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WEIERSTRASS POINTS ON GORENSTEIN CURVES

CARL WIDLAND AND ROBERT LAX*

On a nonsingular projective curve, there are several equivalent ways
to define a Weierstrass point. On an irreducible, projective Gorenstein
curve, we define Weierstrass points by using a "wronskian" formed
from dualizing differentials. We then investigate whether other con-
ditions in the singular case are equivalent to this definition.

Let Y denote a smooth, projective curve of genus g defined over C.
A point P G Y is a Weierstrass point if there exists a rational func-

tion on Y with a pole only at P of order at most g, or if there exists
a regular differential on Y which vanishes at P to order at least g, or
if the divisor gP is special. However, the most "functorial" way to
define Weierstrass points is as the zeros of the wronskian, a section of
the (g(g + l)/2)th tensor power of the canonical bundle on Y. It is
this last definition that we use as the foundation for defining Weier-
strass points on singular curves. What is essential is that the sheaf
of dualizing differentials should be locally free and this is exactly the
property satisfied by Gorenstein curves.

Let X be an integral, projective Gorenstein curve of arithmetic
genus g > 0 over C. Let ω denote the bundle of dualizing dif-
ferentials on X and let Sf denote an invertible sheaf on X. Put
s = dim H°(X,J?) = h°(&). Assume s > 0 and choose a basis
φΪ9...9φsfoτH0(X,5?). We will define a section of S?®sΘω^s'1^2

as follows: Suppose that {U^} is a covering of X by open subsets
such that ^f(U^) and ω(UM) are free ^(^ ( α ) )-modules generated
by ψ(a) and τ^a\ respectively. Define FJ f e YilJ^^x) inductively
by

^\j = F/jM") for i = 2,...,s and j = 1,...,s.

Here, we consider i^-ij as an element of the rational function field
of X and dFi-\j is the differential of this rational function. Then

i-ιj is a rational differential on X and its restriction to U^a\ namely

*Most of these results appeared in the first author's 1984 LSU dissertation.
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Qj, is regular on ί/W, hence dF^\j e T(Ua\ ω(U^)) by [8]. Put

pM = det [F$] (Ψia)Y (τ&ψ-W2, ij = 1,... ,s.

It is not hard to see, as in the classical case (cf. [1, p. 85]), that
p(<*) = p(fi) in C/(Q) Π U(β\ Hence the pW determine a section p
in H°(X9&*S ® ω®( J-W2). It is easy to see that a different choice of
a basis for H°(X9J?) would result in p being multiplied by a nonzero
scalar. Therefore, the order of vanishing of p at P is independent of
the choice of basis of H°(X9 &). By the order of vanishing of p at P9

we mean the following. If ψ generates <Sp (the stalk of & at P)9 and
τ generates cop (the stalk of ω at P), then we may write

We define ord/> p to be equal to ordP / . We then have

ordp p = ordp f = dim &P/(f)#p = dim#P/(f)#p9

where <9p denotes the local ring at P and ffp is its normalization.

DEFINITIONS. Suppose that P e X. The &-Weierstrass weight of
P, denoted W&(P)9 is defined to be ordPp. We call P a Weierstrass
point of 2" if W&(P) > 0. We call P a Weierstrass point of order n of
£f if P is a Weierstrass point of J ? 0 W . By a Weierstrass point of X,
we mean a Weierstrass point of ω.

PROPOSITION 1. The number of Weierstrass points ofSf, counting
multiplicities, is s deg(-2*) + (s- l)s(g - 1).

Proof This is immediate from the definitions and a calculation of
the degree of &®s ® ω*(s-W2m π

The theory of Weierstrass points, as far as smooth points are con-
cerned, is quite similar to the theory on nonsingular curves. At a
smooth point, one may define a sequence of gaps and, as in [4], we
have

PROPOSITION 2. Suppose that P is a smooth point of X. Then P is
a Weierstrass point of 3 if and only ifh°{3{-sP)) φ 0.

Put δp = dimS>p/@p. We recall that P is singular if and only if
δP>0.
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PROPOSITION 3. W&{P) > δP s (s - 1).

Proof. [5].

COROLLARY 1. IfP is a singular point of X and Sf is an invertible
sheaf on X such that h°(Jϊ?) > 1, then P is a Weierstrass point ofS*.

