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ON COMPLETE SECOND ORDER LINEAR
DIFFERENTIAL EQUATIONS IN BANACH SPACES

Xi10 TIIUN AND LIANG JIN

This paper is concerned with the complete second order equation
u"(t)+ Bu'(t) + Au(t) = 0 in a Banach space, where both 4 and B are
densely defined closed linear operators. The main result is a theorem
of Hill-Yosida-Phillips type for the Cauchy problem for the equation
to be well posed.

1. Introduction and the main result. Consider the complete second
order linear differential equation

(1.1) W)+ Bu'(t)+ Au(t)=0 (¢>0)

in a complete Banach space E, where A, B are densely defined closed
linear operators. The equation has been extensively studied by semi-
group methods during the last thirty years. A great amount of liter-
ature on it can be looked up in Fattorini’s monograph [1] which was
published in 1985. However, as stated in [1, Ch. VIII], the theory of
(1.1) “can hardly be said in definitive form”.

Let us begin with the restatements of some definitions in [1]:

DEFINITION 1. We say that an E-valued function u(¢) defined in
t > 0 is a solution of (1.1) if u(t) is twice continuously differentiable,
u(t) € D(A), ¥'(t) € D(B), Au(t) and Bu/'(t) are continuous and (1.1)
is satisfied in ¢ > 0.

DEFINITION 2. We say that the Cauchy problem for (1.1) is well
posed if the following two assumptions are satisfied:

(a) There exist dense subspaces Dy, D; of E such that, for any
ug € Dy, u; € Dy, there exists a solution u(¢) of (1.1) with u(0) = uy,
u'(0) = uy.

(b) There exists a nondecreasing, nonnegative function N(¢) defined
in ¢ > 0 such that

(1.2) lu@ll < NO (O] + 1)) (£20)

for any solution of (1.1).
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Our definition of well posed Cauchy problem corresponds to that
of uniformly well posed Cauchy problem in [1]. Thus, in quoting
results from [1], “uniformly well posed” should be substituted by “well
posed”. See also [2].

DEFINITION 3. Assume that the Cauchy problem for (1.1) is well
posed. Define, for ¢t > 0, u € Dy, v € D,

Cu=u(), St)v=uv(),

where u(t) (resp. v(t)) is the solution of (1.1) with u(0) = u, ¥/(0) =0
(resp. v(0) = 0, v'(0) = v). In view of (1.2), C(¢) (resp. S(¢)) is a
bounded operator in Dy (resp. D;). Since Dy (resp. D;) is dense in
E we can extend C(t) (resp. S(¢)) to a bounded operator on E, which
we denote by the same symbol. We call the operator-valued functions
C(t) and S(¢) the propagators of (1.1).

If B =0, (1.1) becomes the incomplete equation

(1.3) u'(t)+ Au(t) =0 (£ >0).

According to [1, 8, 9], if the Cauchy problem for (1.3) is well posed
then the solutions grow exponentially and a phase space exists; the
well posedness is completely determined by the resolvent of A4, that is

THEOREM A [1, 8, 9]. The Cauchy problem for (1.3) is well posed
if and only if there exist constants C, w > 0 such that for Re A > w,
(A2l + A)~' € L(E) (the set of bounded linear operators on E) and

AT+ A~ 1P| < Cn!(Red—w)™ ! (n=0,1,2,...).

However, for the complete equation (1.1), many problems are dif-
ficult to discuss if we use the same definition of well posed problem.
We may encounter paradoxical situations entailing loss of exponen-
tial growth of solutions and nonexistence of phase spaces as has been
illustrated by Fattorini [1] with a counterexample. For this, Fattorini
has introduced the following

Assumption 3.1 [1, Ch. VIII]. (a) S(¢)u is continuously differen-
tiablein t > 0 forall u € E.

(b) S(1)E C D(B) and BS(t) is continuous in ¢t > O for all u € E.
And he has shown that Assumption 3.1 guarantees exponential growth
of solutions and existence of a state space.
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DEFINITION 4. We say that the Cauchy problem for (1.1) is strongly
well posed it is well posed and Assumption 3.1 is satisfied.

When B = 0, strong well posedness is equivalent to well posedness.

