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EXTENSION THEOREMS FOR FUNCTIONS OF
VANISHING MEAN OSCILLATION

PETER J. HOLDEN

A locally integrable function is said to be of vanishing mean os-
cillation (VMO) if its mean oscillation over cubes in R converges to
zero with the volume of the cubes. We establish necessary and suffi-
cient conditions for a locally integrable function defined on a bounded
measurable set of positive measure to be the restriction to that set of
a VMO function.

1. Introduction. Let F be a locally integrable function on R? and
let Q be a cube in R? with sides parallel to the axes. (We denote the
set of all such cubes in R? by §.) We denote the Lebesgue measure
of Q by |Q] and the length of Q by /(Q). We denote the average of F
on Q by Fp; that is Fp = IIE fQth. We say F is of bounded mean

oscillation (abbreviated BMO(R?) or simply BMO) if

1
1.1) sup—/ F — Fp| < .
( ocs IQI Q| QI
We denote this supremum by ||F||.. || ||« defines a norm on BMO

and BMO is a Banach space with respect to this norm. (We identify
functions which differ by a constant.) If in (1.1) we restrict the cubes
to be dyadic we obtain the space dyadic-BMO and we denote the
corresponding norm by || |, 4. (By a dyadic cube we mean a cube
of the form Q = {k; < x; < (kj +1)27";1 < j < d} where n and
kj, 1 < j < d, are integers.) We will denote the set of dyadic cubes
of length 27" by D, and Qy will denote the dyadic unit cube. The
function space BMO was introduced in 1961 by John and Nirenberg
[7] who proved the following fundamental theorem:

THEOREM 1.1. Let F be a locally integrable function on R4, and for
each n € Z define:

1
T, (F)=inf{=: sup inf / AF-al >
) {A s inf g
Then,

(1) F € BMO ifand only if
(2) SupT,(F) < oo.
nez
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The implication (2) = (1) is straightforward while (1) = (2) is
obtained by means of a Calderon-Zygmund stopping time argument.
(This result and other basic results on BMO can be found in [4] and
[12].)

A closed subspace of BMO that we will be mainly concerned with,
is the space of functions of vanishing mean oscillation (VMO) which
was introduced by Sarason in [11] and is defined as:

VMO = ¢{ F € BMO: lim | sup —1—/ |F—Fp| ] =0
-0 | gey 10l Jo
[(Q)<é

Equivalently, by the theorem of John and Nirenberg, F € VMO if and
only if F € BMO and lim,_,o &, (F) = 0.

If E is a Lebesgue measurable subset of R? of positive measure
(throughout we will always assume E has positive measure), we can ask
for necessary and sufficient conditions for a locally integrable function
defined on E to be the restriction to E of a function in BMO(R¢?). This
characterization was given by Wolff [15] and is based upon a technique
due to Rubio de Francia [10] which generalizes Jones’ factorization
theorem for A,-weights [8]. The main result of this paper is to obtain
a similar characterization for VMO functions and this is the content
of the following theorem:

THEOREM 1. Let E be a bounded measurable subset of R? and let f
be a locally integrable function defined on E. For each n € Z define:

1 1
=inf{ -: sup inf — eHmal<2y.
,un(f) {,{ I(Q)Sg*” aeR IQI ONE

Then the following are equivalent:
(1) f is the restriction of a VMO function on R to E
(2) supuez tn(f) < 00 and lim, oo fia(f) = 0.

The proof of this theorem consists of two parts. In the first part
we obtain a dyadic-VMO extension of f. We then obtain a dyadic-
VMO extension for each translation of f and E and the second part
of the proof consists of averaging these extensions to obtain a VMO
extension of f.
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Throughout C will denote a positive constant which will be inde-
pendent of the variables in the equation in which it occurs but which
may be different at each occurrence.

2. Preliminary Results. Let E be a measurable subset of R? and let
F be a collection of cubes in R? with E C J{Q: Q € 3}.