Thus singular points are almost always Weierstrass points and have
high Weierstrass weight. This may be viewed as saying that as a
smooth curve degenerates to a singular curve, then many of the smooth
Weierstrass points must approach the singularities (see [6] for precise
results).

The notion of gaps does not appear to extend to singular points.
If P is a singular point, then one is interested not in the (Weil) divi-
sors nP, but rather in all (O-dimensional) subschemes supported at P.
The problem here is that as a smooth curve degenerates to a singular
one, the limit of a divisor may be a subscheme that is not a divisor
(since the divisors on a singular curve form an open subscheme of the
Hubert scheme of the curve). To establish the relationship between
Weierstrass points and special subschemes, we need a Riemann-Roch
type theorem for subschemes on Gorenstein curves (cf. [2]).

DEFINITION. Suppose Z is a proper closed subscheme of X defined
by the coherent sheaf of ideals J*\ Then the degree of Z, denoted
d(Z)9 is defined by

d(Z) = Σ dimc
QeSupp(Z)

THEOREM 1. Suppose Z is a proper closed subsheme ofX defined by
the coherent sheaf of ideals S. Then

d i m c H o m ^ p ^ r) - dim c H°(X9S ®&x ω) = d(Z) + 1 - g.

Proof. We have the short exact sequence 0 —> <y —• &χ —• @z —> 0.
Tensor this sequence with ω. Since ω is locally free, this gives us
the short exact sequence §-^Jr®ω-+ω-^@z®ω—> 0. Taking
cohomology then yields the following long exact sequence:

(*) 0 -> H°(X9S ® ω) -> H°(X9 ω) -* H°(X9&z ® ώ)

-> H\X9S®ω) -> H\X,ω) -> Hx(X90z®ώ).
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Since Supρ(Z) is a finite set of points, it follows that Hι(X,<?z®ώ) =
0, and since ω is invertible, we have that dime HQ{X,@z ® ω) =
d{Z). Since X is Cohen-Macaulay, Hι(X,^ ® ω) is dual to
Hom^x(Jr ® ω,ω) and since ω is invertible, the latter vector space
is isomorphic to H o % ( / , ^ ) . The theorem then follows by taking
dimensions in (*). D

The following definition is due to Kleiman [3].

DEFINITION. Suppose Z is a proper closed subscheme of X
defined by the sheaf of ideals J'. Then Z is called r-special if
dimc H o % ( / , ^ ) > r.

Remarks. (1) The elements of Hom^P^^x) may be identified
with rational functions on X. Indeed,

Hom^p%^) = f| Hom^(J5>,̂ >)
Pex

and for each P e X, H o m ^ p ^ , ^ ) is an ^p-submodule of the field
of rational functions on X. (In fact, Horn*?, (*fp,#p) is the fractional
ideal {0P: J5>) of &P—cf. [7, p. 37].) Thus Z is 1-special if and only
if there is a nonconstant rational function / e Hom^-P^^x)-

(2) If rf(Z) > £ + r - 1, then by Theorem 1, Z is r-special. In
particular, if d(Z) > g, then Z is 1-special.

(3) If Z is supported at a smooth point P, then Z is simply the
divisor d(Z)P and Hom^(^,^γ) = H°(X,d(Z)P).

LEMMA 1. Let Z denote the closed subscheme of X of degree one
and support P. Ifg>0, then Z is not I-special.

Proof. Note that d{Z) = 1 implies that J5> = ^ p , where J is
the ideal sheaf defining Z and mp is the maximal ideal of ffp. If
P is a smooth point, then the result is well-known. If P is a sin-
gular point, then note that mp D cp, where Cp denotes the con-
ductor of 0F in #p. If / € H o π v j r ( J r , ^ ) , then f e @Q for all
Q φ P and / € Hom^(mp,^p) c Hom<?p(cp,(?p). But we claim
that Hom^,(cp,^p) = ^>. From the definition of cp, it is easy to
see that @p c Hom^(cp,^p). Now, suppose Λ generates cp in ^ and
/ € Hom&p(cp,&p). Then /Λ^> = /cp c ffp. In particular, /Λ =
fh 1 € ^/>. Hence, from the definition of cp, we have fh ecp = λ̂ />
and so / e @p. It follows that if f e H o m ^ p ^ x ) , then / is a
global regular function on the normalization of X, hence must be con-
stant. D
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Our main result is:

THEOREM 2. Suppose P e X. The following statements are equiva-
lent

(1) P is a Weierstrass point ofX.
(2) There is a nonzero σ e H°(X, ω) such that ovdpσ > g.
(3) There is a I-special subcheme of X with support P and degree

equal to g.
(4) There is a I-special subscheme of X with support P and degree

at most g.