The problem arises of giving necessary and sufficient conditions on
A and B for strong well posedness of the Cauchy problem. We give a
solution to this problem by proving

THEOREM 1. For equation (1.1) the following statements are equiv-
alent:

(i) The Cauchy problem for (1.1) is strongly well posed.

(ii) There exists a complex number Ay such that A(Ag) = A31+AoB +
A is closed and densely defined, and A(49)(D(A(4y))) = E. The Cauchy
problem for (1.1) is well posed and (1.1) has a solution for every initial
value (ug,u;) € (D(A) N D(B))? = (D(A) N D(B)) x (D(A) N D(B)).

(iii) D(A) N D(B) is dense in E. There exist constants C, w > 0
such that for ReA > w, A(A)~' = (A2 I+ AB+ A)"' € L(E), A(A)~'4 is
closable and

I[AA(R) ](”)|| <Cn(ReA-w)™ !  (n=0,1,2,...),
IBAA) ') < Cnl(ReA—w)™"" ! (n=0,1,2,...),
IIAQ) ™' Bu]™|| < Cnl(Red — @)™ ju|
(ueD(A)ND(B), n=0,1,2,...).

Moreover, if (iii) is satisfied, we have three kinds of explicit expres-
sions for the propagators:

() c=Lim S () |31 —%A(x)—IA](n)

A=n/t
(¢>0),

(t>0);

(1.5) S(t) = L1m )" ( ) AR~

n—00 n'

~ |

A=n/t
(1.6) C(z)u—u—leZ "“; e A(ni)~' Au

(ue D(4), t20),
1

e 1)!e”'“A(n/1)—1

(1.7)  S(u= Eggg(_l)n_l

(WeE, t>0);
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and for v > w,

v+ioo
(1.8) C(t)u=u—L !

AA (7)1
a7t ), 7¢ A(A)" Audi

(ueD(4), t20),

v+ioo
(1.9)  S(t)u= -2—1— / A 'udi  (weE, t>0),
Tl Jy—ioo

REMARK 1. Theorem 1 contains Theorem A.

REMARK 2. Although the implication (iii) = (i) could be possibly
proved by direct application of the Hill-Yosida theorem, complica-
tions stemming from lack of commutativity of 4 and B make this
approach impractical.

2. Proof of Theorem 1. First of all, we present three lemmas.

LEMMA 1. Let f(t) be an E-valued continuous function defined in
t > 0 such that [;° e~ f(t)dt exists for some positive c. Then, as
k — oo,

k 00
(2.1) M(t) = (%) (7_1—1), /o e *sltsk=1f(s)ds — f(¢),

k+1 00
e Mw=(7) @) eHs0ds— 1),

uniformly on compact subsets of t > 0.

The proof of (2.2) is essentially the same as the one of [11, P. 285,
Th. 5a] and we omit it. (2.1) follows immediately from M, (¢) =
Ny—1((k = 1)t/k).

LEMMA 2. Let f(t) be an E-valued continuous function with || f(¢)|| <
Ce® int >0, where C, w > 0, then

/t f(s)ds = Limi (——l)—n_le”’“ /oo e " f(rydr  (t>0).
0 A—00 —t n! 0 -

The proof is completely the same as the first part in the proof of
(Phragmén’s representation theorem, see [6]) and we also omit it.
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LEMMA 3. Let f(t) be an E-valued continuously differentiable func-
tion with || f(¢)|| < Ce® int > 0, where C, w > 0, then for ® >

£(6) = = /mmeﬂf [/Oooe—“f(s)ds] . (> 0).

27i ioo

Proof. By [4, Th. 6.3.1],

f(t) = L1m —L/EHTe’“ [/Ooo e"“f(s)ds] di  (t>0).

—o0 211 JG_iT

It remains to show that the integral

w+ioo 00
/ ot [ / =75 f(s) ds] i
W+ioco 0

converges. We can prove this fact using arguments similar to those
of [11, P. 68, Th. 7.5], noting that Riemann-Lebesgue theorem is
applicable to vector-valued functions (see [3, P. 401]) and making use
of the estimate || f(¢)|| < Ce®! for t > 0.

