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ON THE ELIMINATION OF ALGEBRAIC INEQUALITIES

DANIEL PECKER

Let S be a locally closed semi-algebraic subset of R" . We find
an irreducible equation of an algebraic set of R"+1 projecting upon
S. Our methods are simple and explicit.

1. Introduction. The inequality x > 0 is often replaced by the
proposition " x has a square root" or " 3t e R, t2 - x = 0 ". This
is the most immediate example of an elimination of one inequality.
The general problem is to find an algebraic set projecting upon a given
semi-algebraic set: it is a converse of the problem of the elimination
of quantifiers.

Motzkin proved that every semi-algebraic subset of R" is the pro-
jection of an algebraic set in R w + 1 . However this algebraic set is very
complicated and generally reducible.

Andradas and Gamboa proved that any closed semi-algebraic sub-
set of R" whose Zariski-closure is irreducible is the projection of an
irreducible algebraic set in Rn+k .

In this paper we shall first improve Motzkin's result by finding equa-
tions generally of minimal degree. Then we shall give a few results
concerning irreducibility. One of the first examples of such a con-
struction is due to Rohn and has been studied by Hilbert and Utkin:

If 4C4C2 = ε2 is a plane curve of degree six (where deg(C2) = 2,
deg(C4) = 4, ε e R), then it is the apparent contour of the quartic
surface C2Z2 - εz + C4 = 0.

2. The case of basic closed subsets. Let 1 + = {JCG R\X > 0} be the
set of nonnegative numbers. Let x = (x\, . . . , x^) be a "parameter"
and t an "indeterminate", so that we can speak of the roots of a
polynomial P(x, t). In the same way, unless otherwise specified, the
degree of P(x, t) will be its degree in t.

Let us define the polynomials α/(x) as follows:

It is easy to see that <2i(x) > 0, . . . , an(x) > 0 if and only if all the
Xi are nonnegative or all the Xi are nonpositive ( / = 1 , . . . , A I + 1 ) .
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THEOREM 1. Let P\{x\, ύ) = u - xx.

= Pn(aι(x), . . . , an(x), (u - (x{ + x2 +

Then the following properties are true:

(i) Pn is homogeneous of degree 2n~~ι.
(ii) /fα// the xι are nonnegative

n

Pn(x\, . . . , xn , w) = 0 => 0 < u < 2 ^ P χi-
1

(iii) If all the X; are nonnegative, Pn{x\, . . . , xn, t2) has only real
roots.

(iv) If Pn(xι, ... , xn, t2) has a real root, then all the Xi are non-
negative.

(v)

Pn{x\ 9 . . . , Xj-ι 9 0, Xj+ι, . . . , xn , t)

= [Pn-\(x\ > ••• ? ^ 7 - 1 > ̂ 7 + 1 ? . ?

 x n , t)]

(vi) /^(ΛΓI , . . . , xn , t2) is irreducible and monίc in each letter.

Proof. First, we prove (i), (ii), (iii), and (iv) by simultaneous in-
duction: let us suppose (i), (ii), (iii) and (iv) verified for n we shall
prove them for n + 1.

(i) Easy since the a^ are homogeneous of degree 2.
(ii) If u is a root of Pn+\{x\, . . . , xn+\, ύ) = 0, then

(u-(xι + + x,2 + 1))2

is a root of Pn{a\ (x), . . . , an(x), v) = 0 by induction

(M - (xi + + xn+\)Ϋ < 2(αi(x) + + an{x)) < (xx + + x«+i)2

whence 0 < u < 2(x\ H h x^+i), which shows (ii) and (iii).
(iv) If Pn+\{x\, . . . , xn+\, t2) = 0 has a real root, then

Prt(Λ!(X) , . . . , an{x), [t2 - (xx + + x^+i))2)

has a real root and by induction all the aι (x) are nonnegative. There-
fore, if all the xz are nonpositive, Pn(a\ (x), . . . , an(x), v) has a root
which is greater than (x\ + + x^+i) 2 > 2(a\(x) + + an(x)).
By induction this is possible only if

(xi + + xn+\)2 = 2(αi(x) + + an(x)),

i.e., when all the xt are equal to zero.
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(v) By induction: suppose the formula true for n, let us prove it
for n + 1. Let us study the case j > 2 (the case 7 = 1 is similar).
Let

X — (Xl 9 •• 9 Xj~\ 9 0? Xj+\ 9 9

X = (Xi , . . . , X 7_i , Xj+i , . . . , Xn+\).

We have:
i(x) = fl|(x) if i

Then,

, . . . , an(x), (ί -

(t - (x{ + - - + xn+ι))2)

= [ P ^ ! ^ ! ^ ) , ... , Λπ-i(x) , (ί - (Xl + + Xw +l))2]2

= [/>„(*, ί)]2.

