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ON THE ELIMINATION OF ALGEBRAIC INEQUALITIES

DANIEL PECKER

Let S be a locally closed semi-algebraic subset of R”. We find
an irreducible equation of an algebraic set of R"*! projecting upon
S . Our methods are simple and explicit.

1. Introduction. The inequality x > 0 is often replaced by the
proposition “x has a square root” or “3It € R, > — x = 0”. This
is the most immediate example of an elimination of one inequality.
The general problem is to find an algebraic set projecting upon a given
semi-algebraic set: it is a converse of the problem of the elimination
of quantifiers.

Motzkin proved that every semi-algebraic subset of R” is the pro-
jection of an algebraic set in R”*! . However this algebraic set is very
complicated and generally reducible.

Andradas and Gamboa proved that any closed semi-algebraic sub-
set of R” whose Zariski-closure is irreducible is the projection of an
irreducible algebraic set in R"*X .

In this paper we shall first improve Motzkin’s result by finding equa-
tions generally of minimal degree. Then we shall give a few results
concerning irreducibility. One of the first examples of such a con-
struction is due to Rohn and has been studied by Hilbert and Utkin:

If 4C4C, = &2 is a plane curve of degree six (where deg(C,) =2,
deg(C,4) = 4, € € R), then it is the apparent contour of the quartic
surface Cyz2 —ez+C4 = 0.

2. The case of basic closed subsets. Let Rt = {x € R|x > 0} be the
set of nonnegative numbers. Let x = (x, ..., xy) be a “parameter”
and ¢ an “indeterminate”, so that we can speak of the roots of a
polynomial P(x, t). In the same way, unless otherwise specified, the
degree of P(x, t) will be its degree in ¢.

Let us define the polynomials a;(x) as follows:

Xy, ee s Xpg1) = Xpg1 (X1 + X2+ - + Xg).
It is easy to see that a(x) >0, ..., a,(x) > 0 if and only if all the
x; are nonnegative or all the x; are nonpositive (i=1,...,n+1).
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THEOREM 1. Let P/(x;, u) =u—Xx;.
Pn+1(xl s ooy Xntls I/l)
= Pu(a1(X), .. s an(x), (= (1 + X2+ + Xns1))).
Then the following properties are true:

(i) P, is homogeneous of degree 2" 1.
(ii) If all the x, are nonnegative

n
Pn(xl,...,xn,u):0=>O§u§2in.
1

(ii1) If all the x; are nonnegative, P,(x,, ..., Xn, t*) has only real
roots.

(V) If Py(xy, ..., Xn, t2) has a real root, then all the x; are non-
negative.

(v)
P,Z(xl, e X1 O, Xitls oees Xns I)
= [Pn_l(XI, s Xl Xjhl s e s Xns [)]2
(vi) Py(xy, ..., Xn, t?) is irreducible and monic in each letter.
Proof. First, we prove (i), (ii), (iii), and (iv) by simultaneous in-
duction: let us suppose (i), (i), (iii) and (iv) verified for »; we shall
prove them for n+ 1.

(1) Easy since the a; are homogeneous of degree 2.
(11) If u is aroot of P, i(xy, ..., Xps1, #) =0, then

(= (X1 + -+ Xny1))?
is a root of P,(a;(x), ..., a,(x), v) = 0 by induction
(= (xy 4+ X041)* < 2@ (%) + -+ an(X) < (X1 + - + Xpa1)?

whence 0 < u < 2(x; + -+ X,41), which shows (ii) and (iii).
(iv) If Pyyi(xXi, ..., Xnse1, t2) = 0 has a real root, then

Py(ai(x), ... an(X), (£ = (X1 4+ X41))%)

has a real root and by induction all the a,(x) are nonnegative. There-
fore, if all the x; are nonpositive, P,(a;(x), ..., a,(x), v) has a root
which is greater than (x| + -+ + X,41)? > 2(a(x) + -+ + an(x)).
By induction this is possible only if

(X1 4+ Xnp1)? = 2(a1 (%) + - + an(x)),

1.e., when all the x, are equal to zero.
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(v) By induction: suppose the formula true for #, let us prove it
for n+ 1. Let us study the case j > 2 (the case j = 1 is similar).
Let

X = (xl seee s Xjo1s 0’ Xjgls eens xn+1)a
X = (xl, ooy Xjo1s Xjgl s eee s x,,+1).