Proof of Theorem 1. (i) = (ii). By [1, §VIIL.3].

(ii) = (1). Let u(¢) be a solution of (1.1) with u(0), ¥'(0) € D(4) N
D(B), then u(t) € D(A) for t > 0, Bu/(¢) is continuous in ¢ > 0 and
therefore Bu () is integrable on any bounded interval of ¢ > 0. Hence

0) + fy u'(s)ds € D(B) for ¢ > 0. Set v(t) = e *'u(¢); then

W (1) = Zoe™'v (1) + €' (1),

u' (1) = Age™ v (1) + 220"’ (1) + e*'v"(1).
Since v(t) € D(A) N D(B), we have
(2.3) v"(£) + By' (1) + Av(t) = 0,

where By = B + 2401, A; = A(dg) = A3l + AoB + A. Obviously u(0) =
v(0), ¥'(0) = A9v(0)+v'(0); hence for every initial value (v(0),v'(0)) €
(D(A4,))* = (D(A) N D(B))? the equation (2.3) has a solution. It is
easily verified that if v(¢) is a solution of (2.3) then u(t) = e*!v(¢)
is a solution of (1.1). From these observations we deduce that the
Cauchy problem for (2.3) is well-posed. Denoting the propagators of
(2.3) by C;(t) and S(2), clearly S;(¢) = e %!S(¢) for t > 0. Since
Ai1(D(Ay)) = E. Assumption 3.1 is then satisfied for equation (2.3)
in view of [2, Th. 4.1(b)]. Thus Assumption 3.1 holds for equation
(1.1) and this completes the proof.
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(i) = (iii). According to [1], there exist constants C, @ > 0 such
that for ReA > w, A(A)~! € L(E) and

A lu= /Ooo e MS(tudt (u€E);
u— /t S(s)Auds = C(t)u (t>0,ue D(A))
0

and for ¢t > 0.
IS" (O] < Ce®, ||BS@)|| < Ce®, |C(n)]| < Ce.
Consequently, for u € E,
JAQ)u = / e MS(tudt = / e~ 1S (tYudt,
0 0
BA() 'u= / e MBS(t)udt.
0
Hence
o}
”MA(A')—ll(n)” < / e~ Redi o0t gy
0
= Cn!(ReA — w)™""! (n=0,1,2,...),
oo
||[BA(/1)—1](")|| < / the—Redt o0t 44
0
=Cnl(ReA—w)™ ! (n=0,1,2,...).
Also
1 -1 1 (% —u
IA(A) Au = 1 e MS(t)Audt
0

0o t
= / e M [/ S(s)Au ds] dt  (ueD(A)),
0 0
Then for ue D(4),n=0,1,2,...,

(n) 00
HA(A)—IAuJ < / tme=Rel (] 1 Co®)|u| dt
0

<(C+ n!(ReA— @) " u.
But

A(A)"'Bu= %u — ) u - %A(A)“Au (u € D(A) N D(B)).
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Thus, we obtain

IIAQR) ™' Bul™|| < 2(C + 1)n!(Red — @) ™" !||u]|
(ue D(A)ND(B), n=0,1,2,...).
This ends the proof of the implication (i) = (iii).
(iii) = (i). We define a linear operator G = (9 5/) in the space

E x E with domain D(G) = D(A) x (D(A)N D(B)). It is easy to verify
that for 4 > w,

Y _a0)1a A )

AM+G) ' = (/1
—AA)"14 AAQ)!

D((AI + G)™') = D(A) x E.

By virtue of the equality 1A(4)~'4u = ju — AA(A)~'u — A(A)~!Bu
for u € D(A) N D(B) and the fact that A(A)~'4 is closable, we can
extend A(A)~!4 to a bounded operator on E and therefore can extend
(AI + G)~! to a bounded operator on E x E, which is (A + G)~1.
Accordingly, G is closable and (AI + G)~! = (Al + G)~!. By [10, P.
73], fort > 0, n > wt,

10 )] == () () "o ()
Set, for u € D(A), v € E,
Xo(t; 1, 0) = [(g)" (§1+G)""] (:)

et = G257 ) { - oo

>

A=n/t

+ [A(l)"‘v](”‘”}

—1)r—1 n
Vi) = o (3) G-aw e

AR Y|

Then obviously

d n+1
ZEX"(t; u,v) + GX,4q (Tt; u,v) =0.
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But

