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WEIERSTRASS POINTS ON GORENSTEIN CURVES

CARL WIDLAND AND ROBERT LAX*

On a nonsingular projective curve, there are several equivalent ways
to define a Weierstrass point. On an irreducible, projective Gorenstein
curve, we define Weierstrass points by using a “wronskian” formed
from dualizing differentials. We then investigate whether other con-
ditions in the singular case are equivalent to this definition.

Let Y denote a smooth, projective curve of genus g defined over C.

A point P € Y is a Weierstrass point if there exists a rational func-
tion on Y with a pole only at P of order at most g, or if there exists
a regular differential on Y which vanishes at P to order at least g, or
if the divisor gP is special. However, the most “functorial” way to
define Weierstrass points is as the zeros of the wronskian, a section of
the (g(g + 1)/2)th tensor power of the canonical bundle on Y. It is
this last definition that we use as the foundation for defining Weier-
strass points on singular curves. What is essential is that the sheaf
of dualizing differentials should be locally free and this is exactly the
property satisfied by Gorenstein curves.

Let X be an integral, projective Gorenstein curve of arithmetic
genus g > 0 over C. Let w denote the bundle of dualizing dif-
ferentials on X and let . denote an invertible sheaf on X. Put
s = dim H(X,.#) = h9(%). Assume s > 0 and choose a basis
é1,...,¢s for HO(X,.#). We will define a section of .Z®5 ® w®~1)s/2
as follows: Suppose that {U(®)} is a covering of X by open subsets
such that Z(U@®) and w(U®) are free @y (U®)-modules generated
by w(® and t(@, respectively. Define Fl(‘]’) e I(UW, @) inductively
by

bjlue =F1(3.)l//(°‘) forj=1,...,s,
dFl(f{] = F97® fori=2,...,sand j=1,...,s.

Here, we consider F;_; ; as an element of the rational function field
of X and dF;_,; is the differential of this rational function. Then
dF;_, ; is a rational differential on X and its restriction to U(®), namely

*Most of these results appeared in the first author’s 1984 LSU dissertation.
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()
dF{") ,

p(“)—det[F ](W ) (gl@))(s=1s/2, i,j=1,...,s

is regular on U@ hence dFl(f‘{ ; €T(UY, w(U)) by [8]. Put

It is not hard to see, as in the classical case (cf. [1, p. 85]), that
p@ = pB) in U@ n UB), Hence the p{® determine a section p
in HO(X, 2% ® w®6~15/2) 1t is easy to see that a different choice of
a basis for H%(X,.#) would result in p being multiplied by a nonzero
scalar. Therefore, the order of vanishing of p at P is independent of
the choice of basis of H(X,.Z). By the order of vanishing of p at P,
we mean the following. If y generates % (the stalk of .# at P), and
7 generates wp (the stalk of w at P), then we may write

p= fV/ 1.(s 1s/2

We define ordp p to be equal to ordp f. We then have
ordp p = ordp f = dim&p/(f)@p = dim&p/(f)Ep,
where @p denotes the local ring at P and &p is its normalization.

DEFINITIONS. Suppose that P € X. The &-Weierstrass weight of
P, denoted W4 (P), is defined to be ordp p. We call P a Weierstrass
point of & if W(P) > 0. We call P a Weierstrass point of order n of
Z if P is a Weierstrass point of .#®". By a Weierstrass point of X,
we mean a Weierstrass point of w.

PROPOSITION 1. The number of Weierstrass points of &, counting
multiplicities, is s - deg(Z) + (s — 1)s(g — 1).

Proof. This is immediate from the definitions and a calculation of
the degree of .Z® ® w®E~1s/2, |

The theory of Weierstrass points, as far as smooth points are con-
cerned, is quite similar to the theory on nonsingular curves. At a
smooth point, one may define a sequence of gaps and, as in [4], we
have

PROPOSITION 2. Suppose that P is a smooth point of X. Then P is
a Weierstrass point of % if and only if °(Z(—sP)) # 0.

Put 6p = dim&p/Fp. We recall that P is singular if and only if
(sp > 0.
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PROPOSITION 3. Wy (P) > dp-s-(s—1).
Proof. [5].