Proof. (1) => (2): We may assume g > 1. If P is a smooth point,
then the proof proceeds as in the classical case, so assume P is a sin-
gular point of X. Let P\, JP2> , Pn be the points on the normalization
of X that lie over P.

Let ϋ\ be a dualizing differential on X whose image in ωp generates
ωp. We may choose a basis σ\, σ2 = fιθ\,..., og = fgσ\ of H°(X, ω)
such that 0 < orάpxf2 < < ord^fg. If P is a unibranch singularity
(i.e. if n = 1), then we must have ordp,^ > 2. Therefore, we would
have orάpxfg = ordpσ^ > g. If P is not a unibranch singularity, then
we have ord^fg > g - 1 and ord/>7g > 1 for / = 2,...,«. Hence, in
this case we also have

ordpβg = J2ovdPifg ^ 8-

(2) => (3): Let τ generate ωp and suppose σ = fτ is a nonzero
dualizing differential such that ord/>σ > g. Then dimc^p/(/) > g.

We claim that there exists an ideal / of <9? such that / e / and
= £. This is a consequence of the following lemma.

LEMMA 2. Let J be a proper ideal of@p with dime &p/J = «• Then
there exists an ideal J1 with J c J' and dime#p/J' = n - I.

Proof. Let / ' be an ideal strictly containing / such that
is as large as possible (necessarily less than n). It suffices to show that
J'/J is a one-dimensional subspace of the vector space &P/J.

Choose x e Jf with x £ J. By the choice of /', we have / ' = J+(x).
Suppose y e J'. Then there exists z e ^> such that y- zx e J. Write
z = a + t, where α E C and t e rap. We claim that xt e / . Indeed, if
xt £ /, then we have Jf = J + (xt) and so there would exist u e&p
such thztx-xtu = x(l-tu) e J. But since ί e m/>, the element 1 -tu
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is a unit, so this would imply x e /, which is a contradiction. Thus
xt e J. Since y - zx = y - (a + t)x = y - ax - xt e /, it follows that
y - ax e J. Thus the image of x in Jr/J generates J'/J as a vector
space over C. D

Returning to the proof of Theorem 2, put S equal to the ideal sheaf
with support P defined by Ĵ > = / (where (/) C / and dimc(?p/I = g)
and let Z denote the closed subscheme defined by <J. Then
d(Z) = g and σ e H°(X,^ <g> ω). Thus by Theorem 1, we have
dim c Hom^p^^f r) > 2, and so Z is 1-special.

(3) => (4): This implication is trivial.
(4) => (1): We note that Lemma 1 implies that g > 1. If P is

a singular point, then P is a Weierstrass point of X by Corollary 1.
If P is a smooth point, then the proof proceeds as in the classical
case. D

PROPOSITION 4. There is a morphism φ: X —> P^ of degree at most
g such that φ~ι(φ(P)) = {P} if and only if there exists a rational
function f e K{X) with f e Γ(X - P,0X)9 f £ 0P, f~ι e &P and
0 < o r d P / - 1 < # .

Proof. A morphism φf: X - P —• C with associated field homo-
morphism θ: C(T) -• K(X) given by Θ(T) = f will extend to give a
morphism φ from X to P^ if and only if regular functions at infinity
pull back to regular functions at P\ i.e., if and only if

θ(C[l/T]{ι/τ))C<?P.

If this condition is satisfied, then clearly f~ι = Θ{\/T) e @P and
ordpf'1 = deg φ. Conversely, suppose f~ι e <fP and suppose a =
a0 + aχ/T + - + an/Tn e C[l/Γ]. Then

θ(a) = ao + axf~
x + • + an{f-χ)n e <9F.