(n— 1) i ,,/,} <5)

_ (= [tu— LAGA) 1 Au]"=D + [A() " w]*—D
S (-1 ( ) ( [-A() "1 Au]"=D + [AA(A) "] =D )

_ [ Un(t;u,v)
T\ (tu,v) )’
hence we have

{ %Un(t;u:'u) Vot ( )
24 {
LVu(t;u,v) = =BV, ( Lt u, ) AU, ("T“t; u,v).

X (8 4,0) = { e (3) 141 +6)~ 1Y

A=n/t

Next, we shall discuss the convergence of (2.4) as n — co. Define,
fort >0, v € D(A) N D(B),

3 L [ ¢ Ay~ Bu da
(=t -5 [~ Gra@ B

1 w+ioco e,lt { d
—m/wm AW v da

1 w+ico
/ MA() v dA,

= 27 B—ico
where @ > w. Clearly §(0) =v =0, §(t)v is continuous in ¢ > 0 and
fort>0

t 1 w+ioo elt
/ S(syods = 5 /_ AA) v dA,

w—i0co /l
W+ioo elt

1
o ) T BAG) Ly da

1 5 1 W+ioco e}.t :
= Et Bv — -27'/5 oo )'2 BA(A,) Bvda

1 W+ioco elt 1 d
- /E SEBAG) v,
@W+ioco elt

~5BA(A) v dA.

w—ioo A

C 1
B /0 (t-)S(s)vds = 5
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Making use of the Fubini theorem and the Cauchy formula, we obtain
that for u >, k=0,1,2,...,

/ " emm(— kS () d
0

%) 1 w+ioo
= / e M (—t)k / eMAA) v dA| dt
0 2mi w—ioco

_ L / 7 A1 [ | etmek dt] di = [A(u) o],
0

2ri w—ioco

/ooo e M (—t)k [/ot S(s)v ds] dt = [%A(ﬂ)‘lv] (k)’
/ooo e (-0 [B /0 S(syw ds] dt = [ZIZ B A(#)_lv] (k)’

/Ooo e M (-1 |B [ / t(t—S)g(s)'uds] dt = [%BA(,L)—IU]U‘),

This and the obvious fact that S(t)v, [} S(s)vds, B f; S(s)vds and
B fé (t—5)S(s)v ds are continuous in ¢ > 0, in view of (2.1) in Lemma
1, show that as n — oo

es SV (O aw | Swe (>0,
A=n/t

(n—1)!
7(n—1)

o G (@) [

t
—»/ S(s)vds
A=n/t 0
(t>0),

27 O )" HBA(A)-I .y /O "Sesy ds

(n—-1)!

A=n/t
(¢>0),

(2.8) w(g) [IBA(A) v](n_l)

- \1) |7 =B [[t=9)S(s)wds

A=n/t
(t>0),

uniformly on compact subsets of ¢ > 0. It is easy to verify by the Leib-
niz formula that [|[[A(2)~']™|, [I[1A2)~1]")|| and ||[; BA(A)~']™)|| are
all bounded by Cn!(ReA—w)™" ! forReA > w, n=0,1,2,... (if the
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constant is still denoted by C). Therefore for ¢ > 0, v € D(4) N D(B),

S (=Dt 1)
S(t)v|| = ||Lim A(A)" v]"
I8l = ||Lim = (7)Ao -
C ny\n n —n
<pme—m () e-0G-e)
—n
= LimC (1-2) "ol = el
n—oo n
ts : wt ot
/S(s)vds <LimC 1—— ||v||=Ce llv]],
0 n—00

< Ce®|jv],

t .
”B/ S(s)vds
0

HB /Ot(t —9)S(s)vds

< Ce”|lv].