COROLLARY 1. If P is a singular point of X and % is an invertible
sheaf on X such that h°(%) > 1, then P is a Weierstrass point of .

Thus singular points are almost always Weierstrass points and have
high Weierstrass weight. This may be viewed as saying that as a
smooth curve degenerates to a singular curve, then many of the smooth
Weierstrass points must approach the singularities (see [6] for precise
results).

The notion of gaps does not appear to extend to singular points.
If P is a singular point, then one is interested not in the (Weil) divi-
sors nP, but rather in all (0-dimensional) subschemes supported at P.
The problem here is that as a smooth curve degenerates to a singular
one, the limit of a divisor may be a subscheme that is not a divisor
(since the divisors on a singular curve form an open subscheme of the
Hilbert scheme of the curve). To establish the relationship between
Weierstrass points and special subschemes, we need a Riemann-Roch
type theorem for subschemes on Gorenstein curves (cf. [2]).

DEFINITION. Suppose Z is a proper closed subscheme of X defined
by the coherent sheaf of ideals .#. Then the degree of Z, denoted
d(Z), is defined by

d(Z) = Z dlmC @’Q/JZQ.
QeSupp(Z)

THEOREM 1. Suppose Z is a proper closed subsheme of X defined by
the coherent sheaf of ideals .#. Then

dim¢c Homg, (7, 0y) — dim¢ HY(X,# @, @) =d(Z) + 1 — g.

Proof. We have the short exact sequence 0 — ¥ — @y — @z — Q.
Tensor this sequence with w. Since w is locally free, this gives us
the short exact sequence 0 - F @ w — w — @z ® w — 0. Taking
cohomology then yields the following long exact sequence:

(%) 0— HX,7 @ w) - H(X,w) - H(X,7; ® w)
— H' (X, @ w) - H\(X,w) - H' (X, ® w).
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Since Supp(Z) is a finite set of points, it follows that H!(X, 67, @ w) =
0, and since w is invertible, we have that dim¢ H(X,07; @ w) =
d(Z). Since X is Cohen-Macaulay, H!(X,.# ® w) is dual to
Homg, (# ® w,w) and since w is invertible, the latter vector space
is isomorphic to Homg, (.#,@y). The theorem then follows by taking
dimensions in (*). m]

The following definition is due to Kleiman [3].

DErFINITION. Suppose Z is a proper closed subscheme of X
defined by the sheaf of ideals .#. Then Z is called r-special if
dim¢c Homg, (#,@x) > r.

Remarks. (1) The elements of Homg, (.#,&x) may be identified
with rational functions on X. Indeed,

Homg, (#,@%) = (| Homg, (5, 5p)
PeXx

and for each P € X, Homg, (%, @p) is an dp-submodule of the field
of rational functions on X. (In fact, Homg, (.%,&p) is the fractional
ideal (@p: %) of @p—cf. [7, p. 37].) Thus Z is 1-special if and only
if there is a nonconstant rational function f € Homg, (.#,&x).

(2) If d(Z) > g + r — 1, then by Theorem 1, Z is r-special. In
particular, if d(Z) > g, then Z is 1-special.

(3) If Z is supported at a smooth point P, then Z is simply the
divisor d(Z)P and Homg, (.#,0x) = H(X,d(Z)P).

LEMMA 1. Let Z denote the closed subscheme of X of degree one
and support P. If g > 0, then Z is not 1-special.

Proof. Note that d(Z) = 1 implies that % = mp, where .# is
the ideal sheaf defining Z and mp is the maximal ideal of @p. If
P is a smooth point, then the result is well-known. If P is a sin-
gular point, then note that mp O cp, where cp denotes the con-
ductor of @p in dp. If f € Homg,(F,8%), then f € &, for all
Q # P and f € Homg,(m,,0p) C Homg,(cp,Fp). But we claim
that Homy, (cp,@p) = &p. From the definition of cp, it is easy to
see that &p C Homy, (cp,@p). Now, suppose h generates cp in &p and
f € Homg,(cp,@p). Then fhép = fcp C &p. In particular, fh =
fh-1 € &p. Hence, from the definition of cp, we have fh € cp = hdp
and so f € &p. It follows that if f € Homg, (.#,8%), then f is a
global regular function on the normalization of X, hence must be con-
stant. O
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Our main result is:

THEOREM 2. Suppose P € X. The following statements are equiva-
lent.

