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COMPLEMENTATION OF CERTAIN SUBSPACES
OF Loo(G) OF A LOCALLY COMPACT GROUP

ANTHONY TO-MING LAU AND VIKTOR LOSERT

Let G be a locally compact group, WAP(G) be the space of con-
tinuous weakly almost periodic functions on G and C0(G) the space
of continuous functions on G vanishing at infinity. We prove in this
paper, among other things, that if G is infinite and X is any subspace
of WAP((7) (or CB(G), the space of bounded continuous functions in
case G is nondiscrete) containing CQ(G), then X is uncomplemented
in Loo(G). If G is non-compact, then WAP(G) is uncomplemented in
IΛJC(G). Furthermore, AP(C), the space of continuous almost peri-
odic functions on G, is complemented in LUC(G) if and only if G/N
is compact, where N is the intersection of the kernels of all finite-
dimensional continuous unitary representations of G. We also prove
that if A is any left translation invariant C*-subalgebra of Co(G),
then A is the range of a continuous projection commuting with left
translations.

1. Introduction and some preliminaries. Let G be a locally compact
group and CB(G) be the space of bounded continuous complex-valued
functions on G with supremum norm. Let LUC(G) denote the space
of bounded left uniformly continuous complex-valued functions on
G, i.e. all / e CB(G) such that the map g -> lgf from G into CB(G) is
continuous when CB(G) has the norm topology where lgf(x) = f(gx),
x G G. Let WAP(G) (respectively AP(G)) denote the space of contin-
uous weakly almost periodic (respectively almost periodic) functions
on G i.e. all / e CB(G) such that {laf\a £ G} is relatively compact
in the weak (resp. norm) topology of CB(G). Let Loo(G) denote the
Banach space of essentially bounded complex-valued functions on G
with the essential supremum norm || H^ as defined in [12, p. 141].
Then CB(G), LUC(G), WAP(G) and AP(G) are translation invariant
subalgebras of L^G) with AP(G) c WAP(G) c LUC(G) c CB(G).
Furthermore, Co(G)nAP(G) = {0} unless G is compact, where CQ{G)
is the closed subalgebra of CB(G) consisting of all / e CB(G) van-
ishing at infinity. Recall that an application of the Ryll-Nardzewski
fixed point theorem ([21]) shows that WAP(G) has a unique invariant
mean ΪYΪQ i.e. ΠΊQ is a positive linear functional on WAP(G) of norm
one and mG{laf) = rnG(raf) = mG(f) for all / e WAP(G), where
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raf{x) = f(xa), xeG. Let W0(G) = {/ e WAP(G); mG(\f\) = 0}.
Then WAP(G) = AP(<7) Θ W0(G) (see [6] or [2]). i.e. AP(G) is always
complemented in WAP(G).

B. B. Wells proved in [26] that AP(R) and WAP(R) are uncom-
plemented in LUC(R), where R denotes the additive group of the
reals. It was also shown by I. Glicksberg [9] that if G is a compact
group, A is a closed translation invariant subalgebra of C(G) (contin-
uous complex-valued functions on G) and A is not self-adjoint, then
A is uncomplemented in C{G). More recently, Y. Takahashi [23]
proves that a weak*-closed non-self-adjoint translation invariant sub-
algebra of Loo(G) is uncomplemented in L^G) (see [14] for proof of
Lemma 4 in [23]). Furthermore, [24, Theorem 1] if G is an infinite
maximally almost periodic group, then WAP(G!) and AP(G) are un-
complemented in Loo(G). Also, as shown by Lau in [13], if G is an
amenable locally compact group, then any weak*-closed self-adjoint
left translation invariant subalgebra of Loo ((7) is the range of a con-
tinuous projection commuting with left translations.

In this paper, we prove among other things, (Corollary 3) that if G
is an infinite locally compact group and X is any closed subspace of
WAP(G) containing CQ(G), then X is uncomplemented in L^G). If
G is non-discrete and X is any closed subspace of CB(G) containing
Co(G), then X is not complemented in L^G) (Theorem 4). Fur-
thermore, (Theorem 6), if G is a locally compact non-compact group,
then WAP(<7) is not complemented in LUC(G). We prove that (The-
orem 7) if H is a closed subgroup of a locally compact group G, then
CB(G/H) (when identified as a closed subspace of CB(G)) is always
complemented in CB(G). This result is used to show that (Theo-
rem 8) AP(G) is complemented in LUC(G) if and only if G/N is
compact where N is the intersection of the kernels of all finite dimen-
sional continuous unitary representations of (?. In particular, if G is
maximally almost periodic, then AP(G) is complemented in IΛJC(G)
if and only if G is compact. However (Theorem 11), if A is a left
translation invariant C*-subalgebra of Co(G), then there exists a con-
tinuous projection P from Co(G) onto A and P commutes with left
translations.