Accordingly, §(t), (t > 0) can be extended to all of E as a bounded
operator which we denote by the same symbol; recalling that S 0O =0
and §(t)v is continuous in ¢ > 0 for v € D(4) N D(B), we can assert
that §(O) = 0 and §(t) is strongly continuous in ¢ > 0. By virtue of
the denseness of D(A) N D(B) and the uniform boundedness of

n—1
s o

on bounded subsets of ¢+ > 0, we deduce that (2.5) is valid for all
v € E. Similarly, (2.6), (2.7) and (2.8) also hold for all v € E (here,
the closedness of B is used); moreover, [} S(s)vds, B [} S(s)vds and
B[yt - 5)S(s)v ds are continuous in ¢ > 0 for v € E.

Based on the paragraph above, we shall define several operators.
First, define, for ¢ > 0, u € D(A),

(2.9) C(tyu = L1m (ft _1)1”)'( ) {[%u](n—l)

- [joara] )

A=n/t

A=n/t

t.
= u—/ S(s)Auds.
0
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Since for u € D(A)ND(B), ReA>w,n=0,1,2,...

(n)
(2.10) “ Hu - %A(l)‘lAu]

= RAG) " u + AA) T Bu]™)||
<2Cn!(Red— @) " Yul,

and A(1)"!4 is closable, which implies that (2.10) is also valid for
u € D(A), we have that for u € D(A4), t > 0,

1€l < Lim2C e (3) =1t (F =) "l
=2Ce"||ul,

thus C (¢) (¢ > 0) can be extended to a bounded operator on E which
we denote by the same symbol. Define C(0) = I. Then C(¢) is strongly
continuous in ¢ > 0.

Define, for t > 0, v € D(4) N D(B),

( 1)" 1
K(t)v = ’11,_1210 CE]

(3 )" pa@) ey

A=n/t

- 1im C (2)' { H”] NGRS ]

noo (m— 1)
fpoora] )

A=n/t

~ .
~v—8(1)Bv — / S(s)4v ds,

~ n—1
T(t)y = Lim ((nl)l)'( ) [BA(A)~ 1=

A=n/t

= bim Gy (5) { T ORI

[ ;2 BA(A)~ lAv] (n_l)}

= — B/()tg(s)Bv ds — B/Ot(t -s)§(s)Av ds.

A=n/t
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Here the limits are uniform on compacts of ¢ > 0. But

(-1 ny\”" —1,7(n=1)
kvl = [tim S5 ()" va ey
C n\”n n —n
n (N — (o0t
Y ey (t) 1)'(t w) el = Ce* el
- . C n\”n n —n
- e,

therefore K (¢) and f’(t) (z > 0) can be extended to all of E as bounded
operators which we denote by the same symbols. Define K 0) =1,
7~“(0) =0, then K (¢) and T(t) are strongly continuous in ¢ > 0. Arguing
as in the treatment of (2.5), we have that for all v € E,

(211)  K(t)v = Lim ((n N )1 (3)" rawtup-n

A=n/t

n—1 n
(212)  T(t)v = Lim ((nl——)l)' (%) [BA(A)™!

A=n/t

The limits are uniform on compacts of ¢ > 0.
Now, let us turn to (2.4). Define

(2.13) u(t;u,v) = ’Ildlrglo Un(t;u,v)
o (=t e, 107
= bim Gy (7) {[z“‘zm) A

+[A@) ] 1)}

A=n/t
= C(t)u+ S(t)v,
(2.14) v(t;u,v) = Lim V, (6;u,v) = —S(t)Au + K(t)v,

where the limits are uniform on compacts of ¢ > 0. By the closedness
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of A, B, we obtain

AUy (Lu,v) = (_1)"-1 (E)n { [lAu - lAA(/l)—lAu] -

A A

+ [AA(l)“v](”‘l)}

_ e (2)" { [lAu _ 1AA(A)-1Au] "y

A=n/t

A A

+ [iAv - lAA(l)-IB’U

A2 A
1 . (n—1)
~7AMR) A’u] ,
A=n/t

—_1)r—1 n
BV, (t;u,v) = ((n—l_)w (;) {[-BA(A) ™! 4u]"D)