Furthermore, since / ^ ^>, we have that f~ι G mP, and so if a§ Φ 0,
then θ(a) is a unit in (fP. The degree of 0 will equal ovdPf~

ι. D

Of course, if P is a smooth point and a rational function / does not
belong to ̂ />, then f~ι et?P since <9P is a discrete valuation ring; but
at a singular point it is possible for neither a rational function nor its
inverse to be in the local ring.

COROLLARY 2. If there exists a morphism φ: X -> P^ of degree at
most g such that φ~x{φ(P)) = {P}, then there exists a locally principal
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subscheme {i.e. Cartier divisor) with support P of degree at most g
which is \-special.

Proof. The rational function f~ι from Proposition 4 defines
a principal ideal / of <9p such that / is a nonconstant element of

D

Now consider the following three statements.
(A) There exists a morphism φ: X —• P^ of degree at most g such

that φ-i(φ(P)) = {P}.
(B) There exists a locally principal subscheme (Cartier divisor) sup-

ported at P of degree at most g that is 1-special.
(C) P is a Weierstrass point of X.
At a smooth point of X, these three statements are equivalent, just

as in the classical case. At a singular point, we have (A)=>(B), by
Corollary 2, and (B)=KC), by Theorem 2. However, we will now give
examples to show that the reverse implications fail.

PROPOSITION 5. There exists an integral, projective Gorenstein curve
X of arithmetic genus 7 and a singular point P of X such that there
is a locally principal l-special subscheme with support P of degree at
most 7, but there is no morphism φ: X —• P^ of degree at most 1 such
thatφ-\φ{P)) =

Proof. Let Y be a smooth hyperelliptic curve of genus 3 and let Q
be a Weierstrass point of Y. Let h e T(Y - Q, <9Y) satisfy ordβ/z = - 2 .
We note that if / e Γ(Y- Q,@γ) satisfies o r d β / > -6, then, since the
nongaps at Q are 0,2,4,6,..., we may write / = a\ +a2h+a^h2 + a^h3>

with α, e C for / = 1,2,3,4. We may choose s e K(Y) with ovdQs = 1
and ordρ(s2λ - 1) > 1. Put t = s + s2. Then t is a rational function
on Y such that ordQt = 1 and t2h = 1 + bt + kt2 where b e C, b Φ 0,
and k e <fq.

We now construct a Gorenstein curve X of arithmetic genus 7 and
normalization Y as follows (cf. [8]). Take X s i n g = {P},X-P =Y-Q,
and

@p = C + t3C + (t3/h)C + t6C + ts0Q.

Note that ordg(ί3/Λ) = 5. We have that the conductor of ffp in @Q is
generated by ί8 in @Q and δp = 4. Thus X is Gorenstein of arithmetic
genus 7.
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Let Z denote the locally principal subscheme with support P with
ideal sheaf S defined by SP = (t3/h)&P. Since h e Γ(X - P,
and h{t3 /h) e ^>, h is a (nonconstant) element of Hom^x(J
Therefore, Z is a locally principal 1-special subscheme of degree 5.

Now suppose there exists / e Γ(X — P,#χ) with f~ι e t?P and
ordp/" 1 < 7. By the definition of <fP, the order of f~ι at JP cannot
be 2, 4, or 7. Also the order of f~x at P cannot be 1, 3, or 5 since
these are gaps at Q. Therefore, we must have ovdPf = -6, hence
/ = a\ + a2h + a3h

2 + a4h
3 for some at G C , / = 1,2,3,4. But, h =

(l+bt + kt2)/t2, so / = (1 + 3b3t + kxt
2)/t6 with k{ e <?Q. As a result,

/ - 1 = t* - 3b3tΊ + k2t* for some k2 e &Q. But then f~ι - t6 would
be an element of <9Q which vanishes to order 7 at P, a contradiction.
Thus no such / can exist and hence there does not exist a morphism
φ: X -> VX

Q of degree at most 7 with φ~ι(φ(P)) = {P}. π

PROPOSITION 6. There exists an integral projective Gorenstein curve
X of arithmetic genus 3 and a singular point P of X such that there
is no locally principal I-special subscheme supported at P of degree at
most 3.