2. Uncomplemented subspaces of L^G). In this section we show
that if G is an infinite locally compact group, then any subspace X of
WAP(G) containing CQ(G) is uncomplemented in L^G). We first es-
tablish the following lemma which follows directly from the corollary
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in Losert and Rindler [16, p. 74] when G contains a countable dense
subset.

LEMMA 1. Let G be an infinite o-compact locally compact group.
Then there exists a sequence {μn} of probability measures on G such
that for each f e WAP(G)

lim / ryfdμn = mG(f)

and the convergence is uniform with respect to y, y e G.

Proof. We may assume that G is nondiscrete (otherwise, G is count-
able, and the lemma follows directly from Losert and Rindler [16,
P. 74]).

Let AT be a compact normal subgroup such that G/K is metrizable
separable (see Remark 14(b)). For each x e G, f e WAP(G), let fκ

be a function on G defined by
κ , xeG,

where fx(k) = f(xk).
Then fκ is constant on each coset of K, fκ e WAP(G/K) and

mG(f) = mG/K(fκ) (see Chou [4, Lemma 2.3]). By the corollary in
[16, p. 74], there exists a sequence {xn} in G/K such that

n=\

holds uniformly in y e G/K.
For each /i, let θn = (l/N) £ ^ = 1 ^ X G G/K, where ^ ( / ) = f(x).

Let μn denote the probability measure on G defined by the functional
θn o n C b ( G ) , w h e r e θ n ( f ) = θn{fκ\ f e C 0 ( G ) . l i f e W A P ( G ) ,
y eG, then

mG{f) = mG/κ(fκ) = \imθn(ryf
κ) = limfl^^/)^) = J ryfdμn

and the convergence is uniform in y. D

THEOREM 2. L ^ G be a locally compact group. The following are
equivalent.

(a) G is finite.
(b) There exists a continuous linear operator S from L^G) into

WAP(G) such that S(f) = f for all f e C0(G).

Proof, (a) implies (b) is clear.
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(b) implies (a). Let GQ be an infinite open and closed subgroup of
G which is (7-compact For / e Loo(G)9 define (πf)(x) = f(x) for
x € GQ (restriction to Go). Then π is a norm decreasing linear map
from Loo(G) onto Loo(G0).

Given h e Loo(G0), write hf e Loo(G), where h!{x) = h(x) if x e
Go and h'{x) = 0 if x £ Go. Define S*(#) = πS(/z'). τ h e n 5 ' i s

a bounded linear map from Loo (Go) into Loo(Go). Also if x € Go,
then lχS'(h) = π(lxS(h')). In particular, the range of Sf is contained
in WAP(Go). Furthermore, if h e CQ(G0)9 then h! e C0(G)9 and
S'(h) = π(Shf) = π(h!) = h.

Let {μn} be a sequence of probability measures on Go satisfying the
conclusion of Lemma 1. Let μn(f) = fS'(f)dμn, fe LOO(GΌ). Then
for e a c h / € Loo (Go),

limμn(f) = Ximj S'{f)dμn =

Let mc70(/) = ™Go(S'(f))9 f e L^G). Since / e Loo(G0) is an abelian
W*-algebra, its spectrum Ω is Stonean (see [22, p. 46] or [25, p. 109]).
Since C(Ω) and L^GQ) are isometrically isomorphic via the Gelfand
transform, it follows from Theorem 9 [121, p. 168] that weak* con-
vergence of a sequence in Loo(Go)* implies weak convergence. Con-
sequently m<70 is the weak limit of the sequence μn. Let K be the
convex hull of {μn\ n = 1,2,...} in the Banach space Loo(Go)*; then
there exists a sequence ψn in K such that \\ψn - m^JI —• 0. For
ψ e Loo (Go)*, let ψ' denote the restriction of ψ to Co(Go). Since S1 is
the identity on C0{G0), it follows that for ψ e Loo(G0)*, / e C0(G0),
we have ψ(f) = ψ(S'(f)) = ψ(f) i.e. ψ' = ψ1. In particular if Go is
non-compact, then m'GQ = 0. Now for each n, there exists a contin-
uous function f on G with compact support, 0 < / < 1, f(x) = 1,
if x e suppμ/, / = 1,...,«. Since μ\ = //' (as shown above), it fol-
lows (by linearity) that if φ = Σ"= 1>M/, h > 0, Σ?=i^/ = ^ t h e n