(vi) By induction. Suppose P«(x, ^2) irreducible. Let

Pn+ι (xι,..., xn+ι, ^2) = A(x, t) - B(x, ί ) ,

4̂ and B monic in t. Let us substitute 0 for xn+ϊ in this factoriza-
tion; using (v) we get:

(Pn(Xχ , . . . , * „ , ί 2 )) 2 = [̂(Xl , . . . , Xn , 0, ί) J&fo , . . . , Xn , 0 , t).

Since -PΛ(x, ί2) is irreducible, and A and B are monic in ί, we get
either:

A(xi9 . . . , x Λ , 0, t) = 2

or:

, . . . , Xn , 0 , 0 = (PΛ(X! , . . . , Xn , ί 2 ) ) 2 .

In the first case, at any point where all the Xi are positive Pn has
a simple root and then dA/dt φ 0. Then (by the implicit function
theorem) A has a root for x in a neighborhood of (x\, . . . , xn , 0),
which is impossible since Pn+\ does not have such a root when x^+i
is negative. In the second case Pn+\ and A have the same degree in
t, and since A and B are monic in ί, we obtain finally A(x, ί) =

2 , B(x,t) = l. D
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REMARKS. We can compute easily Pi, P2, P3.

Pι(x9t
2) = t2-x9

Pi(χ, y, t2) = (t2 - (x + y))2 - xy,
P3{x,y,z,t2)

= [{t2 - (x + y + z))2 - (xy + yz + zx)]2 - xyz(x + y).

If we use the elementary symmetric polynomials S\ = x + y + z + u,
$2 > 3̂ 9 $4 = xyzu, we can even write P4:

P*(x9y> z,u,t2)

= [((t2 -si)2- s2)
2 - xyz{x + y) - u{x + y + z)(xy + yz + zx)]2

- st(x + y)(x + y + z)(xy +yz + zx).

The main step in Motzkin's work (cf. [Ml], [M2]) was to find "a real
polynomial U'd(x\, . . . , Xd, t2) such that x\ > 0, . . . , Xj > 0 if and
only if, for some t, U'd(x\, . . . , Xd, t2) = 0." His polynomials are
reducible, nonhomogeneous, have some complex roots even when all
the Xi are positive, and they are very complicated:

deg,(q) = 4, but deg,(<^) = 104, te%t{U'A) = 12, 496, deg,(Cφ =
7,997,472! ! !

The induction formula defining our polynomials P^ was found by
a geometrical construction (cf. [PI], [P2]):

The algebraic set vy. P${x9 y, z, 1) = 0 is such that the positive
cone on it

C > 3 ) = {(x,y,z)e R3\3t > 0, ( ί , I, | ) e vή

= {(x,y,z)e R3\3t > 0, P3(x, y, z, ί2) = 0} = (R+)3.

1/3 is projectively equivalent to an algebraic set v^ whose vertical
projection is a triangle. And it is not difficult, using P2, to define
such a set (see figure).

The following corollary is due to the cooperation of C. Andradas.

COROLLARY 1. There exists a real irreducible polynomial

*n, m \X\ ? 5 Xn ? .Fl ? ? ym ? t )

having a real root iff all the Xj are nonnegative and all the yj are
positive.
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FIGURE

Surface z 4 - 2{Bλ + B2)z2 + B2 + B2 = 0 with
Bx = x - x2, B2 = (l-x)y-y2

Proof. Let us define Pn,m by the formula:

Since the polynomials Pn are monic in each variable we see that Pn, m

cannot have a real root if y\ ym = 0. The conclusion is easy. D

For example we have: Po,2(b, c, t2) = (bet2 -b2c-\)2 - b2c.

PROPOSITION 1. Let S be a semi-algebraic subset of RM given by:

S = {xe RM\b{(x) > 0 , . . . , bn(x) > 0? a(x) > 0 , . . . , cw(x) > 0}.

There exists a real irreducible polynomial P(x, t) such that:

xeS&3teR, P(x91) = 0.

Proof. Let P be a nontrivial irreducible factor of

Pnfm(bi{x)9Cj(x),t2).

Since JPW , m has either only real roots or none, we see that P has a
real root iff Pn,m has one. α
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3. The case of obtuse corners. Let us define a function g(t) and a
polynomial Qn(x, t) by the formula:

By symmetry we may suppose X\ < x2 < < xn

The function g(t) has a root on any of the intervals ]—oo, X\ [,...,
]x/jc/+i[, . . . , ]xn , oo[ whose closure does not contain zero. To obtain
all the other roots of Qn(x, t), it is enough to take x^ as a root or
order /? - 1 if x^ appears p times in (x\, . . . , xn), and take 0 as a
root of order # if # of the x^ are equal to zero.