Proof. Let Y be an integral, projective Gorenstein curve of arith-
metic genus two and let Q\ and Q2 be two smooth Weierstrass points
of Y. (We could take Y to be nonsingular.) Let X be the Gorenstein
curve of arithmetic genus 3 obtained by identifying the points Q\ and
Q2 of Y to form an ordinary node P. There exist σ\,σ2 e H°(Y9ωγ)
such that ordρfσι = 2 and ordρ^σ/ = 0 for i9j = 1,2 and i Φ j . Let
τ G H°(X, coχ) be a generator of ωχίP. Note that τ = σ/h, where σ is
a generator of (OYQX and ωyρ2 and h is a generator of the conductor
of @P in its integral closure. In particular, ord^/z = 1 for / = 1,2.
Then τ, σ\, σ2 are a basis for H°(X, a)χ) and if we write σ; = yj τ, then

ordρ./ = 3 and oraQ.f = 1 for /, j = 1,2 and / ̂  7.

Now suppose p e H°(X, ωχ)9 p Φ 0, and write p = / τ with f e&P.
There are then four possibilities:

(*) (1) ord Q l / = 0 and ord β 2 / = 0

( 2 ) o r d Q l / = l a n d o r d β 2 / = l

( 3 ) o r d β l / = 3 a n d o r d β 2 / = l

(4)ordβl/=landordβ2/=3.
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Suppose k e mp, with k φ 0, and let <J be the (invertible) ideal sheaf
with support P defined by <fp = (k). Suppose ordρ,/c = orUQ2k = 1.
Suppose μ is a nonzero element of H°(X, S ® ωx) and write μ = Ikτ,
where I e<?p. Then / must be a unit in ffp or else //c would not satisfy
any of the four possibilities in (*). Therefore, dimcH°(X,Jr®ωx) = 1
and so dime H o m ^ p ^ , ^ ) = 1 by Theorem 1. Thus, J" does not
define a 1-special subscheme.

Now suppose ordρ,/: = 2 and ordρ2fc = 1. Again, suppose μ e
H°(X, <J ® ωx), where ^ is the ideal sheaf with support P defined by
j ^ = (k), and write μ = Ikτ. Then /A: cannot satisfy any of the pos-
sibilites in (*), so we must have / = 0. Thus H°(X, J" ® ωx) = 0 and
we have dime H o m ^ p ^ ^ ) = 1 again. The same argument applies
if ordρ,/: = 1 and ordρ2/c = 2. Therefore, we may conclude that there
does not exist a locally principal 1-special subscheme with support at
P and degree at most 3. (We note that the subscheme defined by the
ideal {fγ,fι)&p, or by (/i,^3)^/>, is a 1-special subscheme of degree
3, but it is not locally principal and the locally principal subscheme
defined by (f\)tfp, or by {fτ)@p, is 1-special but has degree 4.) D

An interesting example of a curve of the type in Proposition 6 is
the rational curve with three nodes obtained from P^ by identifying
0 with oo, 1 with - 1 , and / with — z. Each of these three nodes has
Weierstrass weight 8, so there are no nonsingular Weierstrass points
on this curve. This curve may be realized projectively as the plane
quartic X2Y2 + Y2Z2 = X 2 Z 2 , which has biflecnodes at the points
(1,0,0), (0,1,0), and (0,0,1).

Finally, we show that if one restricts to singularities with δp = 1 (i.e.
simple cusps and ordinary nodes), then the only case of a Weierstrass
point P that does not have a corresponding locally principal 1-special
subscheme of degree at most g occurs when the arithmetic genus is 3
and P is a node obtained by identifying two Weierstrass points on the
partial normalization at P (i.e. the situation in Proposition 6).

THEOREM 3. Suppose that X has arithmetic genus g > 1, that P e
Xjing satisfies δp = 1, and that θ: Y —• X is the partial normalization
at P.

(1) If P is a simple cusp, then there is a morphism φ: X -> P^ of
degree at most g such that φ~ι(φ(P)) = {P}.

(2) IfP is an ordinary node with θ~ι(P) = {Q\,Q2} and Qx and Q2

are not both Weierstrass points ofYf then there is a morphism φ as in
(1).
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(3) IfP is an ordinary node, then there is a locally principal I-special
subscheme with support P and degree at most g, except when g = 3
and θ~ι(P) consists of two Weierstrass points ofY.