φ(f) = 1. Hence | |^| | = 1. Consequently, each φ in Kr = {ψ' ψ e K}
has norm one. But this is impossible. Hence Go is again finite. This
implies that G is discrete (otherwise take Go = U^Li Un where U is a
compact symmetric neighbourhood of the identity) and then that G is
finite.

If Go is compact and infinite (hence not discrete), we may assume
that the measures μn are singular with respect to the Haar measure
rriG0. Then for each n, there exists / e Q ( G Q ) with 0 < / < 1,
ff(x)dμi(x) = 0 for i = 1,.. .,* and Jf(x)dmGo(x) > mG o(Go)/2.
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It follows that \\φ - m'Go\\ > mGo(Go)/2 for each φ e K, which is
impossible. So GQ must again be finite. D

The following is a generalization of Theorem 1 (i) <-+ (ii) in [24]:

COROLLARY 3. Let G be a locally compact group. The following are
equivalent:

(a) G is finite.
(b) There exists a closed subspace X ofWAP(G), X 2 C0(G) and X

is complemented in L

When G is non-discrete, we have a much stronger result:

THEOREM 4. Let G be a locally compact group. The following are
equivalent:

(a) G is discrete.
(b) There exists a closed subspace X ofCB(G), X 2 C0(G), and X

is complemented in L

Proof, (a) implies (b) is clear.
(b) implies (a). If G is not discrete, let U be a compact symmetric

neighbourhood of the identity of G and GQ = U£Li Un. Then Go is
an infinite open and closed compactly generated subgroup of G. Let
K be a compact normal subgroup of GQ such that GQ/K is metrizable
and not discrete (see [12, p. 71]). Then GQ/K is open in G/K. In
particular, H = G/K is also metrizable. By Corollary 3, G is non-
compact. Since H is locally compact and not discrete, there exists an
infinite compact subset L of H. By the Borsuk-Dugundji Theorem
[7, Theorem 5.1], there exists a continuous linear extension operator
So: CB(L) —• CB(/7). Let / be a continuous real-valued function on
H with compact support satisfying f(x) — 1 for all x e L and let
π: G —• H be the canonical mapping. Then £(#) = [/ 5Ό(g)] o π
defines a continuous linear mapping from CB(L) into Co(G). Let A be
the normalized Haar measure of K. If g e CB(G), let R(g) denote the
restriction of gκ to L, where gκ{x) = mκ(fc), x € (λ Observe that
JROS is the identity on CB(L); hence SoR: X —• X is a continuous pro-
jection on Γ = ImS, i.e., Γ is a complemented subspace of X. Now if
X is complemented in Loo(G), then the same is true for Y. Since L is
infinite and metrizable, CB(L) is infinite dimensional and separable.
Hence 7 (being isomorphic to CB(L)) is also infinite dimensional and
separable. However, as in the proof of Theorem 1, L^G), being an
abelian von Neumann algebra, is isometrically isomorphic to C(Ω)
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of a Stonean space Ω. This is impossible by Corollary 2 in [11,
p. 169]. D

3. Uncomplemented subspaces in LUC(G). B. B. Wells proved in
[26] that if G = R, then the space WAP(R) is not complemented in
LUC(R) using Phillips' lemma [21] (or [25, p. 117]). We now show
that this result also holds for all locally compact non-compact groups.

LEMMA 5. Let G be a non-compact group, {Fn\n = 1,2,...} be a
family of compact subsets ofG and U be a compact neighbourhood of
the identity e ofG. There exists a sequence {yn} in G and a sequence
gn of continuous functions on G with compact support\ 0 < gn < 1 such
that

(a) {UFnyn} is pairwise disjoint,
(b) gn(x) = 1 for each x e Fnyn and gn(x) = Ofor each x £ UFny.
(c) For any subset E o / N = {1,2,...}, the function gε(x) =

Σ{gn(x)\n Ξ E} is left uniformly continuous.

