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HYPERBOLICITY OF SURFACES
MODULO RATIONAL AND ELLIPTIC CURVES

CAROLINE GALT GRANT

Let X be a smooth compact complex surface of general type and let
D be the union of all rational and elliptic curves in X. If there exist a
complex torus 7 of dimension > 2 and a nontrivial holomorphic map
X — T whose image contains no elliptic curves then X is hyperbolic
modulo D. In particular, if X has irregularity 41°(X, Q}) > 2 and its
Albanese variety is not isogenous to a product of elliptic curves then
X is hyperbolic modulo D.

Introduction. A complex space X is called hyperbolic if the Koba-
yashi pseudo-distance dy on X is a distance, i.e. if dy(x,x’) > 0 for
x # x' [K]. If D is a subset of X and dy(x,x’) > 0 unless x = x’ or
x,x' € D, we say that X is hyperbolic modulo D. Let X be a surface
of general type. M. Green has made the following conjectures:

Conjecture A. The image of every nonconstant holomorphic map
C — X lies in a rational or elliptic curve in X, and

Conjecture B. X is hyperbolic modulo the union of all its rational
and elliptic curves.

Conjecture A is known to be true for surfaces with irregularity
ho(X,Q}) > 2 [GG, OC] and surfaces with irregularity 2 and sim-
ple Albanese variety [G]. We use these facts together with Brody’s
theorem (1.2 below) to prove the following:

THEOREM. Let X be a smooth compact complex surface of general
type and let D be the union of all rational and elliptic curves in X.
If there exist a complex torus T of dimension > 2 and a nontrivial

holomorphic map X — T whose image contains no elliptic curves then
X is hyperbolic modulo D.

COROLLARY. If X is a smooth compact complex surface of general
type with irregularity > 2 whose Albanese variety is not isogenous to a
product of elliptic curves then X is hyperbolic modulo its rational and
elliptic curves.
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We also prove the weaker statement that X — D is hyperbolic in a
few additional cases.

I would like to thank Mark Green for suggesting to me this appli-
cation of Brody’s theorem. I am also grateful to R. Treger and F.
Catanese for helpful conversations concerning curves in surfaces and
the Albanese map.

1. Preliminaries. First we recall some properties of the Kobayashi
pseudo-distance and the Albanese map.

(1.1) Distance-decreasing property. A holomorphic map 7: U —» X
between complex spaces U and X is always distance-decreasing with
respect to dy and dy, i.e.

dy(u,u') > dx(t(u), ©(«'))

for all u,u’' € U.

Let D be a closed analytic subspace of X. Applying (1.1) to the
inclusion map X — D — X shows that X — D is hyperbolic whenever
X is hyperbolic modulo D. It also follows from (1.1) that there are
no nonconstant holomorphic maps of C to a hyperbolic space. For
compact complex spaces the converse is true:

(1.2) BropY’s THEOREM ([BR], [L, II1.2.1]). A compact complex
space X is hyperbolic if and only if every holomorphic map C — X is
constant.

Nevertheless, a noncompact complex space may fail to be hyperbolic
even if every holomorphic map of C into the space is constant. Green
has constructed an example of a Zariski-open subset of P? with this
property [L, p. 79].

Recall also that for every smooth projective variety X there ex-
ist an abelian variety 4 = Alb(X), the Albanese variety of X, and
a holomorphic map a: X — A, the Albanese map, having the uni-
versal property that any other holomorphic map of X to a complex
torus factors uniquely through «. The dimension of A4 is equal to
the irregularity ¢ = h%(X,Q}) of X. By Poincaré’s Complete Re-
ducibility Theorem [SD, pp. 56-59], A4 is isogenous to a product of
simple abelian varieties, i.e. there is a finite surjective holomorphic
map A — A; x --- X A,,, where A,,..., A,, are abelian varieties, each
containing no nontrivial complex subtori. The factors are unique up
to isogeny. Let X be a smooth surface of general type. (Such a surface
is always projective [BPV, p. 189].) Suppose, as in the hypothesis of
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the corollary, that ¢ > 2 and 4 = Alb(X) is not isogenous to a prod-
uct of elliptic curves. Then dim(A;) > 2 for at least one factor A;.
Projecting to A4; gives a map X — A, satisfying the hypothesis of the
theorem.

