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ON THE RESULTANT HYPERSURFACE

A. D. R. CHOUDARY

The resultant R(f, g) of two polynomials f and g is an irreducible
polynomial such that R(f, g) = O if and only if the equations f = 0
and g = 0 have one common root.

When g = f'/p, then D(f) = R(f, g) is called the discriminant
of f and the discriminant hypersurface D, = {f € C’,D(f) = 0} can
be identified to the discriminant of a versal deformation of the simple
hypersurface singularity 4,_,: x? = 0. In particular, the fundamental
group 7 = 7;(C?\D,) is the famous braid group and C’\D, in fact a
K(m, 1) space.

Here we prove the following.

THEOREM. 7;(CP*I\R,,) = Z.

As C?\D, can be regarded as a linear section of C’*7\R, g, this
theorem shows that by a nongeneric linear section the fundamental
group may change drastically, in contrast with the case of generic
section.

Let f=xP+ax’"'+---+a,and g = x9+ b)x?~! +.-- + b, be
two monic polynomials with complex coefficients of degree p and ¢
respectively.

The resultant of them R(f, g) is an irreducible polynomial in the
coefficients a;, b;-such that R(f,g) = 0 if and only if the equations
f = 0 and g = 0 have at least one common root. Explicitly, the
resultant is given by the next formula (see for instance [5], p. 136):

lal. SRR PRE 0---0
1 a- - - - ap...o } qlines
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R(f,&) = R(a,b) = 1 b, b, 0. ... 0
1 b .. --bq----O} p lines

When g = f'/p, then D(f) = (f, g) is called the discriminant of the
polynomial f and the discriminant hypersurface D, = {f € CP,D(f) =
0} has occurred several times in Singularity Theory, since it can be
identified to the discriminant of a versal deformatioin of the simple
hypersurface singularity 4,_;:x? = 0, see for instance [1], [3], [9]. In
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particular, the fundamental group n = mn;(C?\D),) is the famous braid
group [1] (with p strings) and CP\D, is in fact a K(=, 1) space.
In this note we consider the analogous resultant hypersurface

R, ={(f,8) e C"";R(f,g) =0}
and prove the following.
THEOREM. 7 (CPTI\R, ) =Z.

Since CP\D, can be regarded as a linear section of C’*9\R, ,, this
theorem shows that by a nongeneric linear section the fundamental
group may change drastically, in contrast with the case of generic sec-
tion [4].

It is also interesting to note that the complements F, , = CP*9\R,,
have already occurred in an important topological problem [7], going
back to certain questions in Control Theory [2]. In short, consider the
space of rational real functions of the form

_xX"4ax" M+ ta,
x”+,31x”‘1+~'+ﬂn

with a;, ; € R and the numerator and the denominator having no
common root. Then ¢ induces a continuous map P!(C) = Cu{oo} —
C U {00} = P!(C) of degree n and its restriction to the equator R U
{00} = S! ¢ §? = P!(C) gives a map S' — S! having degree r such
that —-n < r<nand n—r = 0mod2. Let E,_, denote the space of
these mappings with #n and r fixed, with the obvious topology. Then
Segal has shown in [7] that E,, , is homeomorphic to F,, ; with p+g =n
and p — q = r. He has also proved our Theorem in the special case
P = q, by a method completely different from ours.

We derive our Theorem from some basic properties of the resultant
hypersurface (which are also interesting in themselves) combined with
a deep result of Lé-Saito [6] on the connectivity of the Milnor fiber of
non-isolated singularity.

¢

LEMMA 1. R € Cla,b] is a weighted homogeneous polynomial of
degree pq with respect to the weights wt(a;) = wt(b;) = Ii.

Proof. Note that the polynomial - f = x? + ta)x?~1 + - + t?a,

has as roots the elements tx;, where x; are the roots of f, for any
t € C*. Then, using [S], p.137, we get R(¢- f,¢- &) =[], ;(txi —ty;) =
P ]'[i’j(x,~ —y;) =tIR(f, g), where y; are the roots of g. O
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The key remark in the proof is that the resultant hypersurface has a
smooth normalization v which can be described explicitly as follows:

v=CxC 1 xCi-! - R, cCrta

v(t,a, B) = ((x—1)fa, (x—1)gp), Where fo, = xP~ 4 xP~ 2+ +ay_y,
8p =x9"1+ Bix972+ B1x97 2+ + B,_1. Then v is clearly surjective
onto R, , and the cardinal of a fiber v~!(f, g) is equal to the number
of common roots of the equations f = 0, g = 0, counted without
taking their multiplicities into account. Hence v is a finite morphism
which is generically one-to-one so that v is indeed a normalization for
R, 4.