Proof. By induction, we can construct a sequence {yn} in G such
that {UFnyn} is pairwise disjoint. Let V be a compact symmetric
neighbourhood of e such that V3 c U. By Urysohn's Lemma, there
exists a continuous function / : G —• [0,1] such that f{e) = 1 and
f(G ~ V) = {0}. Define a pseudometric d on G by

d{x,y) = \\lxf-lyf\\, *>yzG.

Also for each n = 1,2,..., define

gn(x) = 1 -d(x,Fnyn).

Clearly, each gn is continuous, 0 < gn < 1 and gn{x) = 1 f° r all
x £ Fnyn. Furthermore, if gn(x) > 0, then x € V2Fnyn. (Indeed, in
this case, d(x,y) < 1 for some y e Fnyn, and hence Vx nVy Φ 0 .
For otherwise {lxf){x~x) = 1 and (lyf)(x~ι) = 0 and d(x,y) = 1 i.e.
(b) holds.)

Finally, since {UFnyn} is pairwise disjoint, the function gβ, E c
N is well defined. To see that gβ is left uniformly continuous, let
x e V, t € G be such that \gE{xt) - gE(ή\ > 0. If gE(xή φ 0, then
xt e V2Fnyn for some unique n, n e E, and this gives t e V3Fnyn.
Similarly, if &?(ί) φ 0, then both xt and t are in UFnyn for some
unique n, n eE. Thus

\gε(xt) - gE{t)\ = \gn(xt) - gn(t)\ = \d(xt,Fnyn) - d(t,Fnyn)\

) = \\lxf-f\\.
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Consequently \\lxgE - gE\\ < \\lxf - f\\. Hence gE e LUC(G) since
/ G L U C ( G ) . α

THEOREM 6. Let G be a non-compact group. Then WAP(G) is not
complemented in LUC(G).

Proof. We first assume that G is σ-compact. Let {μn} be the se-
quence of probability measures on G constructed in Lemma 1. Let
Fn = suppμrt. Let {yn} be a sequence of elements in G and 0 < gn < 1
be a sequence of continuous functions of G satisfying the conditions
in Lemma 5. Define for each / e WAP(G)

Ψn(f) = mG(f) - I ryjdμn.

Then, by Lemma 1, limrt_+oo ψn(f) = 0 for each / G WAP(G). Assume
that P is a continuous projection of LUC(G) onto WAP(G) and define
for each subset E c N

ME) = Ψn(P(gE)).

Then vn is a finitely additive function on the algebra of subsets of N
and

\imvn(E) — 0 for all £ C N .
n

But if n G N, gn G WAP(G) and hence

Mi*)) = Ψn(Pgn) = Ψn(gn) = I ryngndμn = 1

since 0 < rVngn < 1, and ryngn(x) = 1 for each x eFn = supp//π. This
contradicts Phillips' Lemma [20].

If G is not σ-compact, let H be an open σ-compact but non-compact
subgroup of G. For each / G LUC(//), let / ; be the continuous func-
tion on G which agrees with f on H and is zero outside H. Then
f G LUC(G). Also, if / G WAP(/f), then / ' e WAP(G) (see Chou [3,
Lemma 2.4] or Milnes [17, Theorem 2]).

Assume once more that P is a continuous projection of LUC(G)
onto WAP(G). Define for each / G UJC(H)

Since h\H e WAP(if) for each h e WAP(G), it follows that Q is a
continuous projection of IΛJC(H) onto WAP(Jf). By the first part,
this is impossible. D
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B. B. Wells [26, Theorem 3.2] also proved that if G = R5 then AP(G)9

the space of almost periodic functions on G, is uncomplemented in
LUC(G). Of course, if AP(G) is finite dimensional (e.g. G = SL(2,R)),
then AP(G) is complemented in LUC(G). It also follows from Taka-
hashi [24, Theorem 2] that if G is a discrete group, then AP(G) is
complemented in loo(G) if and only if AP(G) is finite dimensional.
We shall prove an extension of these results. First we establish the
following theorem that we need:

THEOREM 7. Let G be a locally compact group, H a closed subgroup
of G. Then there exists a contractive linear projection P from CB(<?)
onto CB(G/H). In particular, CB(G/H) is complemented in CB(G).