DErFINITION. (1) if F is a locally integrable function on R4, we
define the maximal function of F relative to § by

(MzF)(x) = supL/ Fdt forall x e U{Q: Q€ 3§}
)

xXE€Q |Q|
Q€¥
If § = §, this is the usual Hardy-Littlewood maximal function.
(2) If f is a locally integrable function on E, we define the maximal
function of f relative to § by

(mgzf)(x) =sup — L fdt forallxekE.
)ée% 19| JonE
€

DEeFINITION. (1) Let w be a positive locally integrable function on
E andlet 1 < p < oco. We say w is an 4,(E)-weight relative to § if

_ p—1
@D Z‘é%(lQI/QnEwd’> <|<12|/QnE(i>l/(p 1)‘”) <o

and we denote the collection of all such weights by 4,(E,§). If E = R?
and § = § we abbreviate 4,(E,§) by 4, and say w is an 4,-weight.

(2) We say a positive locally integrable function w is an A4;(E)-
weight relative to § if

ocs { (@ Jo ) Sreo wx) }

We denote the collection of all such weights by 4, (E, §).
We record some properties of A,(FE,§)-weights in the following
proposition.

PROPOSITION 2.1.
(i) Ifw € Ap(E,3) thenw € A,(E,3) forallr > p and (1)1 ¢

p/(p-1)
(1) If wy,wy € A\(E, ) then 'wl,'wzl P edy(E,F) foralll1 <p<
0.

A
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(iii) If w € Ap then F = logw € BMO. By the theorem of John
and Nirenberg (Theorem 1.1), if F € BMO there exists 6 > 0 such that
e'f € 4,.

(iv) We mention here the following result of Coifman and Rochberg
B8] fF € Lll°g(Rd) and Mz f(x) < co a.e., then for each 0 < ¢ < 1,
(M f)° € A,.

DErFINITION. Let 1 < p < oo and let w € A,(E,§). We say w
satisfies a reverse Hoélder inequality if there exists ¢ > 0 such that
wltt € 4,(E, ).

REMARK. If w € 4, then w satisfies a reverse Holder inequality
with ¢ depending on p and supremum in (2.1). This fact may be
deduced from (2.1) by a repeated application of a Calderon-Zygmund
stopping time argument. See [1], [9].

The next theorem is a variation of a theorem of Muckenhoupt [9].
The proof is the same and so will be omitted.

THEOREM 2.1. Let 1 < p < oo and let w € Ap(E, ) where § is a
collection of dyadic cubes or § = §'. If w satisfies a reverse Holder
inequality then there exists a constant C > 0 such that

(2.2) /E (ms(N)Pwdx < C /E fPw dx

and

ey [ty (g)""’ axsc [ i (g)‘””wdx

where g = p/(p — 1).

By a theorem of Rubio de Francia [10], (2.2) and (2.3) imply that
there exist w;, w, € A;(E,§) such that w = 'wlfw?f_” . We summarize
what we need from the above in the following corollary.

COROLLARY 2.1. If w € A,(E,§) and w satisfies a reverse Hélder
inequality then there exist wy, w, € A>(E,¥) such that w = wy/w;.

We are now in a position to give the BMO extension theorem of
Wolff [15].
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THEOREM 2.2. If f is measurable on E, then the following are equiv-
alent:

(1) f is the restriction of a BMO function on R? to E;
(2) 34 > 0 such that

sup [ H-ONQNED [ 1

oes 19 JonE
(3) 34 > 0 such that

< o0,

sup inf—l—/ etlf—a « oo
oc3 acR |Q| JonE

We give the proof as it provides one of the basic steps needed in
proving Theorem I.

Proof. The equivalence of (2) and (3) are straightforward and the
implication (1) = (3) is similar to the proof of (1) = (2) in Theorem
I which we give in §3.

(2) = (1): (2) implies that w = e*//2 € 4,(E,§') and satisfies a re-
verse Holder inequality. Hence by Corollary 2.1, there exist w;, w, €
A\(E,§) such that w = e*//2 = w;/w,. Define W; = Mz (xgw;)"/?,
i = 1,2. By Proposition 2.1 (iv), W;, W, € Ay, i.e. 3C > 0 such that
W; < Mg (W;) L CW,, i =1,2. Since My (xrw;) = mgz(w,;), a.e. on
E, (i = 1,2), it follows that 3g € L (R?), g > 0, such that

4 2_’w1_ Af/2
g(ﬁ/;) _1—0—2—8 a.c.on E.