(1) P is a Weierstrass point of X.

(2) There is a nonzero a € H°(X, w) such that ordpa > g.

(3) There is a 1-special subcheme of X with support P and degree
equal to g.

(4) There is a 1-special subscheme of X with support P and degree
at most g.

Proof. (1) = (2): We may assume g > 1. If P is a smooth point,
then the proof proceeds as in the classical case, so assume P is a sin-
gular point of X. Let P, P,,..., P, be the points on the normalization
of X that lie over P.

Let o, be a dualizing differential on X whose image in wp generates
wp. We may choose a basis 61,0, = f201,...,05 = fz01 of H(X, ®)
such that 0 < ordp f; < --- < ordp, f,. If P is a unibranch singularity
(i.e. if n = 1), then we must have ordp, f, > 2. Therefore, we would
have ordp, f; = ordpog, > g. If P is not a unibranch singularity, then
we have ordp f; > g — 1 and ordp f; > 1 for i = 2,...,n. Hence, in
this case we also have

n
ordpo, = Z ordp fz > 8.
i=1
(2) = (3): Let 7 generate wp and suppose ¢ = f7 is a nonzero
dualizing differential such that ordpg > g. Then dimc&p/(f) > g.
We claim that there exists an ideal I of @p such that f € I and
dimc@p/I = g. This is a consequence of the following lemma.

LEMMA 2. Let J be a proper ideal of @p with dim¢c@p/J = n. Then
there exists an ideal J' with J C J' and dim¢&p/J' = n — 1.

Proof. Let J' be an ideal strictly containing J such that dimc@p/J’
is as large as possible (necessarily less than #n). It suffices to show that
J'/J is a one-dimensional subspace of the vector space @p/J.

Choose x € J' with x ¢ J. By the choice of J', we have J' = J+(x).
Suppose y € J'. Then there exists z € @p such that y — zx € J. Write
z=a+t, where a € C and t € mp. We claim that xt € J. Indeed, if
xt ¢ J, then we have J' = J + (xt) and so there would exist u € gp
such that x —xtu = x(1—tu) € J. But since ¢ € mp, the element 1 —tu
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is a unit, so this would imply x € J, which is a contradiction. Thus
xteJ.Sincey—-zx=y—(a+t)x =y —ax—xt € J, it follows that
y —ax € J. Thus the image of x in J'/J generates J'/J as a vector
space over C. ]

Returning to the proof of Theorem 2, put .# equal to the ideal sheaf
with support P defined by % = I (where (f) C I and dim¢&p/I = g)
and let Z denote the closed subscheme defined by .#. Then
d(Z) = g and ¢ € HY(X,.¥ ® w). Thus by Theorem 1, we have
dim¢ Homg, (#,8x) > 2, and so Z is 1-special.

(3) = (4): This implication is trivial.

(4) = (1): We note that Lemma 1 implies that g > 1. If P is
a singular point, then P is a Weierstrass point of X by Corollary 1.
If P is a smooth point, then the proof proceeds as in the classical
case. O

PROPOSITION 4. There is a morphism ¢: X — P{ of degree at most
g such that $~'(¢(P)) = {P} if and only if there exists a rational
function f € K(X) with f € T(X — P,&x), f & &@p, 7! € Op and
O<ordp f1<g.

Proof. A morphism ¢': X — P — C with associated field homo-
morphism 6: C(T) — K(X) given by 6(T) = f will extend to give a
morphism ¢ from X to Pé if and only if regular functions at infinity
pull back to regular functions at P; i.e., if and only if

0(C[1/T)u,1)) € Op.

If this condition is satisfied, then clearly f~! = 6(1/T) € @p and
ordpf~! = deg ¢. Conversely, suppose f~! € @p and suppose a =
ap+a/T+---+ap,/T" € C[1/T]. Then

Ola)=ay+arf '+ ---+a,(f~H)" €op.