Proof. Let π: G -> G/H be the canonical mapping. We consider
CB(G/H) as a subspace of CB(G) by identifying / e CB(G/H) and
f on e CB(G). First we show that it is sufficient to prove the the-
orem for almost connected groups. Indeed, assume that Gx is an
open, almost connected subgroup of G. Then for x e G, we have
π{G\x) = G\xH/H and this is homeomorphic to GX/(GX ΠxHx~ι).
Now let R be a set of representatives for the G\ - //-double cosets
in G and assume that for each x e i?, we have a linear contractive
projection Px: CB(GX) -+ CB(GX/GX ΠxHx~ι) (i.e. Px(f o πx) = /
ϊor f eCB(Gχl(Gx nxHx~{)), if again πx: G{ -> Gχ/(Gι nxHx~l)
denotes the canonical mapping). Px gives rise to a continuous pro-
jection Px: CB(Gιx) -+ CB(π(Gιx)): for / e CB(Gix), y e Gxx, we
put

Px(f)(π(y)) = Px{rxf)(yχ-\GX nxHx~1)).

If / e CB(n(G\x)), then rx(foπ) is right-Gi Π xHx~ι periodic (i.e.
rk(rx(foπ)) = rx(fon) for all keGx ΠxHx'1). Hence Px(fon) = f.
Observe also that G/H = \j{n{Gxx)\x e R}. For y e Gxx, f e
CB(Cr), put

P(f)(yH) = Px(f\GιX)(yH).

Then P is a contractive linear projection onto CB(G/H).
If G is almost connected, let K be a compact normal subgroup of

G such that G/K is a Lie group. By convolution with the normalized
Haar measure of K n H, we get a contractive linear projection from
CB(G) to CB(G/(KnH)) (compare with proof of Lemma 1). Hence,
it is sufficient to construct a contractive linear projective from
CB(G/(K n H)) to CB(G/H).
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Let π # : G —• G/K be the canonical mapping, similarly πH and
KKΠH are defined. Let υ\,..., υn be a basis for the Lie algebra of C?/AΓ
such that Vk+\9- .9vn span the Lie algebra of πκ(H) = HK/K for
some k. Let jfc/(i) (1 < / < ή) be the corresponding one parameter sub-
groups of G/K. By [19], 4.15, Theorem 1, there are continuous one-
parameter subgroups Xi(t) in G (1 < / < n) such that πκ(Xi(t)) = Xi(t).
For k < i < n, we can even accomplish that x/(ί) G /ί. There exists
ε > 0 such that (ίi, . . .,ί r t) —> X\(t\) '-xn{tn) is a homeomorphism of
the cube C

{(ίi ί « )€R Λ : | ίi | < β for / = 1,...,*}

onto a neighbourhood F of e (= J£) in G/Λ: and F n (HK)/K corre-
sponds to {(ίi,...,ίπ) G C: t\ = ••• = ^ = 0}. Put

Mi ={xχ{h)'"Xk{tk): |//|<

and

M2 = {Xk+l(tk+l)' Xn{tn)' \U\ < Z for / = fc + 1,. . ., n}.

(If n = 0, i.e. AT is open in G, we put M! = M2 = {e}, V = {e}. Simi-
larly if k = 0 or k = n.) Then (x,^) —• xj' maps Mj x M2 homeomor-
phically to M\M2, the restriction of %κ to M\M2 is a homeomorphism
onto V and the restriction of UHK to Afi is a homeomorphism onto
*HK(V). Put *F = π~ι(V), U = π//(PF). Then

fl G Afi, b e Ky ce M2}

and the elements α, 6, c are uniquely determined by x = abc. As-
sume that x,xf G W are decomposed as above: x = <zZ?c, x' =
α'&V, and that π//(x) = π//(x'). Then nHK{x) = UHK(X') and,
since π//jc(*) = nHK{a), πHK(xf) = πHK(af), it follows that a = a'.
Hence nnibc) = ππφ'c1) and this gives ππc\κφ) = πHnκ(b') (re-
call that M2 c H). Given π//(x) G J7 with x = abc G W, we
put Ψ{UH{X)) = KκnH(ab). It follows from the above argument that
ψ: U —> Gŷ Γ Π // is well defined. Also ^ is continuous. This follows
easily from the compactness of M\, M2 and K and from the fact that
α, ά, c depend continuously o n x = abc. Furthermore, ψoπH — πκr\H
on M\K and the canonical mapping πH,κnH- G/K Π H —> G/// maps
ψ(nji{(ib)) = KκnH(ab) to πH(ab). Since πH(M\K) = U, we conclude
that πH^κnH ° ψ is the identity on £/. The covering {xt/ x G G} of
G/i/ has a locally finite refinement. Let { ^ : x G 6 } b e a partition
of unity, subordinate to this covering, i.e. φx G CQ(G/H)9 0 < φx < 1,
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supp φx c xU for each x e G and ΣxeG Ψxiy) = 1 for all y e G/H,
where the sum is finite on each compact subset of G/H.