Define F = %{logg+ 2log(W;/W>)}. Then F = f a.e. on E and by
Proposition 2.1 (ii) and (iii), F € BMO(RY). O

Finally we prove 2 lemmas which are needed in the next section.
The first is a variation of the theorem of Coifman and Rochberg men-
tioned above while the second is based on Lemma 2.2 in [5].

LEMMA 2.1. Let n € N and let § = {Q: Q dyadic, Q C Qo, /(Q) >
27"}, Let g € LI°°(Qy) and suppose (Mzg)(x) < oo a.e. Then for all
0 < d < 1, there exists Cs > 0, depending only on 6 and the dimension,
such that

M ((M58)°) (x) < Cs(M58)°(x).
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Proof. 1t suffices to show 3Cs5 > 0 such that VQ € g,
1 .
2.4 ———/M 0 dt < Cs inf (M3g)°(x).

This result is established by Coifman and Rochberg in [3] for the usual
Hardy-Littlewood maximal function. The proof of (2.4) for Q € ¥
with /(Q) < % is essentially the same; the relevant property of such
cubes is the following:

30, € §,1(Q)) = 2[(Q) such that Q C Q; and whenever Q) € §
satisfies |0, N Q| > 0 and |Q, N QF| > 0 we have Q C Q.

For Q € § with [(Q) > %, (2.4) follows by integrating the weak-type

estimate for the Hardy-Littlewood maximal function.

LEMMA 2.2. Let E be a measurable subset of the unit cube Qg with
0 < |E| <1 Thenif0 < B < logl/|E|, 3H € dyadic- VMO(Qy),
|H||.q < C such that:

(1) 0<H < B,supp(H) C Qo, H=B on E,

(2) SupQ: 1(Q)>1 I—élfQ Hdt <C.

Proof. This is a version of Lemma 2.2 in [5] where H is constructed
in BMO(Qy) satisfying (1) and (2). The argument below is the dyadic
version of this construction. (See also the proof of Lemma 1.2 in [14]
where a similar result is obtained.) Without loss of generality we may
assume |E| < 27% (otherwise we may take H to be constant). Let
{Q;}i>1 be the maximal subcubes of Q for which |Q;NE| > 3|Q;|. Let
no = 1 and for each j > 1 choose n; so that

log > Q|

i>n,

and define GY) = {Q;: nj < i < njy 1} so that Y-y 0, [Q] < 4754|Q
where B; = 2/fy, Bo = [5]log|JQ;ll] and [ ] denotes the greatest
integer function. ‘

For each j we now construct a sequence of generation {GEJ )}f; , as
follows:

(1) Set GY) = GU).
(2) Suppose GV has been defined. For each Q € G let G*®)

denote that dyadic cube of length 2%/(Q) containing Q. Choose k
minimal so that

> {lel: 0 e 6,0, c o™} <27g").

- jeel U]
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We define GY) to be the maximal cubes in {Qﬁk ) 0, € Gl(.j )}. We

i+1
note that

Y {loreed Y <2 {jol0ecy )

and hence if Q is any dyadic cube then

B,
Yo > e <clal.

i=1 leGEJ)
0:CO

Hence by an argument similar to the proof of Lemma 2.1 in [5] we
see that the function

B
4=3 > X
i=1 le(;fl)
belongs to dyadic-BMO(Qy) with ||a;||. ; < C. Furthermore a; = g;
on | J{Q: O € GY )} and since a; is constant on small dyadic cubes,
we have in fact that a; € dyadic-VMO(Qy). We now define

H=%min(2%,ﬁo). o

Jj20

REMARK. We note that Lemma 2.2 may be established without
using the above construction. Indeed, it is not hard to see that the
function .

po [ B omUo:i0ea)
0 on Qg
satisfies the hypothesis (3) of Theorem 2.2 with

E=J{g: 0e GV} ugs

and with § replaced by those dyadic cubes of length > min{/(Q):
Qe G(lj )} and so can be extended to a dyadic-BMO function F with
||F|l.g < C and which is constant on small dyadic cubes. This will
become clear after reading §3(i) below.

3. Proof of Theorem I. If Q is a cube and r > 0 we will denote by
rQ the cube with the same center as Q and of length r/(Q).