We have:
ailx)=a;(x) ifi<j-1,
aj-1(x)=0,
ap(x)=a_((x) ifk>j.
Then,

Puii(x, 0) = Polay(x), ..., an(x), (t = (X1 + -+ + Xp31))?)
= Py(a1(X), ..., aj—2(%X),0,a;1(X), ..., ap-1(X),
(t = (X1 + -+ X011))?)
= [Paci(@r(R), ... s @nog(X), (£ = 6y + -+ + Xng1)) P
= [P(%, DI

(vi) By induction. Suppose P,(x, t?) irreducible. Let
Pooi(X1s ooy Xns1, 12)=A(x, 1) - B(x, 1),

A and B monic in ¢. Let us substitute O for x,,; in this factoriza-
tion; using (v) we get:

(Pa(X1yoees Xns 22 =A(x1, ..., X0, 0,8)-B(X1, ..., Xn, 0, 0).

Since P,(x, t?) is irreducible, and 4 and B are monic in ¢, we get
either:

AXy, ooy X0, 0, ) =B(X1, .., X0, 0, 8) = Py(x1, ..., Xn, t2)

or:
A(XI, PPN ,xn,O, t)=(Pn(.x1, cee ,.Xn, tz))z.

In the first case, at any point where all the x; are positive P, has
a simple root and then 9A4/0¢t # 0. Then (by the implicit function
theorem) A has a root for x in a neighborhood of (x;,..., x,,0),
which is impossible since P,,; does not have such a root when X,
is negative. In the second case P,,, and A have the same degree in
t, and since 4 and B are monic in ¢, we obtain finally A(x, ) =
Pi(x,t?), B(x,)=1. i
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REMARKS. We can compute easily P, P,, P3.
P(x, )= -x,
Pyx,y, %) = - (x+y)?-xy,
Py(x,y,z,1%)
=[(* = (x+y+2)* = (xy +yz+zx)P = xpz(x +).

If we use the elementary symmetric polynomials s; = x+y + z + u,
Sy, 83, 84 = XyzZu, we can even write Py :

P4(xaya zZ,u, tz)
=[((P=s1)? =) —xyz(x +y) —u(x +y + z)(xy + yz + zx)?
—S4(x+y)(x+y+2)(xy +yz + zx).

The main step in Motzkin’s work (cf. [M1], [M2]) was to find “a real
polynomial Uj(xy, ..., X4, t?) such that x; >0, ..., x; > 0 if and
only if, for some ¢, Uj(xi, ..., x4, t?) = 0.” His polynomials are
reducible, nonhomogeneous, have some complex roots even when all
the x; are positive, and they are very complicated:

Uj(x,y, ) =[t*(x-) =22 (x = y)2 (x +y) + 11[(2 = y)* + (x —»)*1,

deg,(U;) = 4, but deg,(U3) = 104, deg,(U;) = 12, 496, deg,(Us) =
7,997, 47211

The induction formula defining our polynomials P, was found by
a geometrical construction (cf. [P1], [P2]):

The algebraic set v3: P3(x, y, z, 1) = 0 is such that the positive
cone on it

C*(v3) = {(x, y,2) eR}Ft >0, (; % ;) v}

={(x,y,2) €R|FH >0, P3(x,y, z, 1*) =0} = (R")>.

v3 is projectively equivalent to an algebraic set v; whose vertical
projection is a triangle. And it is not difficult, using P,, to define
such a set (see figure).

The following corollary is due to the cooperation of C. Andradas.

COROLLARY 1. There exists a real irreducible polynomial

Pn,m(-xls°'°9xnayla'--,y}'nat2)

having a real root iff all the x; are nonnegative and all the y; are
positive.
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FIGURE
Surface z* — 2(B; + By)z2 + B} + B = 0 with
Bi=x-x?, Bp=(1-x)y-y*

Proof. Let us define P, , by the formula:
Pn,m(xiayja tz)
= (yl ---.Vm)zmM- Pn+m(xi,YI s eee s Ym—15 l/yl “VYm, tz)'

Since the polynomials P, are monic in each variable we see that P,
cannot have a real root if y;---y,, = 0. The conclusion is easy. 0O

For example we have: Py »(b, ¢, 1) = (bct* — b*c — 1)? — bc.

PROPOSITION 1. Let S be a semi-algebraic subset of RM given by:
S={xeRMb(x)>0,...,b5,(x)>0,¢;(x)>0, ..., cm(x) > 0}.
There exists a real irreducible polynomial P(x, t) such that:
xXeS<dteR, P(x,t)=0.

Proof. Let P be a nontrivial irreducible factor of
Pn,m(bi(x) ’ Cj(x) ’ t2)°

Since P, has either only real roots or none, we see that P has a
real root iff P, ,, has one. 0
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3. The case of obtuse corners. Let us define a function g(¢) and a
polynomial Q,(x, ¢) by the formula:
x1 .xn _ 1 _ Qn (X, t)

+ot = —1= .
t—x t— Xn (t=x1)--(t—xn)

g(t) =

By symmetry we may suppose x; < x; <--- < Xp.
The function g(¢) has a root on any of the intervals ]—oo, X[, ...,

1xixizil, - .-, 1Xn, oo[ whose closure does not contain zero. To obtain
all the other roots of Q,(x, ?), it is enough to take x; as a root or
order p — 1 if x; appears p timesin (x;,..., X,), and take 0 as a

root of order g if g of the x; are equal to zero.

