. Thisis a
contradiction with the choice of (x,),.

This completes the proof of Theorem 3.1.

3.2. CoroOLLARY. The following assertions are equivalent:
(a) W(C(X)) is equivalent to W(C(Y)).
(b) W (2X) is equivalent to W (2Y).

4. Embedding W (#) in W (2X). In this section we suppose that #
is an arbitrary closed nonempty subset of 2X. In [3]. L. E. Ward, Jr.,
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proved that any Whitney map for /# can be extended to a Whitney
map for 2X. His proof is based in Nachbin’s order-theoretic ver-
sion of Tietze’s Theorem for “normally ordered” spaces [1]. Here we
prove, with explicit formulas, this version of Tietze’s Theorem for
the particular case of hyperspaces (it states that every map in W,(%#)
can be extended to a map in Wy(2%)). Then, using the construc-
tions of L. E. Ward, Jr., we prove that there exists an embedding
¢: W(#) — W(2X) such that ¢(w) is an extension of w for every
w e W(Z).

Notice that every map w € W(#) can be extended, in a natural
way, to a map wy € W(#ZUXU{X}) and the correspondence w — w
is continuous. So, we also suppose that X U {X} C 7.

Given T > 0, we denote by A([0, T']) the metric space of bounded
real-valued functions defined in [0, 7] with the “sup metric”.

4.1. LEMMA. Let T > 0 and let f: [0, T] — R be a strictly increas-
ing function such that f(0) = 0 and f is continuous at 0. Then we can
choose a strictly increasing continuous function g: [0, T] — R such that
g(0) =0, g(t) > f(t) for each t € [0, T| and the correspondence f — g
from A([0, TY) in A([0, T]) is continuous.

Proof. Forn > 2, lety, = f(T/(n—1)). Let y; = 2f(T). Then, for
every n € Nand t € [0,T/n)], f(t) < yni1 < yn. Define g: [0,7] — R
by:

) =
8(0) if 1= 0.

{ (n(t/T) = 1)(n+ 1)(¥n = Yns1) +yn ifte[T/(n+1),T/n],
0

4.2. THEOREM. There exists an embedding ¢: W (#) — W (2X)
such that ¢(w) is an extension of w for each w € W (#).

Proof. For each w € Wy(#) (Wy(#) is defined in §1), we define
f:[0,00) — R by f(0) =0 and, for ¢t > 0,

f(t) =sup{w(A4) —w(B): A,Be# and A C N(t,B)}.

(A) f is an increasing function and f is continuous at 0.

Clearly, f is an increasing function. Suppose that f is not contin-
uous at 0. Then ¢ = inf{f(¢): ¢t > 0} > 0. So f(1/n) > ¢/2 for every
n € N. Thus there exist sequences (A4,), and (By), in # such that
w(A,) —w(B,) > €¢/2 and 4, C N(1/n,B,). Let A,B € #Z and let
(ny ), be a strictly increasing sequence in N such that 4,, — A4 and
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B,, — B. Then ¢/2 < w(4) — w(B), so w(B) < w(4). But 4,, C
N(1/(ny), By,) for all k, implies that 4 C B. Thus w(4) < w(B).
This contradiction proves (A).

Define T = 2(diameter of X) and f;: [0, 7] — Rby: fi(¢) = f(¢)+¢.
(B) The correspondence w — f; from Wy(#) in A([0, T]) is con-
tinuous, f; is strictly increasing and continuous in 0.

By Lemma 4.1, we can associated a continuous function g to f;
such that g(¢) > f(¢) for each ¢t € [0,T], g(0) = 0 and g is strictly
increasing. Then the correspondence w — g from Wy (#) in A([0, T])
is continuous. We define v: 2X¥ — R by: v(B) = inf{w(4) + g(¢):
Ae#,0<t<Tand BC N(t,A4)}.

(C) v is continuous, v extends w,v € Wy(2X) and the correspon-
dence w — v is continuous.