2. Generically finite maps to complex tori. Throughout this paper a
curve is a compact complex space of dimension 1 and a surface is a
reduced irreducible compact complex space of dimension 2. By the
genus of a curve we always mean its geometric genus, i.e. the genus
of its desingularization.

(2.1) ProPOSITION. Let X be a smooth surface and D the union of re-
duced irreducible curves Cy,...,C, in X. Suppose that the intersection
matrix (C;C;) is negative definite and the image of every nonconstant
holomorphic map C — X lies in D. Then X is hyperbolic modulo D.

Proof. By Grauert’s criterion [BPV, I11.2.1] there is a holomorphic
bimeromorphic map y: X — Y to a surface Y such that D is ex-
ceptional for y; more precisely, for each connected component C
of D there are an open neighbourhood U of C in X, a point y in
Y, and a neighbourhood V of y in Y, such that ¥ is a biholomor-
phism of U — C to V — {y} and y(C) = y. Every holomorphic map
C — Y must be constant; otherwise there would be a nonconstant
lifting C — X which did not lie in D. By Brody’s theorem, Y is hyper-
bolic. This means that dy(y,)’) > 0 whenever y,y’ € Y and y # ).
But dx(x,x') > dy(w(x), w(x")), by the distance-decreasing property
(1.1), so dx(x,x’) > 0 unless x = x’ or x,x’' € D. 0

(2.2) ProPOSITION. Let X be a smooth surface of general type, T a
complex torus of dimension > 2, and ¢: X — T a holomorphic map
which is generically finite-to-one and such that ¢(X) contains no elliptic
curves. Let D be the union of all rational and elliptic curves in X. Then
X is hyperbolic modulo D.

Proof. A torus contains no rational curves and by assumption ¢(X)
contains no elliptic curves so every rational and elliptic curve in X
must be contracted to a point by ¢. The map ¢ has a Stein factoriza-
tion

xLx AT
where X' is a reduced normal surface, p is a holomorphic map with
connected fibres, u is a holomorphic finite-to-one map, and po p = ¢.
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Then p is bimeromorphic and the exceptional locus E of p is a fi-
nite collection of curves which contains D. By Grauert’s criterion, the
intersection matrix of E is negative definite. The submatrix corre-
sponding to D must also be negative definite.

Next we check that the image of every nonconstant holomorphic
map f: C — X lies in D. Since rational and elliptic curves are the
only irreducible curves admitting nonconstant holomorphic maps of
C, it is enough to show that f is algebraically degenerate, i.e. that f(C)
is contained in a proper algebraic subvariety of X. Let a: X — 4 =
Alb(X) be the Albanese map. By the universal property of « there is a
holomorphic map y: 4 — T such that ¢ = yoa. Then g = dim(A4) > 2
since ¢ is generically finite. If ¢ > 2 then f is algebraically degenerate
[GG]. Suppose that g = 2. Then o(X) = 4 and ¢(X) = y(A4) is a 2-
dimensional complex subtorus of 7 which contains no elliptic curves.
It follows that A itself contains no elliptic curves, so A4 is simple. By
[G] f is algebraically degenerate. Now apply Proposition (2.1). O

REMARK. The union of all rational and elliptic curves in a surface
of general type does not always have negative definite intersection
matrix. See Example (5.4).

3. Fibrations over curves of genus > 2.

(3.1) ProPOSITION. Let X be a smooth surface of general type, C a
smooth curve of genus > 2, and n: X — C a surjective holomorphic
map with connected fibres. Let D be the union of all rational and elliptic
curves in X. Then X is hyperbolic modulo D.

Before proving Proposition (3.1) we state a result of Zariski which
will allow us to apply Grauert’s criterion to some of the rational and
elliptic curves in X:

(3.2) LEemMA [BPV, 111.8.2). Let X be a smooth surface, C a smooth
curve, and n: X — C a surjective holomorphic map with connected
fibres. Let F = Y_ n;F; be a fibre of m, where n; > 0 and the curves
F; are the distinct, reduced, irreducible components of F. Then the
intersection matrix (F;F;) is negative semi-definite and F? = 0, but
the intersection matrix of any proper subset of the collection {F;} is
negative definite.