Without loss of generality we will assume E is contained in %Qo
where Qp is the unit cube in RY.
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(1) = (2): Let F € VMO with Fyg = f and for each n € Z define

: f—_ | MF-al <2
S infio [ e

. A —Fol
: sup / <2
Z(Q < 10| }

1Fllen = sup [ |F - Fl.
" e 10l o ¢

Since F € BMO, 3C > 0 such that Vn > 0,
|Fllin <C and lim ||F|.,=0.
n—o00

Sof =

1, (F) = inf{

o =

I (F) = inf{

By Theorem 1.1, 3C > 0 such that whenever 0 < 4 < C/||F||..» We

have !
sup —/ eHF—Fol < 2.
<2 181 Jo

Hence T2}(F) < ||F|l../C. Since i,(F) < T,(F) and (/) < T,(F),
it follows that u,(f) < C for n = 0,1,2,... and lim,_ . us(f) = 0
and this proves (1) = (2).

Proof of (2) = (1):

Part (i): Extension to dyadic-VMO.

Condition (2) in Theorem I implies there exists a sequence {4, },>0,
0 < A, T oo such that

1
sup - ln’f—fQﬂEI < 2.
1o)<2- 19l Jone

Let np = 0 and define a sequence {n;},>; € N by the condition
An > 24y, if and only if n > n;, ;. To simplify the notation we will
write 4 for 4,,. Now define for each k > 0

Sk =1Q: Q dyadic, Q C Qo,[(Q) > 27},

Foreach n =0,1,2,... we define f, = EQeDn JonEXONE-
The idea of the proof is as follows: We write

£=Fo+ X Uner = fo)
k>0

and note that in order to extend f it suffices to extend each of the
functions fy, fy,., — fu,, kK > 0. These functions are constant at ev-
ery point of E which belong to the same small dyadic cube and so



EXTENSION THEOREMS FOR VMO 285

we would like to extend each of these functions to dyadic-BMO func-
tions which are constant on small dyadic cubes and in particular will
therefore be in dyadic-VMO. To do this we proceed as in the proof of
Theorem 2.2; that is, we first show (in Lemma 3.1) that

e/Dh e 4,(E,Fo) and eMrUna=l) € 4y(E,Fry)

and satisfy a reverse Holder inequality. We then factor and extend
these weights using a truncated dyadic maximal function instead of
the full dyadic maximal function. We do this to ensure that the
A1(Qo, §r )-weights we obtain using Lemma 2.1 (that is, the weights
Wi, W, in the notation of Theorem 2.2) will be constant on small
dyadic cubes. The difficulty that now arises is that we cannot con-
clude as in Theorem 2.2 that the quotient of each factored A,(E, §x)-
weight with the corresponding truncated maximal function is uni-
formly bounded on E. To accommodate this possibly large quotient
into an appropriate VMO function we will appeal to Lemma 2.2. We
proceed with the dyadic extension:

LEMMA 3.1. There exists C > 0, depending only on the dimension,
such that for all k > 0,

(1)

sup <_1_ / euk/zxf%—ﬁk)) (L / e—(Ak/z)(ﬁ,k+.—ﬁ.k>> <cC,
0ezin \1Ql JonE 1Ol JonE

(2)
1/ (/1/2)1’)(1/ —(/1/2)f)
sup efols)o ) —— e Wi} < C,
Qe&o(|Q| ONE 19l JonE

Proof. Let Q be a dyadic cube with /(Q) > 27" and let {Q;} be
those dyadic subcubes of Q of length 27%. Then for all A < 4;,

1 oS 1) (% ( Af-1, |)
P nl — e ny
19l JonE Z |Q| |Qz| ONE

i C

1 1
3.1 . e =r) e M=t <C.
(3.) 1Ol JonE 101 JonE
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Now if Q is a dyadic cube with /(Q) < 27" then for all A < 4; we are
given

A [ s L / o=~ tors) < €
10| JonE 1| JonE

and hence

60 (i fpe®) (ot ) =

We note that if j = 0, (3.2) holds for all Q € Fy and for all 4 < 4.
Now (3.2) implies that for all Q € §;;, [(Q) <27 and forall A < 4;

1 e 1 e
(3:3) 10l JonE 1Ol JonE
Since

IR OV T

1Ol JonE

12 12
< <L / ei(f—fm) (L / e—A(f—f,,kH))
~\IQ| JonE 1Ol JonE

(and similarly for 7y foz e~ 2 Un.=/n)) we see that (1) follows from
(3.1) and (3.3).