Furthermore, since f ¢ @p, we have that f~! € mp, and so if ay # 0,
then 6(c) is a unit in @p. The degree of ¢ will equal ordp f~!. o

Of course, if P is a smooth point and a rational function f does not
belong to @p, then f~! € @ since @p is a discrete valuation ring; but
at a singular point it is possible for neither a rational function nor its
inverse to be in the local ring.

COROLLARY 2. If there exists a morphism ¢: X — IP(I: of degree at
most g such that ¢~ (¢(P)) = {P}, then there exists a locally principal
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subscheme (i.e. Cartier divisor) with support P of degree at most g
which is 1-special.

Proof. The rational function f~! from Proposition 4 defines
a principal ideal I of &p such that f is a nonconstant element of
Homy, (1, &%). ]

Now consider the following three statements.

(A) There exists a morphism ¢: X — P{ of degree at most g such
that ¢~!(¢(P)) = {P}.

(B) There exists a locally principal subscheme (Cartier divisor) sup-
ported at P of degree at most g that is 1-special.

(C) P is a Weierstrass point of X.

At a smooth point of X, these three statements are equivalent, just
as in the classical case. At a singular point, we have (A)=(B), by
Corollary 2, and (B)=(C), by Theorem 2. However, we will now give
examples to show that the reverse implications fail.

PROPOSITION 5. There exists an integral, projective Gorenstein curve
X of arithmetic genus 7 and a singular point P of X such that there
is a locally principal 1-special subscheme with support P of degree at
most 7, but there is no morphism ¢: X — Pl of degree at most 7 such

that ¢~ (¢(P)) = {P}.

Proof. Let Y be a smooth hyperelliptic curve of genus 3 and let Q
be a Weierstrass point of Y. Let 1 € I'(Y — Q, &y) satisfy ordph = 2.
We note that if /€ I'(Y — Q,&y) satisfies ordy f > —6, then, since the
nongaps at Q are 0,2, 4,6, ..., we may write f = a; +ah+azh*+ash3
with a; € C for i = 1, 2,3,4. We may choose s € K(Y) with ordps = 1
and ordy(s?h — 1) > 1. Put t = s + s%. Then ¢ is a rational function
on Y such that ordg? = 1 and ?h = 1 + bt + kt> where b€ C, b # 0,
and k € @Q.

We now construct a Gorenstein curve X of arithmetic genus 7 and
normalization Y as follows (cf. [8]). Take X, = {P},X-P=Y-Q,
and

@p =C +13C + (£3/h)C + 1°C + B4,.
Note that ordg(#3/h) = 5. We have that the conductor of &p in & is

generated by ¢3 in &p and dp = 4. Thus X is Gorenstein of arithmetic
genus 7.
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Let Z denote the locally principal subscheme with support P with
ideal sheaf .# defined by % = (£3/h)&p. Since h € I'(X — P,&%)
and A(t3/h) € @p, h is a (nonconstant) element of Homg, (.7, %y).
Therefore, Z is a locally principal 1-special subscheme of degree 5.

Now suppose there exists f € I'(X — P,&x) with f~! € &p and
ordpf~! < 7. By the definition of &p, the order of f~! at P cannot
be 2, 4, or 7. Also the order of f~! at P cannot be 1, 3, or 5 since
these are gaps at Q. Therefore, we must have ordpf = —6, hence
f = ai + axh + azh? + a4h? for some a; € C,i = 1,2,3,4. But, h =
(1+bt+kt?)/t2, 50 f = (1+3b3t+k12)/t® with k; € F. As a result,
f71 =15 = 3637 + kyt® for some k; € . But then f~! — 6 would
be an element of & which vanishes to order 7 at P, a contradiction.
Thus no such f can exist and hence there does not exist a morphism
¢: X — P{ of degree at most 7 with ¢~1(¢(P)) = {P}. o

PROPOSITION 6. There exists an integral, projective Gorenstein curve
X of arithmetic genus 3 and a singular point P of X such that there
is no locally principal 1-special subscheme supported at P of degree at
most 3.