+ [ABA(A) 0] DY,

== (7)’ {[—BA(Ar‘Au]w-U

+ [131) — BA(A)~'Bv

A
1 (n—1)
—IBA(A)"IAU]

ln/t

Also

%AA(A)“ = %1 — BA(A)™! = AA(0)7Y

therefore we have
(2.15) Au(t,u,v) = ,{-ifggAUn(f? u,v)
= T(t)Au + K(t)Au — Bv + T(t)Bv + K(t)Bv
t ~ ~
+ B/ S(s)Av ds + S(t)Av,
0
(2.16) Bv(t;u,v) = ’I;,itgloB%,(t;u,v)

~ ~

t
= —T(t)Au+ Bv — T(t)Bv — B/ S(s)Av ds,
0
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where the limits are uniform on compacts of ¢ > 0. Accordingly, as
n — oo, (2.4) becomes

Lu(t,u,v) =v(t;u,v),

Lo(t;u,v) = —Bv(t;u,v) — Au(t;u,v),
in ¢ > 0. Define u(0; u,v) = u, v(0;u,v) = v foru € D(A4), v € D(4)N
D(B); then by (2.13), (2.14), (2.15) and (2.16), u(t;u,v), v(t;u,v),
Bv(t;u,v) and Au(t; u,v) are continuous in ¢ > 0, and therefore (2.17)
holds in ¢ > 0, i.e.

u"(tu,v) + Bu'(t;u,v) + Au(tu,v) =0 (¢ >0).

We have then proved that the equation (1.1) has a solution for every
initial value (#(0),%'(0)) € (D(4)ND(B))?. It remains to show contin-
uous dependence on initial data, in view of the fact that the statement
(ii) implies the statement (i) (as proved before). To this end we ob-

serve that, from (2.9) and combining with (2.11), (2.13), (2.14) and
(2.17), we obtain

(2.17)

~ . (=1
Clou= Lim -2

= S'(tyu + S(t)Bu
for u e D(A)N D(B), t > 0. Hence,

(3) A0 G+ ByugD
t d=n/t

(2.19) S(tyu = /0 t[é(s)u —S(s)Bulds  (u€ D(A)ND(B), t >0).

Let now w(¢) be an arbitrary solution of (1.1). Set, forz > 0, (n a

natural number), ¢,(f) = 01/” n(s + 1)w'(t + s) ds. It is clear that for

t >0, 9,(t) € D(B), ¢p,(t) — w'(t) and Beo,(t) — Bw'(t) as n — oo.
Moreover, integrating by parts, we obtain

on(t) =n(s+ Dw(t+5) (1,/" - /Ol/n nw(s +t)ds € D(A) (t>0).

Thus (2.19) holds for u € w'(¢) (¢ > 0). From this and (2.9), we
deduce

%[é(t — s)w(s) + 8(t - s)w'(s)]

=—C'(t — s)w(s) + C(t — s)w'(s) — §'(¢t — s)w'(s)
+8(t — s)w"(s)

= 8(t = $)Aw(s) + C(t — s)w'(s) — C(t — s)w'(s)
+8(t - 5)Bw'(s) + S(t — s)[-Bw'(s) — Aw(s)]

=0 (0<s<o).
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Consequently
w(t) = C(Hw(0) + S(Hw'(0) (¢ >0),

and this ends the proof of the implication (iii) = (i).

Finally, we show the explicit expressions (1.4) to (1.9). By virtue
of the equivalence of (2.1) and (2.2) in Lemma 1, (1.4) (resp. (1.5))
results from (2.9) (resp. (2.5)). Recalling that for Rei > w,

A ~'u = / " e-iS(tyudt,
0
JAG) 1y = / Y e uS(udt  (ueE),
0

%A(l)_‘Au = /Ooo e M [/Ot S(s)Au ds] (u € D(4)),

then (1.6) follows from (2.9) and Lemma 2, (1.7) from Lemma 2,
(1.8) from (2.9) and Lemma 3, (1.9) from Lemma 3. Thus we have
completed the proof of Theorem 1.

3. Applications of Theorem 1. F. Neubrander [5] has discussed
the case D(4) D D(B). He shows well posedness under the assump-
tion that —B is the generator of a strongly continuous semigroup and
R(A,—B)A = AR(A,—B) on D(A) for ReA = w (w a constant). As
a consequence of Theorem 1, the following theorem generalizes the
result.