We also see that g’(¢) never vanishes on these intervals.

Consequently y,(x) = sup{t € R|Qx(x, t) = 0} is well defined,
positive (resp. nonnegative) iff one of the x; is positive (resp. non-
negative). ¥,(x) is continuous because Q,(x, ¢) has only real roots.

If w,(x) is equal to one of the x;, all the Xx; are nonpositive, and
either the maximum of the x; is 0, or the maximum of the Xx; is
attained by two or more x; . In the first case, if only one of the x;
is equal to 0, a direct computation shows that Q) (x, 0) # 0. In the
second case, if the maximum of the x; is attained by exactly two of
the x; , we see that Q) (x, x;) # 0. Then, using the implicit function
theorem, we have:

PROPOSITION 2. There exists a function yy,(x), semi-algebraic and
continuous on R", positive (resp. nonnegative) if and only if one of
the x; is positive (resp. nonnegative). Furthermore y,(X) is analytic
everywhere except on E; U E;

El = {(X) ER”IVi, x; < O, Elil, i2, Xl" =.x,‘2 =0},
E, = {(x) ER"|VI, x; <0, 30y, i, i3, X, =X, = X;, = max(xi)}.
l

This allows us to give a very simple proof of the following separation
theorem of Mostowski (compare [B-C-R]).

COROLLARY (Mostowski). Let F be a closed semi-algebraic subset
of R". There exists a continuous semi-algebraic function y zero on
F, analytic and positive outside F .

Proof. We know that any closed semi-algebraic set ' can be written
F = UV F; with F; = {x € R"|4{(x) > 0, ..., Al (x) > 0}. Let
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fi(x) = '/’k,(‘Ali(x) y eees —A}'(’_ (x)). f; is nonpositive on F;, analytic

and positive outside F;. The function y(x) = ]'[]1V (fi(x)+|fi(x)]) has
the desired property. O

We need the following remark:

LEMMA. Let Cy, ..., Cy be pairwise relatively prime elements in
a factorial ring of characteristic zero. There exist positive integers
dy, ..., dn such that the elements Cy, ..., Cy and d;C;—d;C; are

pairwise relatively prime.

Proof. By induction. Suppose that for k < N there exist positive in-
tegers dy, ..., dy suchthat Cy, ..., Cy and d,C;-d;C;, i< j<k,
are pairwise relatively prime. Let P be the finite set of factors ap-
pearing in one of these polynomials. Let j < k be a fixed integer, and
consider the polynomials nCy,, —d;C;. These polynomials are pair-
wise relatively prime, and then, except for a finite number of values for
n, they do not possess any factor belonging to P. Take a positive in-
teger dy, suchthat, forall j <k, dy,;Cy,. —d;C; does not possess
any factor belonging to P. Any common factor of dy,Cy.| —d;C;
and d;,1Cy, —d;C; must be in P, which is impossible. O

ProrosITION 3. If the real polynomials A,(x), ..., Ay,(x), Bi(x),
..., Bi(x) are pairwise relatively prime, there exists a real irreducible
polynomial R(x, t) which has a nonnegative root iff one A;(x) is non-
negative or one Bj(x) is positive. It has a positive root iff one A;(x)
or one Bj(x) is positive.

Proof. By the lemma, we may suppose that the 4,, B;, and their
differences are pairwise relatively prime. Let

'//A(x) = Wh(Al(x) 5 eee s Ah(x)) ’
we(x) = Y (B1(X), ..., Bi(x)).
w4(x) and wg(x) are analytic on R" except on a set of codimen-
sion two at most. Their minimal polynomials R,(x, v4(x)) =0 and
Rp(x, wp(x)) = 0 are therefore irreducible. These polynomials, being
factors of Q4 and Qp respectively (in R(x)[t]), have only real roots.
Consider now the following function defined for u >0 or v #0:

T, v) = u+v+vur4+v?
’ (u+ VuZ +v2)?
w(0, 0) = 0.

(u? +v?),
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¥ satisfies a real quadratic polynomial K(u, v, w(u, v)) =0 which
has a nonnegative root if and only if # >0 or v > 0; (if u > 0 or
v >0, ¥(u,v) is a nonnegative root of this polynomial).

Let R;(x, f) be the polynomial obtained by eliminating « and v
of the following system (I):

RA(X, u) =0,
M Rp(x,v) =0,
K@, v, f)=0.