Proof. (1) Suppose θ~ι(P) = {Q}. Since Y has arithmetic genus
g - 1, it follows from the second remark after Theorem 1 that there
exists a nonconstant rational function h G T(Y—Q90γ) = T(X—P90χ)
such that —1 > ordgA > -g. Since ordgl/A > 2 and P is a simple
cusp, we have that l/h e &p. The existence of φ then follows from
Proposition 4.

(2) Assume that Q\ is not a Weierstrass point of Y. Let Z denote the
locally principal subscheme of Y with support {Qi, Q2} defined by the
ideal s h e a f s such that dimc ^>QJ^Q1 = g - 1 and dimc<?Q2/^Q2 = 1
(i.e. Z is the divisor (g - \)Qχ + Q2). Since the arithmetic genus of
Y is g - 1 and d(Z) = g, there exists a nonconstant rational function
Λ G H o m ^ p ^ y ) . If ordβlΛ > 0, then we would have ordβ 2λ = - 1 ,
which is impossible since Y has positive arithmetic genus. If ordg2A >
0, then we would have 0 > ord β l λ > -g + 1, which contradicts the
fact that Q\ is not a Weierstrass point of Y. Thus we must have
ordβjΛ < 0 and ord^λ < 0. Since P is an ordinary node, this implies
that 1/Λ G @p and we are through by Proposition 4.

(3) It remains for us to show that if g > 4 and θ~ι(P) = {QuQi}
with Q\ and Q2 both Weierstrass points of Y, then there exists a locally
principal 1-special subscheme of X with support P. Let τ = σ/A
denote a generator for ωχs/>, where σ is a generator for ωγ& and for
(0YIQ2 and where A generates the conductor (in @P) oί^P in <fP (so, in
particular h vanishes to order 1 at Q\ and at Q2). It is not hard to see
that we may choose a basis σ{, σ 2,..., σg for 77° (X, % ) , with σ/ = fτ
for / = 1,2, . . . , # , such that

ord β l/i < ord β l / 2 < < ord β l/^ and ord β 2 / φ oraQlfj

for i φ j .

Note that since Q\ is a Weierstrass point of Y and σ 2,..., σg are a
basis for Jf°(y, ωy) , we have ord β l ^/Λ > # - 1, hence ordβ l/^ > #.
We consider four cases.

Case (1): Assume there is a nonzero p G /ί°(X,ωχ) with p = sτ
such that ordβ l5 > g and ord^s > 1. Pick fe#p such that o r d β l / =
g - 1 and ordg2/ = 1 and let Z be the locally principal subscheme of
X with support P and degree g defined by the ideal sheaf J" such that
J"P = (/). Then using the fact that P is an ordinary node, it is not
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hard to see that p e H°(X9^ ® coχ). By Theorem 1, Z is 1-special.

Case (2): Assume o r d g ^ - i > g. Then for some a9b e C, p =
ασ^_i + 6σ^ satisfies p = sτ where ord^s > g and ordρ2s > 1. Thus
this case reduces to the previous one.

Case (3): Assume o r d ρ ^ - i = g - 1. By case (1), we may assume
that ordQ2fg = 1. Then for some a,b e C, p = aσg-\ + bσg satisfies
p = sτ where ordρ^ = g - 1 and ovdQ2s = 1. Let Z be the locally
principal subcheme of X with support P defined by the ideal sheaf J
such that <yP = (s). Then d{Z) = 1 and p e H°(X,J^ ® ωx), so Z is
1-special by Theorem 1.

Case (4): We are now reduced to assuming

ordgj fi = i - 1 for 1 < / < g - 1 and ordρ2 fg = 1.

Note that by reversing the roles of (?i and Q2, we may assume that
ordρ2 fj = 2 for some j , 2 < j < g - 1. (It is at this point that
we use the assumption that g > 4.) Let Z be the locally principal
subscheme of X with support P defined by the ideal sheaf J^ such
that J"p = (fj). Then d(Z) = 2 + (j - 1) < g. Note that ordQlfk > 2
if2<k<g-l and k Φ j so, using the fact that P is an ordinary
node, we have that σj9σj+\9...9σg-ι all belong to H°(X9*f ® ωx).
Therefore, by Theorem 1,

dim c H o m ^ ( / , ^ ) = j + 1 - g + 1 + dimc//°(X, J^

>7 + l - g + l + ( ^ - l - 7 + l ) > 2 .

Hence Z is 1-special, completing the proof. D
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