For / e CB(G/(K n H)) define

xβG

(The sum is actually finite on each compact subset of G/H.)
Then it is easy to see that P is a contractive linear projection from
CB(G/(K n H)) to CB{G/H). D

If G is a locally compact group, the von Neumann-kernel is de-
fined as the intersection of the kernels of all finite-dimensional (con-
tinuous, unitary) representations of G. It coincides with the kernel
of the canonical mapping of G into its Bohr compactification bG.
The quotient group G/N is maximally almost periodic (for short:
G/N e MAP).

THEOREM 8. Let G be a locally compact group. The following state-
ments are equivalent:

(a) AP(G) is complemented in LUC(G).
(b) G/N is compact, where N denotes the von Neumann kernel ofG.
(c) The canonical mapping ofG into its Bohr compactification bG is

surjective.

Proof. The equivalence of (b) and (c) is almost immediate.
If (b) holds, then (a) follows from Theorem 7, since AP(G) =

AP(G/N) = CB(G/N) (we get a contractive linear projection even
from CB(G) to AP(G)).

For the proof of (a) -»(b) assume that AP(G) is complemented in
LUC(G). We start with three observations:

If G\ is a subgroup of G with finite index, and / e AP(<?i) is
extended to G by putting f(x) = 0 for x £ GΪ9 then / e AP(G). In
this way, AP(Gi) becomes a subspace of AP(G) and it follows now as
in the proof Theorem 2 that AP(Gi) is complemented in IΛJC(G\) c
LUC(G).

For the second observation assume that G — H + K is the direct
sum of closed subgroups H and K. Let π: G —> H be the correspond-
ing projection. If P: LUC(G) —• AP(G) is a projection, then Qf =
P[(f o U)]\H (where / e IΛJC(H)) defines a projection from
LUC(H) to
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For the third observation, assume that G\ is an open subgroup of
G that is also closed for the Bohr topology, i.e. the topology induced
by bG (in particular N Q G\). We claim that (under the assump-
tion that AP(G) is complemented in LUC(G)) G\ has finite index
in G. Let L be the closure of the image of G\ in bG. Then the
isomorphism between AP(G) and CB{bG) maps AP(G) Γϊ CB(GX\G)
onto CB(L\bG) (where G\\G resp. L\bG denote the spaces of right
cosets). As in the proof of Theorem 7, CB(L\bG) is complemented
in CB(bG) = AP(Gr). It follows that CB(L\bG) is complemented in
LUC(G). Since AP(G)nCB(GΛG) c CB(G{\G) c LUC(G) and GX\G
is discrete (hence CB(Gi\G) = /°°(Gi\G)), there exists a bounded lin-
ear projection from /°°(Gi\G) to CB(L\bG) and also to CB((KL)\bG)
if K is any compact normal subgroup of bG. If (KL)\bG is metriz-
able, it follows from Corollary 2, p. 169 of [11] that CB{{KL)\bG)
can be complemented in l°°(Gι\G) only if it is reflexive, hence, only
if (KL)\bG is finite. Now if L\bG would happen to be infinite,
there would exist / e CB(L\bG) c CB(bG) such that f{L\bG) is
infinite. Then, by the Kakutani-Kodaira theorem, there would ex-
ist a closed normal subgroup K of G such that bG/K is metrizable
and / is AΓ-periodic i.e. / e CB(bG/K). This would imply that
/ e CB((KL)\bG). But by the argument above, this is impossible.
This shows that L\bG is finite, and since G\ is the preimage of L in
G, it follows that Gi\G is finite too.

To prove (b), we can assume that G e MAP (otherwise replace G by
G/N and observe that AP(G) = AP(G/N) c UJC(G/N) C LUC(G)).
We want to show that G is compact.

Let H be an open, almost connected subgroup of G. Then H e
MAP; hence by Theorem 2.9 of [10], it has an open subgroup of finite
index which is a direct sum V + L of a compact group L and a vector
group F (i.e. V ~ R" for some n > 0). Replacing // by this open
subgroup, we may assume that H = F + L.