Now (3.1), (3.2) and Hoélder’s inequality imply that for all A < 4y/2
and for all Q €

(0 Jo ) (01 ) =

and this gives (2) which completes the proof of the lemma. a

To simplify the notation we set M;(g) = Mz, (g) and my(g) =
mg, (g). Corollary 2.1 implies the following:
For each k =0, 1,2,... there exist u;, v € A{(E,§x) such that

LL— 7
D

and

Z_k = exp <}“k4‘1(fnk —f,zk_l)> Vk=1,2,....
k

Furthermore, since the 4,(E, §)-weights and the maximal function
m, (-) are constant at every point of E which belong to the same dyadic
cube of length 27" the proof of Corollary 2.1 given in [2] shows that
the same is true for the A, (E, §;)-weights u; and vy.
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Now for each k =0, 1,2, ... and for each x € R? we define
U (x) = My (xeur)(x),
Vi(x) = Mi(XEV)(X).
Then, for all x € E,

Aje_ U,
exp (420 = £ )0) = () k2
and
Us(x
exp( 20 fho(x )) V[())((x))w‘)(x)
where
w _ M i (V) Vk >0
KT v my (uy) -
Hence,
8 U\ 4
f;lk _f;lk—l Ak— lOg < V;{) + Zc—_llogwk
and

8 Up\'? 4
fo= 7 log(VO> +1—610ng.
Now Lemma 2.1 implies 3C > 0 such that
MU <cul? and MV <cv?
and so by Proposition 2.1 (ii), (U, /Vi)'/? € 45(Qo, 3x)-

Then, by Proposition 2.1 (iii), we conclude that

JAICIRCIC)
sup — log{ —)—{log| =
0en 101 Jo |\ W% 2\% /),

<C.

287

In particular since Uy, V) are constant on dyadic cubes of length 277,

we have log(Uy /V}) € dyadic- VMO(Qy).

Finally we need to extend the functions log wy to dyadic-VMO (Qy).
Let Q, be a dyadic cube of length 27" with |Q, N E| > 0. Then since

u; and vy are constant on Q; N E we have forall x e O, NE

1 |Ok|
uk(x) < IQk OEI OuNE uk(t)dt < IQk ﬂEI mk(uk)(x)

and similarly

() € 5 B () (1)
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and hence

1Ol

Ok NE|

Hence by Lemma 2.2, there exists &, € dyadic- VMO(Q,) with
supp(hy) C Q satisfying

[log wy (x)| < log C + log

|logwy(x) — hk(x)|<C, Vxe QyNE and

o / he(t)dt < C.

0)>l00 1]

We now define
H(x) = {

It is easy to check H; € dyadic- VMO(Q) with ||Hy|., < C and
|logwy (x) — Hy(x)| < C, Vx € E. This implies AR, (x) € Lo (R?)
with ||Ri|lc < C and which is constant on dyadic cubes of length
27" and satisfies Ry (x) = logwy(x) — Hi(x), Vx € E. In particular,
Ry € dyadic- VMO(Qyp) with ||[Ry|l.4s < C, Vk. Hence the function
W = exp(Ry+ Hy) satisfies log W}, € dyadic- VMO(Qy), || log W, 4 <
C and Wy xg = wy.
Now define

hip(x) if x € Ok, O € Dy,, |Qx NE| >0,
0 otherwise.

2 :
- F ) Zm(Gk+Rk+Hk) if x € Qy,
. X) = k>0 -

0 otherwise,

where Gy, = 4log(U/Vi)'/? and by A_, we mean Ay. Since Gj +

Ry + H;, € dyadic- VMO(Qy) with |Gy + Ry + Hi||. 4 < C and since

> k>0 1/(Ak_1) < o0, it follows that F € dyadic-VMO and ||F|.; < C.
Furthermore

Z (Gk+Rk+Hk)xE-Z<ﬂzk+, L)+ fo=f ae. onE.

k>0
Hence F is a dyadic-VMO extension of f.

Part (ii): Extension to non-dyadic VMO.

If S is a set in R? we will denote by S — a the set {x —a: x € S}.