Proof. Let Y be an integral, projective Gorenstein curve of arith-
metic genus two and let Q; and Q, be two smooth Weierstrass points
of Y. (We could take Y to be nonsingular.) Let X be the Gorenstein
curve of arithmetic genus 3 obtained by identifying the points Q; and
0, of Y to form an ordinary node P. There exist g, 0, € HO(Y, wy)
such that ordg,0; = 2 and ordg 0; = 0 for i,j = 1,2 and i # j. Let
7 € HO(X, wy) be a generator of wy p. Note that T = g/h, where o is
a generator of wy, and wy,p, and 4 is a generator of the conductor
of &p in its integral closure. In particular, ordg s = 1 for i = 1,2.
Then 1, 6y, 0, are a basis for HO(X, wy) and if we write 6; = f;t, then

ordg fi=3 and ordg fi=1 fori,j=1,2andi# ]

Now suppose p € H(X,wy), p # 0, and write p = ft with f € &p.
There are then four possibilities:

(%) (1) ordg, f = 0 and ordyp, f =0
(2) ordg, f =1and ordg,f =1
(3) ordg, f =3 and ordy, f =1
(4) ordg, f = 1 and ordy, f = 3.
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Suppose k € mp, with k # 0, and let .# be the (invertible) ideal sheaf
with support P defined by % = (k). Suppose ordg k = ordp,k = 1.
Suppose u is a nonzero element of H(X, ¥ @ wy) and write u = [k,
where / € @p. Then [/ must be a unit in &p or else /k would not satisfy
any of the four possibilities in (). Therefore, dimcH%(X, # @wy) = 1
and so dim¢ Homg, (#,8y) = 1 by Theorem 1. Thus, .# does not
define a 1-special subscheme.

Now suppose ordg k = 2 and ordp,k = 1. Again, suppose u €
H°(X,.# ® wy), where .7 is the ideal sheaf with support P defined by
S = (k), and write 4 = lkt. Then /k cannot satisfy any of the pos-
sibilites in (%), so we must have / = 0. Thus H(X,.¥ ® wy) = 0 and
we have dim¢ Homg, (.#,@x) = 1 again. The same argument applies
if ordg k = 1 and ordp,k = 2. Therefore, we may conclude that there
does not exist a locally principal 1-special subscheme with support at
P and degree at most 3. (We note that the subscheme defined by the
ideal (f3, /2)@p, or by (f1, f3)@p, is a 1-special subscheme of degree
3, but it is not locally principal and the locally principal subscheme
defined by (f)@p, or by (f,)@p, is 1-special but has degree 4.) O

An interesting example of a curve of the type in Proposition 6 is
the rational curve with three nodes obtained from P(lj by identifying
0 with oo, 1 with —1, and i with —i. Each of these three nodes has
Weierstrass weight 8, so there are no nonsingular Weierstrass points
on this curve. This curve may be realized projectively as the plane
quartic X2Y2 + Y2Z? = X2Z2, which has biflecnodes at the points
(1,0,0),(0,1,0), and (0,0, 1).

Finally, we show that if one restricts to singularities with dp = 1 (i.e.
simple cusps and ordinary nodes), then the only case of a Weierstrass
point P that does not have a corresponding locally principal 1-special
subscheme of degree at most g occurs when the arithmetic genus is 3
and P is a node obtained by identifying two Weierstrass points on the
partial normalization at P (i.e. the situation in Proposition 6).

THEOREM 3. Suppose that X has arithmetic genus g > 1, that P €
Xiing satisfies 6p = 1, and that 0: Y — X is the partial normalization
at P.

(1) If P is a simple cusp, then there is a morphism ¢: X — Pl of
degree at most g such that $~1(¢(P)) = {P}.

(2) If P is an ordinary node with 6~1(P) = {Q, 0} and Q, and Q,
are not both Weierstrass points of Y, then there is a morphism ¢ as in

(1).
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(3) If P is an ordinary node , then there is a locally principal 1-special
subscheme with support P and degree at most g, except when g = 3
and 6~1(P) consists of two Weierstrass points of Y.