Take ¢ > 0. Let 6 > 0 be such that B|,B, € #; H(B|,B;) < ¢
and s,t € [0,T]; |s — t| < 6 implies that |w(B;) — w(B;)| < ¢/2 and
|g(s) — g(t)] < €/2. Let By,B, € # be such that H(B;,B,) < d/2.
Take A € # and t € (0,T] such that B; C N(¢,A4;) and v(B;) <
w(A4,)+g(t) <v(By)+¢/2. Since B, C N(6/2,B;) and B; C N(t,A,),
we have that By C N(t+J/2,A4,). Let s = min{7,¢ + J/2}. Then
By C N(s,A;) and |s — t| < J. Thus |g(s) — g(¢)| < &¢/2 and

v(By) S w(4y) + 8(s) Sw(4y) + g(t) +&/2 <v(By) +e.

Hence v(B;) < v(B;) + ¢. Similarly it can be proved that v(B;) <
v(B,) + &. This proves the continuity of v.

If B € #, since B C N(B,t) for all ¢t € (0, T], then v(B) < w(B).
From definition of f it follows that v(B) > w(B). Hence v(B) =
w(B). It is easy to prove that v € W, (2%) and that the correspondence
w — v is continuous.

From now on, we copy Ward’s proof giving explicit constructions
for some steps in order to be able to check that ¢ is continuous.

Let f be a denumerable basis for the topology of X. For each
finite sequence L = (T;, T3,...,T;) of elements of S, define G(L) =
{4€2X: AC Cly(T;U---UTy)} and

K(L)={A€2X: ANClL(T)) # ;- -- ; ANCL(Ty) # B}.

Then G(L), K(L) € 2% and X € K(L). Let ((Ln, M,)), be an enu-
meration of {(L,M): L and M are finite sequences of elements of £
such that G(L)NK(M) = &}.
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Given w € W (#), take v € Wy(2X) as in (C). For each n € N, let
r, = maxw|(G(L,) N#) and R, = minw|(K(M,) N 7).
Define v,: G(L,) U#Z UK (M,) — R by:
min{r,,v(A)} if A€ G(L,),
vp(A) = { max{R,,v(A)} if A€ K(M,),
w(A) ifAe”.
It is easy to prove that:
(D) v, is well defined, v, € Wy(G(L,) UZ UK(M,)) and the corre-
spondence w — v, is continuous.

Take u, € Wy(2%) an extension of v, as in (C) (then the correspon-
dence v, — u, is continuous).

Define u: 2X — [0, 1] by u = 3(u,)/(2"). Then:

(E) u € W(2X), u extends w and the correspondence w — u is
continuous.

Let A, B € 2X be such that 4 C B # A. We will prove that u(4) <
u(B). For this, it is enough to show that there exists n € N such that
A € G(L,), B € K(M,) and r, < R,. Assume the last assertion is
false. Let K € N be such that B ¢ N(2/K, A). For k > K, choose
finite sequences L = (7y,...,7,;) and M = (Sy,...,S,) of B such that
ACTU---UT,C N(1/k,A); BC S1U---USy; diameter of T; < 1/k;
diameter of S; < 1/k and BN S; # & for all i € {1,...,b}. Then
A€ G(L), Be K(M) and G(L)NK(M) = . So there exists s, € N
such that (L, M) = (L, , Mj,).

Because we are assuming, 75, > R;,. So there exist 4, € G(Ls,) N
# such that w(A4y) > w(By). Let Ayg,By € Z and (Ak()Cs(Bk()C be
subsequences of (A4y)k, (Bk)k, respectively, such that 4, — Ay and
By, — By. Then Ay C 4, By C B and w(4p) > w(By). This is a
contradiction since w is a Whitney map. This completes the proof of
u(A) < u(B).

Define ¢: W(#) — W(2X) by ¢(w) = u. Then ¢ is continu-
ous. Define w: W(2X) — W(#) by w(u) = u|#, then y o ¢ =
Identity of W (#) and ¢ o (y|p(W (#))) = Identity of Im¢. Hence
¢ is an embedding.

4.3. COROLLARY. W (#) is homeomorphic to a subspace of W (2%X)
which is a strong deformation retract of W (2X).

Proof. Let ¢ and y be as above; then Im ¢ is homeomorphic with
W (#) and Im ¢ is a retract of W (2¥). Thus, since W (2¥) is convex
([2, 14.71.3]), Im ¢ is a strong deformation retract of W (2¥).
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Added in proof. The author has proved that W (C(X)) is homeo-
morphic to /, for every continuum X. (“The space of Whitney levels”
preprint).
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