For each a € %Qo the function f((x) = f(x — a) satisfies the
hypothesis of Theorem I with the set E replaced by E — a. Hence
by the proof in part (i) above, there exists F(® € dyadic- VMO with
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|F@], < C, F® = f(®) a.e. on E —a and supp(F () C Qy. We claim
that the function

F(x) =3 / F®(x + a)da
a€Qo/3

is a VMO extension of f. It is clear that F = f a.e. on E. It will
follow from Lemma 3.2 below that F € VMO.

LEMMA 3.2. Let Q be a cube and let {f®: o € Q} be a collection
of dyadic-VMO functions satisfying

(1) supaep Ifa < 1,
(2) there exists r > 0 such that for all o € Q, supp(f®) C 27Q.

Then the function
1
|Q| a€Q

belongs to VMO with || f||« < C, where C, depends only on r and the
dimension.

flx)= @ +a)da

REMARKS. (1) The idea of averaging dyadic-BMO comes from [6]
where the BMO version of Lemma 3.2 is stated (and proved implic-
itly). Our argument is different to that used in [6] and the simpler
BMO version of our argument can be used to provide an easy proof
of the theorem in [6].

(2) Let BMO(p) denote the space of those VMO functions whose
mean oscillation over any cube is O(p(/(Q))) where p is a positive,
non-decreasing function with p(0+) = 0. In the case when each f(®
belongs to BMO(p), Lemma 3.2 may be deduced from the results in
§3 of [13]; the conclusion in this case being that f € BMO(p) where
pit) =t [ p(0)/602d6. The argument in [13] is a version of the
averaging argument in [6]. The proof below can be easily modified to
obtain this result.

Proof of Lemma 3.2. Without loss of generality we may assume Q =
Qo, the unit cube in RY.

We first show that for each ¢ > 0 there exists 6 > 0 such that if Q
is any cube with /(Q) < d then

ré—lfglf—fglﬂ-
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Fix 0 < & < 4. For each a € Qy, f® € dyadic- VMO and hence there
exists n, € N so that

fl@
1 o/ = el <

whenever Q is a dyadic cube of length < 27", Hence by Egoroff’s
theorem there exists N; € N so that the set

1
So={a 0ot g [ 1= (gl < et
whenever Q is a dyadic cube of length <2~V '}

has measure > 1 — . Choose N, so that N,2~™ < £2~V and let Q be
any cube with /(Q) < 27, Let

S = {a € Qyp: Q—a is contained in a dyadic cube of length < 1/(Q)}

and note that [Qg N S{| < C,.
If a € SoN S| we claim that

1 [ _ (4 g
(3.5) IQI/Q'f (X +a) = fO( + a)ol dx < 2e.

To see this let Q; be that dyadic cube of length < 1/(Q) that contains
Q — a. Then,

@ /Q /O (x + ) — (FO(- + a))gl dx

<21nf——/ /@) (x + @) — a| dx

aeRl

< 2@ /@ +a) - (f@)g,] dx
5G] 1 @+ _ ¢ £(a) —dnd+l _
2 IQI/.lf (xX) = (f@)g,| dx < 26460+ = 2¢.

For each k > 0 let f{*) = Ypcp (f®)oxo and choose m so that
2-(m+) < [(Q) < 2-™. Let

g = - £ and g = £,
Now for all a € Q,,

a1 8 olx s cmd [ - i)
L[ e @
SCZIQA/Q'If (f)g | dx
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where the sum is taken over those dyadic cubes Q; of length 2~ which
intersect Q — a. If a € S then for each such Q;,

I_QITL/Q |f(a) _ (f(a))Q,' < gd+l

while if @ € Qp N S§

! / (@) _ ( fle)
(¢4 < 1‘
|Qb| Qﬂf" (f‘ )QJ.—
Since there are at most a ﬁXCd number of such cubes we have

1 ) { Ce if a €S,
36) o~ dx <
(3-6) |Q|/Q(g1 Creldx <y ¢ iraegons:

Now for each 0 < j < m let
A; ={a € Qp: Q — o is contained in a dyadic cube of length 27/}

and note that |45| < c2—m,

Since supp(f®) C 2"Qp, and || f¥|. < 1, it follows that there
exists C > 0 depending only on r and the dimension such that if
ae(AjﬂAjH)ﬂSo then