We use v to investigate the singularities of the hypersurface R, 4.
To do this, we first compute the differential of v at a point (zy, g, Bo):

dy(t()’ ao, ﬂO)(ts «, ﬂ)
= ((x = t0)(fo = X771) = tfoo (x — 10) (g — X77") — t8p,).
Assume that ¢ is not a root for f,, and gg simultaneously. Then
it follows that dv(ty, ag, Bo) is an injective linear map and its image

(which is a hyperplane in the vector space V of all the pairs (4, B),
with 4, B € C[x],deg A < p—1,deg B < g—1) is given by the equation

Joo (20)B(t0) — 8p,(t0)A(Zo) = 0.

Let d(f, g) be the greatest common divisor of the polynomials f and
g. The above computation gives us the next

COROLLARY 2. The point (f, g) is nonsingular on the hypersurface
R, ; if and only if degd(f, g) = 1.

Proof. Use the fact that a point (f, g) € R, is nonsingular if and
only if v~1(f, g) consists of one point, say y, and the corresponding
germ v: (CP*4,y) — (Rp 4, (f, g)) is an isomorphism. m]

We have also the more general result.

PROPOSITION 3. Assume that d(f,g) = (x—1t;)...(x —t5) is a prod-
uct of s linear distinct factors. Then the germ (R, 4, (f, g)) consists of
s smooth hypersurface germs passing through (f, g) with normal cross-
ings.

Proof. In this case the fiber v~1(f, g) consists of s points, say y; with
k = 1,...,s. Moreover, the germs v;: (C?*971,y,) — (R4, (f, &) C
(CPt4,(f, g)) induced by v are all imbeddings and H; = im(v;) are pre-
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cisely the (smooth) irreducible components of the germ (R, 4, (f, g)).
The corresponding tangent spaces are T = 71 q)Hy: f(t;)B(t) —
8(t)A(t) =0for K—1,...,sand f = f/d(f,g), g = &/d(/, g). The
condition of normal crossing in this case means that codim((,_, ; 7%)
=s.

But this intersection corresponds to the kernel of the following lin-
ear map. T:V ~ CP*? — C[x]/(d(f,g)) ~ C* such that the kth
component of T(A, B) is just the evaluation on t, of (f-B—g-A), for
k=1,...,s. It is easy to check that T is a surjective map and hence
codim(_; ; Tx) = codim(ker T') = s.

COROLLARY 4. The hypersurface Ry 4 has only normal crossings sin-
gularities in codimension 1 and hence n;(CP*I1\R,4) = Z.

Proof. The singularities of R, , which are not normal crossings (as
described in Proposition 3) lie in the image of the map

T:CxCP2xCI"2 = R,,,

w(ta, B) = ((x — )% o (x — 1)°p)

with f,, gg having a meaning similar to f, gg. But dim(im7) < p+g—
3 = dim R, ; — 2 which proves the first assertion above. Next consider
the fibration F — CP*9\R,, — C* with F = F~I(1) = {(f,8) €
CPt9; R(f,g) = 1}. Using the weighted homogeneity of R given by
Lemma 1, we can identify this fibration with the Milnor fibration
of the hypersurface singularity (R, 4, (x?,y?)). It follows by [6] that
I1,(F) = 0 and hence we get an isomorphism

Ry = [J(CP*\R, ) — [](C)
1

1

Z.

This ends the proof of this corollary as well as giving a more precise
version of our Theorem above.

REMARK 5. There is a natural C-action on C?*4 leaving the resultant
hypersurface R, , invariant. Namely we define the translation of an
element (f, g) by the complex number A to be the element (%, g%)
where

A=Tlx-x-4, g=][x-y-2

i=1,p Jj=lgq
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with x; (resp. y;) being the roots of f (resp. g). Since the hyperplane
a; = 0 is clearly transversal to all the C-orbits, it follows that

Rp,q = R—p,q x C with Fp,q = Rp,q n {al — 0}

The first non-trivial case of a resultant hypersurface is for p = ¢ =
2. Then R, is just the Whitney umbrella W:F§ — bla, = s, with
by = by — ay, called also a Dy-surface singularity for a pinch point.
It follows that C4\R2,2 = (C3\W) x C and the homotopy groups of
C3\W can be derived from the Milnor fibration F,, — C3\W — C*
associated to the D,-singularity [8]. It is known that F,, has the
homotopy type of the 2-sphere S? and hence

[I(CN\R22) =]]($») fork >2.
k

k
In particular C*\R, is not a K(Z, 1) space, since I,(C*\R,,) = Z.
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