THEOREM 2. Suppose D(A) D D(B) and there exists a complex num-
ber Ay such that (AgI + B)~! A has bounded extension. Then the Cauchy
problem for (1.1) is strongly well posed if and only if — B is the generator
of a strongly continuous semigroup.

Proof. Necessity. According to [1, Ch. VIII, Corollary 3.5], for every
initial value (ug, u;) € D(B) x D(B) the Cauchy problem for (1.1) has
a solution. This ends the proof by the well posedness and [5, Theo-
rem 5].

Sufficiency. We assume Ay = 0 without the loss of generality. Let
now (7°(¢)) be the semigroup generated by —B. It is well known that
there exist C, w > 0 such that

(3.1) (M +B)u= / TeHT(tudt  (ueE,Red> o),
0
IT()] < Ce®  (t>0).
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Hence, we have
1A +B) 'u=14B~'B(AI + B)"'u
(3.2) = [PeMAB~I[I - T(t)ludt (u€E, Rei> w),
|AB~'I - T(1)]|| < Ce®*  (¢>0),
(here and in the sequel, we denote by C a generic constant).
It is clear that for ReA > w + C,

(3.3) JAR)" = (I + B)™! [1+ %A(AHB)-I]_I

o0 1 n
_ -1 1 -1
= (Al + B) nzzo[ ~A( + B) } .
In order to estimate [AA(4)~!]") for n = 0,1,2..., we observe that,
by (3.1),

[(AT+B)~'u]™ = /oo(—t)”’e"“T(t)u dt (weE m=0,12,...),
and therefore "
(3.4) (A1 + B)~'1)| < / ” me=Redtcout gy
= Cm!(ReA — c;))?m—l (m=0,1,2,...).
Set Q(t) = AB~![I — T(t)] for ¢ > 0. Then by (3.2),
[%A(AI + B)-l] "= /Ooo MO udt  (WeE, n=23,...),

where *n indicates the nth convolution power. Consequently, we ob-
tain

{ HA(M + B)“} ' u}(m) = /0 " (—tme QO] udt
(ue Eim=1,2,...,n=2,3,...).
Butforue E,t>0,n=2,3,...,
o= [ [ [" - trsett2 - 1)
Q1 — 10)Q(to)udtodty - dty,
so that,

t th—2 1
Q@) < / / / Cre® diy---dt,_»
0 JO 0

tn—l

—_ n _,wt
= m v
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hence form=1,2,...,n=2,3,...,

(s}

n

= (_nﬁ_l)'(m +n—DI(ReA—w)" ",

When n = 1, making use of (3.2) again, we obtain easily that for
m=012,...,

“ [%A(U + B)‘l](m)

o0 tn—l
< tMe~ Reltcnewt___ dt
- 0 (n — 1)!

< /oo tMe™ ReAtCewt dt
~Jo

= Cm!(Red — w) "L,

Accordingly, we have

0o 1 nY (m)
(3.5) {Z [—IA(AI+B)—1] }
n=0
< 0_01 (ngnl)!(m +n—1!(Red—w)™""
C s C "
= mnzz:o [(m) (n+ l)(n+2)(m+n)]
— C dm - xm+n
(Red — w)m+1 | dxm ~ C/Reimt
=Cm!(Red—w—-C)" ™D  (m=12,...),
(3.6) i [—%A(AI +B)“]n
n=0

1 Rei-w
ST CRei-@) T "Rei—w-c ™m=0

We now apply the Leibniz formula to (3.3), obtaining

[2A@) =™ = Sn_: Cxl(Al + B)~1®)
k=0

00 1 mY (n=k)
.{2[7/1(1”3)-1] } (n=0,1,2,...).

m=0
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It is thus easy to see, using (3.4), (3.5) and (3.6), that

a1

n—1
<) CKCK!I(ReA—w) ¥ 1C(n—k)!(Red — @ — C)~"¥F~!
k=0
+ Cn!(Rei — w) " (Red — w)(Red —w — C)~!
=C?n!/(ReA—w—C)™" (Red — w)~!
n—1 k 00 k
Rei-w-C ReA-w-C
X {Z< Rel-w ) +E< Rei-w ) }
k=0 k=n
=Cn!ReA-w-C)™™!  (ReA>w+C, n=0,1,2,...).