We also see that g'{t) never vanishes on these intervals.
Consequently ψn(x) = sup{t e R|βΛ(x, t) = 0} is well defined,

positive (resp. nonnegative) iff one of the Xι is positive (resp. non-
negative). ψn(x) is continuous because Qn{x9 t) has only real roots.

If ψn(x) is equal to one of the x^ , all the x^ are nonpositive, and
either the maximum of the x^ is 0, or the maximum of the x^ is
attained by two or more x^ . In the first case, if only one of the x^
is equal to 0, a direct computation shows that Qn (x, 0) Φ 0. In the
second case, if the maximum of the x^ is attained by exactly two of
the xk , we see that βj,(x, Xk) Φ 0. Then, using the implicit function
theorem, we have:

PROPOSITION 2. There exists a function ψn{x)> semi-algebraic and
continuous on Rn, positive (resp. nonnegative) if and only if one of
the Xi is positive (resp. nonnegative). Furthermore ψn(x) is analytic
everywhere except on E\ u £2

Ex = {(x) G RΛ|VΪ , Xi < 0, a/i, h, xiχ = xi2 = 0},

E2 = I (x) G R"|V/, Xi < 0, 3/i, /2, /3 ? ^i, = Xi2 = *i3 = max(x/) I.

This allows us to give a very simple proof of the following separation
theorem of Mostowski (compare [B-C-R]).

COROLLARY (Mostowski). Let F be a closed semi-algebraic subset
of Rn . There exists a continuous semi-algebraic function ψ zero on
F, analytic and positive outside F.

Proof. We know that any closed semi-algebraic set F can be written
F = (j^Fi with Fi - {x G Rn\A[(x) > 0, . . . , A\ (x) > 0}. Let
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fi(x) = ψk (-A[(x), . . . , -Aι

k (x)). fi is nonpositive on F( , analytic

and positive outside Ft. The function ψ(x) = Π f C/Kx) + I/Kx)l) has
the desired property. D

We need the following remark:

LEMMA. Let C\, . . . , CN be pairwise relatively prime elements in
a factorial ring of characteristic zero. There exist positive integers
d\, . . . , dN such that the elements C\, . . . , CN and diCi - djCj are
pairwise relatively prime.

Proof. By induction. Suppose that for k < N there exist positive in-
tegers d\, ... , dk such that C\9 ... 9 CN and diCi-djCj, / < j <k,
are pairwise relatively prime. Let P be the finite set of factors ap-
pearing in one of these polynomials. Let j < k be a fixed integer, and
consider the polynomials « Q + 1 - djCj . These polynomials are pair-
wise relatively prime, and then, except for a finite number of values for
n, they do not possess any factor belonging to P. Take a positive in-
teger djc+i such that, for all j <k, < 4 + 1 Q + 1 —djCj does not possess
any factor belonging to P. Any common factor of 4+1Q+1 - djCj
and έ/fc+iCfc+i - *//C, must be in P, which is impossible. D

PROPOSITION 3. If the real polynomials A\(x), . . . , A^(x), B\ (x),
. . . , Bk(x) are pairwise relatively prime, there exists a real irreducible
polynomial R(xr t) which has a nonnegative root iff one Ai(x) is non-
negative or one Bj(x) is positive. It has a positive root iff one Aι{x)
or one Bj(x) is positive.

Proof. By the lemma, we may suppose that the At, Bj, and their
differences are pairwise relatively prime. Let

= ψk(B{(x),...,Bk(x)).

ΨA(X) and ΨB(X) are analytic on Rn except on a set of codimen-
sion two at most. Their minimal polynomials i?^(x, ΨA{*)) = 0 and
RB(X, ΨB(X)) = 0 are therefore irreducible. These polynomials, being
factors of QA and QB respectively (in R(x)[i]), have only real roots.

Consider now the following function defined for u > 0 or υ φ 0:

_ , v u + υ + Vu2 + υ2 . 2 7\
Ψ(u, v) = (uz + v1),

(u + vu2 + υ2)2

W(0,0) = 0.



312 DANIEL PECKER

ψ satisfies a real quadratic polynomial K(u, v , ψ(u9 υ)) = 0 which
has a nonnegative root if and only if u > 0 or υ > 0 (if u > 0 or
υ > 0,ψ(u, v) is a nonnegative root of this polynomial).

Let i?i(x, /) be the polynomial obtained by eliminating u and i>
of the following system (I):

( RA(x,u) = 0,

(I) I RB(x,v) = 0,
(K(u9v,f) = 0.