Let F| be the closure of V in G with respect to the Bohr topology.
Then (by continuity) L centralizes V\\ hence V\L is an open subgroup
of G which is closed for the relative topology of bG. From the third
observation above, it follows that V\L has finite index in G and, by the
first observation above, we can assume that G =V\L (The Bohr topol-
ogy induces on a subgroup of finite index again the Bohr topology).
This implies that L is normal in G.

Let π: G —> G/L be the canonical projection. Since L is compact,
π(V) is closed in G/L and, since π(V\) = G/L, it follows that G/L



306 ANTHONY TO-MING LAU AND VIKTOR LOSERT

is abelian. Assume that π(V) Φ G/L. Take x φ n(V). Then there
exists a continuous character χ e (G/L)A such that χ(x) Φ 1 and
χ(π(V)) = {1}. Then χ o π e AP(G) and if x e Vx satisfies π(x) = x,
then χ{π(x)) Φ \. But this would imply that x does not belong to the
closure of V with respect to the Bohr topology, which is a contradic-
tion. Thus n(V) — GjL and hence G = V Θ L. If it would happen
that n > 0, then we could write G a s a direct sum of two groups, one
of them being isomorphic to R. By the second observation above, this
would imply that AP(R) is complemented in LUC(R), contradicting
Theorem 3.2 of Wells [26]. Hence n = 0, i.e. G = L is compact. D

COROLLARY 9. If G is a locally compact, maximally almost periodic
group, then AP(G) is complemented in LUC(G) if and only if G is
compact.

REMARK. In general, the conditions of Theorem 8 do not imply that
N is minimally almost periodic group (i.e. that AP(N) contains only
the constant functions). Take e.g. G = C x σ Γ (semidirect product),
where T = R/Z and the multiplication is defined by (z,s)(w9t) =
(z + elnisw,s + t). Then N = C and G/N ~ T is compact (see also
Theorem 2.3 in [18]).

4. Subspaces of WAP(Cr). Let G be a locally compact group. For
each m,n e WAP(G)*, define a multiplication

(w Θ/i,/) = (m,/!/(/)>, /eWAP(G),

where */(/)(*) = <"Λ/>> tf e G. Then Λ / (/) e WAP(G) (see [2,
p. 36]) and, as readily checked, WAP(G)* with © is a Banach algebra.
Furthermore, for each g e G, let δg denote the point evaluation at g.
Then the map g -+ ̂  is a natural embedding of G into WAP(G)*.

Let X be a Banach space and 3S{X) be the space of bounded linear
operators from X into X. Let {Ug;g e G} be continuous represen-
tation of G on X i.e. for each g e G, Ug e 3S{X\ UgϊUg2 = Ugιg2,
g\,g2€ G, and for each x e X, the map g - • Ug(x) from G into f̂ is
continuous. We say that {Ug\ g e G} is weakly almost periodic if for
each x e X, {Ugx, g e G} is a relatively weakly compact subset of X.

LEMMA 10. Let G be a locally compact group and {Ug;g e G} be
a weakly almost periodic continuous representation of G. Then there
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exists a representation {U(m); m e WAP(G)*} c 3&{X) of the Banach
algebra WAP(G)* on X such that:

(i) \\U(m)\\ < K\\m\\ for each m e WAP(G)* and some fixed
K>0.

(ii) U(δg) = Ug for each geG.
(iii) P = U(mG) is a projection ofX onto the closed subspace Fx =

{x e X\ Ugx = x for all g e G}.
(iv) P commutes with any continuous linear operator T from X into

X which commutes with {Ug,g e G}.

Proof Since {Ug\ g e G} is weakly almost periodic, it follows from
the principle of uniform boundedness that there exists K > 0 such
that \\Ug\\ < K for all geG. For each x e X, φ € X*, define
hx,φ(g) = (Ugx,φ), geG. Then, it is well known [2, p. 36] that
hχ9ψ e WAP(G). Given m e WAP(G)*, let (U(m)x,φ) = (m,hx,φ).
Then, it is readily checked that U(m) is a continuous linear operator
on X, and \\U(m)\\ < K\\m\\. Furthermore U(m Θn) = U(m) o U(n)9

m,ne WAP(G)*, and U(δg) = Ug for each geG.
Now if x e X, g e G, then

UgP(x) = C/(^) o U(mG)(x) = U(δg Θ mG)(x)

= U(mG)(x) = P(x)

i.e. P(x) e Fx. Also if x eFx,φ e X*

(P(x),φ) = (mG,hx,φ) = (x,φ).