Similarly, we can obtain the other two estimations:

IBAGL)™ ™| < Cnl(Red — @ — €)™~
(ReA>w+C, n=0,1,2,...)

and from
I
A(A)~"'Bu = (1 + %B(AI + B)-lB—lA) %(M +B)"'Bu
(ue D(B), ReA>w+ C),
we obtain

IA(L) "' Bu]™|| < Cn!(ReA — w — C)~"~!
(ue D(B), ReA>w+C, n=0,1,2,...).

According to Theorem 1, the proof is now complete.

On the other hand, we discuss the case where D(4) C D(B). We
have shown in the proof of the implication (ii) => (i) in Section 2 that
the general case can, in a certain way, be reduced to this one. The
case where B € L(E) has been studied in [12], and the conclusion is
that the Cauchy problem for (1.1) is well posed (or equivalently, in
view of [2, Th. 4.1(a)], strongly well posed) if and only if —4 is the
generator of a strongly continuous cosine function. As an example of
the case when D(B) D D(A) and B is unbounded, we now investigate
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the partial differential equation

____62u(x, 9 + 9 (a(x)%u(x, t))

ot? ox 0
a4 L 03
+ C'a?"ll(x, t) + lbmu(x, t) = 0,
(3.7) $ (t>0,0<x<1)
o2
Ux, )|x=0,1 = 8_x2u(x’t) o =0 (t>0),

\ u(x,0) = up(x), g-zu(x, 0) = u;(x) (0<x <1

Let E = L%*(0,1), a(x) € C'(0,1), ¢ > 0 and b be a real number;

A= A, + A, where
0 0
Ar =53 (a(x)a—x)

with
D(41) = {u € H*(0,1), u(x)|x=01 = 0}
and
Ay = cai:z with
D(4y) = {u € H*0,1), u(x)|x=01 = #"(x)|x=0,1 = 0},
and

L 0?2 .
B = zbw with D(B) = D(A;);
Bl =cC W with D(Bl)=D(B)
so that B12 = A,. Then it is easy to see that 4 and B are all closed
operators, BjB = BB, B} = B|, B* = —B, A\B~! € L(E) and B~ 4,

has a bounded extension due to the fact that B~14; C (43B~1)* and
A3B~! € L(E) where

= -2 (a7
with D(43) = D(B). Set

F= (_%l lg ) with D(F) = D(B) x D(B) in E x E.
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Then (iF)* = iF, thus it follows from [7, P. 41, Th. 10.8] that F
is the generator of a strongly continuous unitary group. Denote this

group by
( () Ta(2)

(1) T4(t)> for —oco <t < +o00.
Observing that

(I +B)AA) BiA ()
rop = (Y LG9 S

where A;(1) = A2I + AB + A,, we obtain that for Re A > 0,

) for Rel >0,

MM u= [PeMTy(tyudt  (ucE)
T2 <1 (2>0),

(3:8) BA\(A)~'u = [ e M[T(t) - Ta(t)ludt  (u€E),
17:(2) — Ta(0)|| £ 2 (z 2 0).
Therefore
AA (A" lu=AB7'BA; (L) u
(3.9) = /Ooo e ™ MA B Ti(t) - Tu()Judt (u€E),
|41 B~ [Ty (1) = (01|l < 2|l 4:B7Y|| (£ > 0);

(3.10) A, (A)TA,u = BA{(A) " B4 u
= /oo e“”[Tl(t) — T4(t)]B~14udt (ue E),
0

I[71(2) — T4(0)1B~ 14| < 2|B-144]| (¢ 20).
From (3.8), (3.9), (3.10) and the plain fact that

MMM =20 A) 7T+ 40,0717 (ReA > 0),

BA(A)™' = BA /(AT + 4181(1)7"] (Rei > 0),
AA)'Bu=[I+A(A)~14,]7'BA, (1) u (ue E,Rei > 0),
we can obtain the three estimations in (iii) of Theorem 1 using ar-
guments similar to those in the proof of the sufficiency of Theorem

2. Then, applying Theorem 1, we conclude that (3.7) is strongly well
posed and therefore the propagators grow exponentially.
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