Proof of Proposition (3.1). The generic fibre of x is a smooth curve of
genus > 2 because X is of general type. All rational and elliptic curves
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in X lie in fibres of n since there are no nonconstant holomorphic
maps of rational or elliptic curves to C. Let S be the set of all points
z of C such that n~!(z) = X, consists entirely of rational and elliptic
curves and let R be the set of all remaining points z of C whose fibres
contain rational or elliptic curves. Both .S and R are finite. Let I =
DN n~!(R). The intersection matrix of I is negative definite by (3.2)
so by Grauert’s criterion there exist a surface Y and a holomorphic
bimeromorphic map y: X — Y which is a biholomorphism off I
and contracts each connected component of I" to a point of Y. The
union A of all rational and elliptic curves in Y is contained in y(D).
Let 7: Y — C be the fibration induced by n: X — C. Then A =
771(S). By the distance-decreasing property (1.1) we have dy(x, x') >
dy(w(x), w(x")), so to show that X is hyperbolic modulo D it is enough
to show that Y is hyperbolic modulo A. We use an argument similar
to that of [L, 1.2.7]. Notice that C and all fibres of 7 except those in
A are hyperbolic since curves of genus > 2 are hyperbolic. If y, )’ are
points of Y such that 7(y) # t()’') then dy(y,y’') > dc(t(y), ()')) > 0.
Now assume that y # )’ and 7(y) = ©()') = z and z ¢ S. Then t71(z)
is hyperbolic, so by [L, II1.3.1] there is a neighbourhood U of z in C
such that 7=!(U) is hyperbolic. Choose ¢ > 0 small enough that U
contains the ball B(z,2¢) with centre z and radius 2¢ in the metric
dc. The set V = 171(B(z,2¢)) is hyperbolic since it is contained in
1~ 1(U). By [L, 1.2.5] there is a constant k > 0 such that dy(y,y') >
min{e, kdy(y,y")}. But dy(y,y’) > 0 since V' is hyperbolic. o

4. Proof of theorem. Let X be a smooth surface of general type and
let D be the union of all rational and elliptic curves in X. Assume
that there exist a complex torus 7 of dimension > 2 and a nontriv-
ial holomorphic map ¢: X — T such that ¢(X) contains no elliptic
curves. If ¢ is generically finite-to-one then X is hyperbolic modulo D
by Proposition (2.2). Otherwise ¢(X) is a curve whose normalization
C is a smooth curve of genus > 2. If the fibres of the lifting X — C
of ¢ are not connected we may use Stein factorization to obtain a fi-
bration of X over a smooth curve of genus > 2 with connected fibres.
Now by Proposition (3.1) X is hyperbolic modulo D. o

5. Additional cases and examples. We show here how the methods
of the previous sections and a theorem of Green can be used to study
the Kobayashi pseudo-distance on a surface of general type in a few
of the remaining cases. Propositions (5.1) and (5.3) are concerned
with fibrations of surfaces over elliptic curves, particularly those which
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occur when the Albanese variety of a surface is isogenous to a product
of elliptic curves. Proposition (5.5) is an application of [GR, Theorem
2].

(5.1) PrROPOSITION. Let X be a smooth surface of general type and
D the union of all rational and elliptic curves in X. Assume that

(i) there is a surjective holomorphic map n: X — E where E is a
nonsingular elliptic curve and n has connected fibres,
(ii) no fibre of m consists entirely of rational and elliptic curves,
(iii) every elliptic curve in X lies in a fibre of n, and
(iv) the image of every nonconstant holomorphic map C — X lies in
D.

Then X is hyperbolic modulo D.

Proof. Since X is of general type, the generic fibre of 7 is a smooth
curve of genus > 2. Every elliptic and rational curve in X must lie in
a fibre of 7 by (iii) and because there are no nonconstant holomorphic
maps of rational curves to E. Then D consists of a finite number of
curves and the intersection matrix of D is negative definite by (ii) and
Lemma (3.2). By Proposition (2.1) X is hyperbolic modulo D. O

(5.2) REMARK. Conditions (i) and (iv) are satisfied whenever X
has irregularity ¢ > 3 and the Albanese variety of X is isogenous to a
product of elliptic curves.