Hence P is a projection from X onto i^ .
Finally if T e &{X) and TUg = C/̂ Γ, let mα = E ^ A^^ denote

a convex combination of point evaluations such that ma converges to
mG in the weak*-topology of WAP((J)*, then for each x e X, and
φ e X*, {U(ma)x,φ) -* (U(mG)x,φ), i.e. U(ma) converges to U(mG)
in the weak operator topology of &(X). Replacing by a different net
if necessary, we may assume that U(ma) even converges to U(mG) in
the strong operator topology of (X). Hence for each x eX,

T o P(χ) = lim TU(ma)(x) = lim U(ma)T(x) = PT(x). D
a

THEOREM 11. Let G be a locally compact group and X be a closed
translation invariant subspace ofWAP(G). Let N be a closed subgroup
ofG and

A = {feX; tgf = ffor all geN}.
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There exists a projection P from X onto A and P commutes with any
continuous linear operator from X into X which commutes with right
translations. In particular, P commutes with any left translations.

Proof. This follows directly from Lemma 10 with the observation
that left translation always commutes with right translation. D

Parts of the following Lemma were proved in [5, Theorem 5.1] for
G abelian.

LEMMA 12. Let G be a locally compact group. Then A is a non-zero
left translation invariant C*-subalgebra ofCo(G) if and only if there
exists a unique compact subgroup NΛ ofG such that

A = {fe Co(G); rgf = f for all g e NA}.

Furthermore, A is translation invariant if and only ifNA is normal.

Proof. Let N be a compact subgroup of G, it is easy to see that

A = {/ e C0(G); rgf = f for each g e N}

is a left translation invariant C*-subalgebra of CQ(G). Also, since
Co(G/N) ~ A (using the identification / *-> / o π, where π is the
canonical mapping of G onto G/N), A Φ {0}.

Conversely, if A is a left translation invariant C*-algebra of CQ(A)
let

N = NΛ = {g e G rg f = f f or all / e A}.

Then N is a closed subgroup of G. Also, iffeA, and / Φ 0, let go^G
such that /(go) = λ φ 0. Then for each g e N, f(gog) = f(go) = λ.
Consequently N is compact.

Let B = {/ e C0(G);rgf = f for each g e N}. Clearly B D A.
To prove ̂ quality, we observe that each / e B may be regarded as a
function / in C0(G/N). Let J / = {/;/ e A} and 3S = {/;/ e B}.
Clearly J ' D J / . However as in the proof of Theorem 5.1 in [5], an
application of the Stone-Weierstrass theorem shows that $/ = 38.

Suppose iVo is another compact subgroup of G such that A =
{/ € C0(G);rgf = f for each g e No} then No c N. If a e N,
a £ No, there exists h e COo(G/No) such that h(aN0) φ h(N0). Let
fe Coo(G) such that

/(*)= / f(xξ)dξ = h(x).
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Then / G A and raf φ /, which is impossible. Hence iVo = N.
Finally if A is translation invariant, g eG, ae N, then

g g = rg-ιra(rgf) = rg-ιrgf = f

since r^/ € ^4. Hence TV is normal. Conversely, if N is normal, f e A
and g e G, then for each a e N, ra(rgf) = rα^/ = r ^ / = r^/ where
b = g~ιag e N. In particular, r^/ eA. α

The following is an analogue of Theorem 3.3 in [13]:

THEOREM 13. Let G be any locally compact group and A be a left
translation invariant C*-subalgebra ofCo(G). Then there exists a con-
tinuous projection P from CQ{G) onto A and P commutes with any con-
tinuous linear operator from CQ(G) into CQ(G) which commutes with
right translations. In particular, P commutes with any left translations.

REMARK 14. (a) Let N = NA, then the projection P in Theorem 13
corresponds to the mapping TN(f)(x) = fNf(xξ)dξ, x e G, which
maps C0(G) onto C0{G/N) [8, p. 261] and C0{G/N) ~ A.

(b) Lemma 12 can be applied to obtain a well-known result of
Kakutani-Kodaira: If G is a σ-compact group, there exists a com-
pact normal subgroup N of G such that G/N is metrizable. Let
/ G CQ(G), f Φ 0. Since G is σ-compact, the translation invariant
C*-subalgebra A of C0(G) generated by / is separable. Let N = NA.
Then CQ(G/N) ~ Ais also separable. In particular, G/N is metrizable.
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