Proof. (1) Suppose 6~ 1(P) = {Q}. Since Y has arithmetic genus
g — 1, it follows from the second remark after Theorem 1 that there
exists a nonconstant rational function » € I'(Y - Q,8y) = I'(X —P,Ox)
such that —1 > ordgh > —g. Since ordgl /h > 2 and P is a simple
cusp, we have that 1/ € @p. The existence of ¢ then follows from
Proposition 4.

(2) Assume that Q, is not a Weierstrass point of Y. Let Z denote the
locally principal subscheme of Y with support {Q;, O,} defined by the
ideal sheaf .# such that dimc &y, /%, = g — 1 and dimcdp,/ A, = 1
(i.e. Z is the divisor (g — 1)Q; + @;). Since the arithmetic genus of
Y is g — 1 and d(Z) = g, there exists a nonconstant rational function
h € Homg, (#,8y). If ordg, h > 0, then we would have ordp,h = -1,
which is impossible since Y has positive arithmetic genus. If ordg, s >
0, then we would have 0 > ordp, 2 > —g + 1, which contradicts the
fact that Q; is not a Weierstrass point of Y. Thus we must have
ordg h < 0 and ordp,s < 0. Since P is an ordinary node, this implies
that 1/h € @p and we are through by Proposition 4.

(3) It remains for us to show that if g > 4 and 6~ 1(P) = {Q;, 0>}
with Q; and O, both Weierstrass points of Y, then there exists a locally
principal 1-special subscheme of X with support P. Let 1 = a/h
denote a generator for wy, p, where o is a generator for wy,p, and for
wy,p, and where A generates the conductor (in &p) of &p in Gp (so, in
particular 4 vanishes to order 1 at Q; and at Q). It is not hard to see
that we may choose a basis a1, g5, ..., g for H(X, wy), with g; = fit
fori=1,2,...,g, such that

ordp, fi < ordg, f» <--- < ordg, f; and ordyp,f; # ordy, f;
fori#j.
Note that since Q) is a Weierstrass point of Y and o,...,0, are a

basis for HO(Y, wy) , we have ordy, fz/h > g — 1, hence ordg, f; > &.
We consider four cases.

Case (1): Assume there is a nonzero p € H)(X,wy) with p = st
such that ordy, s > g and ordp,s > 1. Pick f € @p such that ordy, f =
g —1and ordgp, f =1 and let Z be the locally principal subscheme of
X with support P and degree g defined by the ideal sheaf .# such that
# = (f). Then using the fact that P is an ordinary node, it is not
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hard to see that p € H)(X,.# ® wy). By Theorem 1, Z is 1-special.

Case (2): Assume ordg, f,—1 > g. Then for some a,b € C, p =
aog_; + bog satisfies p = st where ordp s > g and ordy,s > 1. Thus
this case reduces to the previous one.

Case (3): Assume ordy, f,—; = g — 1. By case (1), we may assume
that ordg, f; = 1. Then for some a,b € C, p = agg_; + bo, satisfies

= st where ordg,s = g — 1 and ordp,s = 1. Let Z be the locally
principal subcheme of X with support P defined by the ideal sheaf .#
such that % = (s). Then d(Z) =1 and p € H)(X,.# ® wy), so Z is
1-special by Theorem 1.

Case (4): We are now reduced to assuming

ordg fi=i—-1 for1<i<g-1 and ordy, fo =1.

Note that by reversing the roles of Q; and Q,, we may assume that
ordg, f; = 2 for some j, 2 < j < g — 1. (It is at this point that
we use the assumption that g > 4.) Let Z be the locally principal
subscheme of X with support P defined by the ideal sheaf _# such
that # = (fj). Then d(Z) = 2+ (j — 1) < g. Note that ordg, fy > 2
if 2 <k < g-1andk # j so, using the fact that P is an ordinary
node, we have that 6;,0;,1,...,0,_; all belong to H(X,.#7 ® wy).
Therefore, by Theorem 1,

dim¢c Homg, (F,0%) = j+1— g+ 1 +dimc H(X,.# ® wy)
>j+l-g+1+(g—-1-j+1)>2.

Hence Z is 1-special, completing the proof. ]
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