(5.3) PrOPOSITION. Let X be a smooth surface of general type and D
the union of all rational and elliptic curves in X. Assume that condition
(i) of (5.1) holds and

(ii') at least one fibre of m consists entirely of rational and elliptic
curves.

Then X — D is hyperbolic.

Proof. As in (5.1), only a finite number of fibres of 7 contain curves
of D. In addition there may be elliptic curves in X mapping surjec-
tively to E. Let S be the set of all points z in E such that n~!(z)
consists entirely of curves of D and let R be the set of all remaining
points of E whose fibres contain curves of D. Let I" be the union of
all curves of D in #~!(R). By (3.2) and Grauert’s criterion, there exist
a surface Y and a holomorphic bimeromorphic map ¥: X — Y con-
tracting I'. Let 7: Y — E be the fibration induced by n: X — E. By
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construction, 77!(.S) consists entirely of rational and elliptic curves,
while for every z € E—S the fibre 77! (z) is hyperbolic. By assumption
(ii') S is not empty, so E — S is hyperbolic. Therefore ¥ — 771(S) is
hyperbolic [L, IT11.3.1] and hence so are X —n~!(S) —I" and the subset
X - D. a

(5.4) ExamrLE. Let n: X — E be a pencil of curves of genus 2, i.e.
X is a smooth minimal algebraic surface, E is a smooth curve, and 7 is
a surjective holomorphic map whose generic fibre is a smooth curve of
genus 2. Ogg [OG] has shown that the singular fibres of such a pencil
consist entirely of rational and elliptic curves. If X is of general type
and E is an elliptic curve then at least one fibre of 7 must be singular
[BPV, V.14 and V.6]. Construction of such a surface is described in
[XI, pp. 24-28 and 72-73]. This also provides an example in which
the union of all rational and elliptic curves does not have negative
definite intersection matrix, by Lemma (3.2).

(5.5) PROPOSITION. Let X be a smooth minimal surface of general
type which contains no singular elliptic curves. Let D be the union of
all rational and elliptic curves in X. Assume that

(i) D = D\ + D, where D, and D, are disjoint effective divisors,

(ii) D, has negative definite intersection matrix,

(iii) every rational curve in D, intersects the other curves in D, in at

least 3 distinct points, and

(iv) the image of every nonconstant holomorphic map C — X lies in

D.

Then X — D is hyperbolic.

Proof. First note that if E is a nonsingular elliptic curve in X then
E? < 0 since Ky - E + E? = deg Kz = 0 (adjunction formula) and
Ky - E > 0 [BPV, VII.2.3]. If E does not intersect any other rational
or elliptic curve in X then we may assume that E is in D;. By Grauert’s
criterion, there exist a surface Y and a holomorphic bimeromorphic
map ¥: X — Y contracting D;. The image A of D, in Y consists
of rational and elliptic curves Cy,...,C, with the property that C;
intersects the other curves in A in at least 3 distinct points if C; is
rational and in at least one point if C; is elliptic. Then there is no
nonconstant holomorphic map

C—Ci— (UC,

JAL
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for any i. By Green’s theorem [GR, Theorem 2], which is also true
for singular spaces [L, III.3.6], Y — A is hyperbolic. Hence so is
X - D. O

(5.6) COrROLLARY. Let X be a smooth surface of general type which
is embedded in an abelian variety. Let D be the union of all elliptic
curves in X. Then X — D is hyperbolic.

Proof. There are no rational or singular elliptic curves in X since X
is contained in an abelian variety. As in (5.5), every elliptic curve in X
has negative self-intersection. By a result of Bogomolov [DE, 3.4.6],
there are only finitely many elliptic curves in X. Let D; be the union of
all isolated elliptic curves in X and let D, be the union of all remaining
elliptic curves in X. Since X is embedded in an abelian variety, the
irregularity of X is at least 3, so every nonconstant holomorphic map
C — X lies in D by [GG]. Now use (5.5). O
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