We see that Ry(x, W(y4(x), wp(x))) = 0. Since W(y4(x), yp(x)) is
meromorphic in a dense connected open subset of R”, there is an irre-
ducible factor R(x, f) of Ri(x, f) suchthat R(x, ¥(yw4(x), wg(Xx)))
=0.

If R has a nonnegative root, the system (I) has a solution u, v, f
with f; nonnegative. R4 and Rp having only real roots, u# and
v are real numbers. Finally we see that ¥ > 0 or v > 0 which
shows that y,(x) > 0 or ywp(x) > 0. Conversely, if y,(x) >0 or
wp(x) >0, w(wy(x), wp(x)) is a nonnegative root of R(x, f)=0.0

We may also remark that, since R4, and Rp have only real roots,
R, and R have the same property.

In the proof of our principal result, we shall only need the easier
part of Proposition 3, when there isno B; . In this case the polynomial
R(x, t) is monic in ¢.

4. The principal result.

THEOREM. If S is a locally closed semi-algebraic subset of R", there
exists an irreducible real polynomial R(x, t) such that:

xeS & JeR, R(x, t)=0.

Furthermore, if S is closed, we can suppose R monic in t.

Proof. Let S = FNU, where F is closed and U open. We know
that we can write F' = ﬂjlv' S; with

S, ={xeR"A4{(x)>0o0r --- or Aﬁl/(x) >0}

where the Aﬁ(x) are irreducible polynomials. (Cf. [A-G1] & [B-C-R]
p. 26.). Similarly, we can write U = ﬂ%l 1S, with:

S; ={xeR"4{(x)>0o0r ... or ALI(x) > 0}.
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For each / let R;(x, u;) be the polynomial defined in Proposition 3.
R, is irreducible, monic in u;, and has only real roots. When / < Ny,
R; has a nonnegative root iff x € S;. When / > N;, R; has a positive
root iff x € S;. The function ys(x) of Proposition 3 is noted f;.

Let y be a root of PNI,N-Nl(fl ..., fn,T?) = 0 in an extension
field of R(f}, ..., fn). Let Q;(x, I') be the polynomial obtained by
eliminating the u; in the system (II):

Ri(x,u;)=0,

RZ(xa uZ) = 03
(II) .

Py N-n (U1, U, ..., uy, T?) =0,

We have Q(x,y) = 0. Let R(x,I') be an irreducible factor of
Q:(x, I') such that R(x, y) =0.

Since Py N-N, is not monic, we must be careful with elimina-
tion theory. Let us introduce a new variable uy.;, and consider
the following system of homogeneous polynomials in the variables

Uy eoe s UN4T -
R}II(X: U, uN+1) = 03
0

(II’) Rg(X, U, uN+l) =V,

h
PNl’N—Nl(uI: cee s UN, l"2’ uN+1)‘

Let Q(x, Nu¥! +1 be the polynomial obtained by successive elimina-
tion of the variables uy, uy_1, ..., #; in the system (II'). As it is
well known for systems of homogeneous equations, this system has a
nontrivial solution (u#;, ..., uy, uyyq) iff Qi(x, I') =0 (cf. [W]).

Since the polynomials R;(x, ;) are monic in u;, we see that any
nontrivial root of (II') is such that uy,; # 0. Therefore, the system
(II) has a solution iff Q;(x, ') =0.

If R(x,T’) has a real root, the system (II) has a solution u, ...,
uy,I’. Since the R; have only real roots, the u; are real and
Py N-n,(U1, ..., un, I'?) hasareal root. Therefore, if / < Ny, u; is
a nonnegative root of R;;if / > Ny, u; isa positive root of R;, which
shows that xe S = ﬂjlv‘ S;. Conversely, suppose x € S. Since the two
polynomials R(x, I') and PN. N-N, (fi, ..., fv, %) have a common
root in an extension field of R(f;, ..., fx), their resultant relative to
I vanishes identically. R(x,T) and Py n_n (fi(X), ..., fx(x), ?)
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have a common root. Since x € S, Py n-w, (AX), ..., fv(x), T2)
has only real roots, therefore R(x, I') has a real root. O

REMARKS. If §' = ﬂf’ S;, where each §; is a closed semi-algebraic
set written with m; inequalities, the degree of our polynomial is
2¥m, ---my. This degree is smaller than the one obtained in [P2]
where the polynomials were solvable by square roots. It would be of
interest to give a simple proof that this degree is optimal “in general”.
(L. Brocker has a proof using fan theory, valid for basic closed sets.)
As in [P1], [P2] using the changing sign criterion, we obtain:

COROLLARY. Let S be a locally closed semi-algebraic subset of R"
having some interior points. Then S is the projection of an irreducible
algebraic subset of R"*!.

This corollary is the generalisation to non closed sets of a result in
[P1]. This earlier result was itself an improvement of the first paper
of Andradas and Gamboa on the subject.
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