Ce(m—j) if j > Ny,

(@) @ <
sp 1) -0 <{ o 0T

X, yeQ—a
and if o € 45N S then
sup |g2(a)(x +a) — géa)(y +a)| < C(m+r)
X, yEQ—a

while if a € (4; N A4S, ) NS¢

sup gy (x +a) - gy + )| < C(m - j)
X, yEQ—a
and if a € A5 N Sg then
sup lgéa)(x +a) — gé")(y +a)| < C(m+r).
X, yEQ—a
Hence if j > N; then

/ sup 189(x +a) — g + )| da
AJﬂA( ﬂSg x,yGQ—a

J+1

< Ce(m — j)2)=™
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and if 0 < j < N; then

/ sup |g2a)(x+a) —gz(a)(y-!-a)lda
A,NA, NSy X,yEQ—a

J+1

< C(m— )2

Also
/ sup |g )(x+a) y+alda<C(m+r)2 "
AiNSy x,yEQ—a
and
/ sup  |g,”(x +a) — g (v + )| da
A,NAS, NSE X,.yEQ—a
< C(m~ jymin(2"", ¢ >,
/ sup |g2( (x +a)— y+alda
AsNSS x,yeQ—a
< C(m+r)min(27" ¢).
Hence
(3.7) sup g (x +a) = g% (v + a)| da

Qo\(SoNSy) x,y€Q

m
<Y C(m—j)min(2~", )+ C(m+r)min(27™",¢)
j=0

m
+ Y Ce(m—j)2™"
J=N

N, .
+> Cm=j)2""+ C(m+r)27"
j=0

< Celog% +Cm2™™ 4+ Ce+ (m— N2V ™" + Cm2™™
< Ce log% + Ce+ C(m2-m)2M

< CBlOgé—+C8+C8 < Calog—gl—.
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Combining (3.5), (3.6) and (3.7) we get
1
o L1/ feldx
</ (|Q|/ If@(x +a) = (fY+ ) Q|dx) do

<[ (i J e - (e +a))oldx) da

+/ sup |85 (x +a) — g (v + a)|da
Qo\(SoﬂSl) XyGQ

+2 (——/ @ (x +a)| d ) d
o lQl ngl (X a)l X a
1
+2 (——/ D (x + dx) d
ons \I0| ngl b+ ) “

1
<Ce+ Calog% +Ce+Ce< Calogz.
It remains to show that

1
(3.8) sup o /Q | ~ fol < oo.

It is clear from what we established above that it suffices to prove (3.8)
when the supremum is taken over all cubes with /(Q) > 1. Fix Q with
[(Q) > 1. Then for all a € Qy,

I_é_l/ 11 (x + )| dx
(Ot)
IQI/% ("+“'d"+|Q|/'f |dx.

Since each f(@ is supported on 2'Q, there exists C > 0, depending
only on r and the dimension, such that | £*(x)| < C for all x € R?.
Hence

ﬁ/QIfé“)(x+a)|dx <cC

Let {Q;} be those dyadic cubes of length 1 with Q; N (Q — a) # &.
Then for all a € Qy,

I ) )
IQl/lf (x +a) — f90x + o) dx
<C‘2 |/lf<"> (f@)gldx < C.
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Hence

1 1
|—Q—|/Q|f—fQISC|—Q—|/Q|fI

<cf (Ié/QIf(")(x+a)|dx) da<C.

and (3.8) now follows. This completes the proof of Lemma 3.2 and
Theorem 1.

A consequence of Theorem I which has useful applications is the
following corollary:

COROLLARY 3.1. Let E, E, be measurable subsets of the unit cube in
R? and suppose there exists an increasing sequence of positive numbers
{An}$2 o With Ay — oo such that for each n € N and for each cube Q
with [(Q) < 27" we have

(IONE|| |QNE\ _ _;
“‘“‘( ol ° 10| )“ '

Then there exists F € VMO, ||F||. < C;, with F =0 on E, and F = 1
on E2.

Proof. Set E = E; U E;, in Theorem I and define

0 iferl,
f(x)“{ 1 ifx €k,

and

{ I if |QNE;|/|Ql <e™,
ap =

0 otherwise.
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