We see that Rι(x,ψ(ψA(x), ψB(x))) = 0. Since ψ(ψA(x), ΨB(*)) is
meromorphic in a dense connected open subset of Rn , there is an irre-
ducible factor i?(x, /) of 7?i(x, /) such that i?(x, ψ(ψA(x)9 ΨB(*)))

= 0.
If R has a nonnegative root, the system (I) has a solution u9 v, f\

with /i nonnegative. i?^ and RB having only real roots, u and
v are real numbers. Finally we see that u > 0 or v > 0 which
shows that ψA(x) > 0 or ^ ( x ) > 0. Conversely, if ^ ( x ) > 0 or
^ ( x ) > 0, ψ(ψA(x), ΨB{*)) is a nonnegative root of R(x, /) = 0 .D

We may also remark that, since i?^ and Rβ have only real roots,
R\ and i? have the same property.

In the proof of our principal result, we shall only need the easier
part of Proposition 3, when there is no Bj . In this case the polynomial
R(x, t) is monic in t.

4. The principal result.

THEOREM. If S is a locally closed semi-algebraic subset of 'Rn, there
exists an irreducible real polynomial R(x, t) such that

xeS &3teR, i?(χ, t) = 0.

Furthermore, if S is closed, we can suppose R monic in t.

Proof. Let S = F Π U, where F is closed and U open. We know

that we can write F = f]ι' S[ with

St = {xe Rn\A[(x) > 0 or or ^ ( x ) > 0}

where the ^ ( x ) are irreducible polynomials. (Cf. [A-Gl] & [B-C-R]

p. 26.). Similarly, we can write U = Πίv +i $ι with:

Si = {x G Rn\A[(x) > 0 or . . . or Aι

n (x) > 0}.
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For each / let i?/(x, u\) be the polynomial defined in Proposition 3.
Ri is irreducible, monic in w/, and has only real roots. When I < N\,
Ri has a nonnegative root iff x e 5/. When I > N\9 i?/ has a positive
root iff x e Si. The function ^ ( x ) of Proposition 3 is noted fι.
Let γ be a root of PN N-N^A > ••• > /N> Γ2) = 0 in an extension
field of R(/i, . . . , fa). Let Q\(x9 Γ) be the polynomial obtained by
eliminating the w/ in the system (II):

(Π)

Rl(x,Ul)=0,

U2,

We have βi(x, y) = 0. Let Λ(x, Γ) be an irreducible factor of
βi(x, Γ) such that i?(x, y) = 0.

Since PN N-NX *S n o t πionic, we must be careful with elimina-
tion theory. Let us introduce a new variable w#+i, and consider
the following system of homogeneous polynomials in the variables

(II')

PN ? uN+ι).

Let Qi(x, Γ)MJjf+1 be the polynomial obtained by successive elimina-
tion of the variables uN, uN-{,... ,u\ in the system (II'). As it is
well known for systems of homogeneous equations, this system has a
nontrivial solution (u\, . . . , w#, w#+i) iff Qi(x, Γ) = 0 (cf. [W]).

Since the polynomials i?/(x, «/) are monic in W/, we see that any
nontrivial root of (II') is such that uχ+\ φ 0. Therefore, the system
(II) has a solution iff βi(x, Γ) = 0.

If 2?(x, Γ) has a real root, the system (II) has a solution U\, . . . ,
w#, Γ. Since the R\ have only real roots, the u\ are real and
PN19N-N (t4\9 ... 9UN9 Γ2) has a real root. Therefore, if / < N\, W/ is
a nonnegative root of i?/ if / > N\, W/ is a positive root of i?/, which
shows that xeS = C\x

ι Si. Conversely, suppose xeS. Since the two
polynomials i?(x, Γ) and PN N-N^A > > /3v ? Γ2) have a common
root in an extension field of R(/i , . . . , , / # ) , their resultant relative to
Γ vanishes identically. R(x9 Γ) and PN iN-N (/ι(x), . . . , /τv(x), Γ2)
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have a common root. Since x € S, PN1,N-N1 (/I (x) > - > ./ΛKX) > Γ2)
has only real roots, therefore i?(x, Γ) has a real root. D

REMARKS. If S = f | f S/ > where each 5/ is a closed semi-algebraic
set written with ra/ inequalities, the degree of our polynomial is
2Nm\ - - - ΊΠN . This degree is smaller than the one obtained in [P2]
where the polynomials were solvable by square roots. It would be of
interest to give a simple proof that this degree is optimal "in general".
(L. Brόcker has a proof using fan theory, valid for basic closed sets.)
As in [PI], [P2] using the changing sign criterion, we obtain:

COROLLARY. Let S be a locally closed semi-algebraic subset of Rn

having some interior points. Then S is the projection of an irreducible
algebraic subset of R"+ 1.

This corollary is the generalisation to non closed sets of a result in
[PI]. This earlier result was itself an improvement of the first paper
of Andradas and Gamboa on the subject.
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